X-ray Imaging Investigation on the Gilding Technique of an Ancient Egyptian Taweret Wooden Statuette
Abstract
:1. Introduction
2. Materials and Methods
2.1. The “Taweret” Statuette
2.2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lang, J.; Middleton, A.A. Radiography of Cultural Material, 2nd ed.; Elsevier Butterworth-Heinemann: Oxford, UK, 2005. [Google Scholar]
- Casali, F. X-ray and Neutron Digital Radiography and Computed Tomography for Cultural Heritage Physical Techniques in the Study of Art, Archaeology and Cultural Heritage; Elsevier: Amsterdam, The Netherlands, 2006; pp. 41–123. [Google Scholar]
- Morigi, M.P.; Casali, F.; Bettuzzi, M.; Brancaccio, R.; D’Errico, V. Application of X-ray Computed Tomography to Cultural Heritage diagnostics. Appl. Phys. A 2010, 100, 653–661. [Google Scholar] [CrossRef]
- Conroy, G.C.; Vannier, M.W. Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high resolution computed tomography. Science 1984, 226, 456–458. [Google Scholar] [CrossRef] [PubMed]
- Wind, J. Computerized X-ray tomography of fossil hominid skulls. Am. J. Phys. Anthropol. 1984, 63, 265–282. [Google Scholar] [CrossRef]
- Melcher, A.H.; Holowka, S.; Pharoah, M.; Lewin, P.K. Non-invasive computed tomography and three-dimensional reconstruction of the dentition of a 2,800-year-old Egyptian mummy exhibiting extensive dental disease. Am. J. Phys. Anthropol. 1997, 103, 329–340. [Google Scholar] [CrossRef]
- Otte, A.; Thieme, T.; Beck, A. Computed tomography alone reveals the secrets of ancient mummies in medical archaeology. Hell. J. Nucl. Med. 2013, 16, 148–149. [Google Scholar] [PubMed]
- Fiori, M.G.; Nunzi, M.G. The earliest documented applications of X-rays to examination of mummified remains and archaeological materials. J. R. Soc. Med. 1995, 88, 67–69. [Google Scholar]
- Bettuzzi, M.; Casali, F.; Morigi, M.P.; Brancaccio, R.; Carson, D.; Chiari, G.; Maish, J. Computed tomography of a medium size Roman bronze statue of Cupid. Appl. Phys. A 2015, 118, 1161–1169. [Google Scholar] [CrossRef]
- Re, A.; Lo Giudice, A.; Nervo, M.; Buscaglia, P.; Luciani, P.; Borla, M.; Greco, C. The importance of tomography studying wooden artefacts: A comparison with radiography in the case of a coffin lid from ancient Egypt, International. J. Conserv. Sci. 2016, 7, 935–944. [Google Scholar]
- Ngan-Tillard, D.J.M.; Huisman, D.J.; Corbella, F.; Van Nass, A. Over the rainbow? Micro-CT scanning to non-destructively study Roman and early medieval glass bead manufacture. J. Archaeol. Sci. 2018, 98, 7–21. [Google Scholar] [CrossRef]
- Sanger, M.C. Investigating pottery vessel manufacturing techniques using radiographic imaging and computed tomography: Studies from the Late Archaic American Southeast. J. Archaeol. Sci. 2016, 9, 586–598. [Google Scholar] [CrossRef]
- Harvig, L.; Lynnerup, N. Computed tomography and computed radiography of Late Bronze Age cremation urns from Denmark: An interdisciplinary attempt to develop methods applied in bioarchaeological cremation research. Archaeometry 2012, 54, 369–387. [Google Scholar] [CrossRef]
- Maher, M.A. X-RAY computed tomography of a late period falcon bronze coffin. Radiat. Phys. Chem. 2020, 166, 108475. [Google Scholar] [CrossRef]
- Fiocco, G.; Rovetta, T.; Malagodi, M.; Licchelli, M.; Gulmini, M.; Lanzafame, G.; Zanini, F.; Lo Giudice, A.; Re, A. Synchrotron radiation micro-computed tomography for the investigation of finishing treatments in historical bowed string instruments: Issues and perspectives. Eur. Phys. J. Plus 2018, 133, 525. [Google Scholar] [CrossRef]
- Kahl, W.A.; Ramminger, B. Non-destructive fabric analysis of prehistoric pottery using high-resolution X-ray microtomography: A pilot study on the late Mesolithic to Neolithic site Hamburg- Boberg. J. Archaeol. Sci. 2012, 39, 2206–2219. [Google Scholar] [CrossRef]
- Albertin, F.; Bettuzzi, M.; Brancaccio, R.; Morigi, M.P.; Casali, F. X-Ray Computed Tomography In Situ: An Opportunity for Museums and Restoration Laboratories. Heritage 2019, 2, 2028–2038. [Google Scholar] [CrossRef] [Green Version]
- Re, A.; Albertin, F.; Bortolin, C.; Brancaccio, R.; Buscaglia, P.; Corsi, J.; Cotto, G.; Dughera, G.; Durisi, E.; Ferrarese, W.; et al. Results of the Italian neu_ART project. IOP Conf. Ser.: Mater. Sci. Eng. 2012, 37, 012007. [Google Scholar] [CrossRef] [Green Version]
- Nervo, M. Il Progetto neu_ART. Studi e Applicazioni/Neutron and X-ray Tomography and Imaging for Cultural Heritage, Cronache 4; Editris: Torino, Italy, 2013. [Google Scholar]
- Lo Giudice, A.; Corsi, J.; Cotto, G.; Mila, G.; Re, A.; Ricci, C.; Sacchi, R.; Visca, L.; Zamprotta, L.; Pastrone, N.; et al. A new digital radiography system for paintings on canvas and on wooden panels of large dimensions. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC 2017), Torino, Italy, 22–25 May 2017. [Google Scholar]
- Re, A.; Albertin, F.; Avataneo, C.; Brancaccio, R.; Corsi, J.; Cotto, G.; De Blasi, S.; Dughera, G.; Durisi, E.; Ferrarese, W.; et al. X-ray tomography of large wooden artworks: The case study of “Doppio corpo” by Pietro Piffetti. Herit. Sci. 2014, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Re, A.; Corsi, J.; Demmelbauer, M.; Martini, M.; Mila, G.; Ricci, C. X-ray tomography of a soil block: A useful tool for the restoration of archaeological finds. Herit. Sci. 2015, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Afifi, H.A.M.; Etman, M.A.; Abdrabbo, H.A.M.; Kamal, H.M. Typological study and non-destructive analytical approaches used for dating a polychrome gilded wooden statuette at the Grand Egyptian Museum. Sci. Cult. 2020, 6, 69–83. [Google Scholar] [CrossRef]
- Wilkinson, R.H. The Complete Gods and Goddesses of Ancient Egypt; Thames & Hudson: Singapore, 2005; pp. 185–186. [Google Scholar]
- Stracke, A. The Hippopotamus of Deir el-Medina. Examining the presence of Taweret in the Workman’s Village of Deir el- Medina. Master’s Thesis, Leiden University, Leiden, The Netherlands, 2019. [Google Scholar]
- Gale, R.; Gasson, P.; Hepper, N.; Killen, G. Ancient Egyptian Material and Technology; Cambridge University: New York, NY, USA, 2000; p. 367. [Google Scholar]
- Hatchfield, P.; Newmann, R. Ancient Egyptian Gilding Methods. In Gilded Wood: Conservation and History; Sound View Press: Madison, CT, USA, 1991; pp. 27–47. [Google Scholar]
- Vigorelli, L.; Lo Giudice, A.; Cavaleri, T.; Buscaglia, P.; Nervo, P.; Del Vesco, P.; Borla, M.; Grassini, S.; Re, A. Upgrade of the x-ray imaging set-up at CCR “La Venaria Reale”: The case study of an Egyptian wooden statuette. In Proceedings of the 2020 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, Trento, Italy, 22–24 October 2020. [Google Scholar]
- Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging; IEEE Press: New York, NY, USA, 1987; Chapter 3; pp. 49–112. [Google Scholar]
- Brancaccio, R.; Bettuzzi, M.; Casali, F.; Morigi, M.P.; Levi, G.; Gallo, A.; Marchetti, G.; Schneberk, D. Real-Time Reconstruction for 3-D CT Applied to Large Objects of Cultural Heritage. IEEE Trans. Nucl. Sci. 2011, 58, 1864–1871. [Google Scholar] [CrossRef]
- Cavaleri, T.; Buscaglia, P.; Caliri, C.; Ferraris, E.; Nervo, M.; Romano, F.P. Below the surface of the coffin lid of Neskhonsuennekhy in the Museo Egizio collection. X-ray Spectrom. 2020, 50, 279–292. [Google Scholar] [CrossRef]
- Rifai, M.M.; El Hadidi, N.M.N. Investigation and analysis of three gilded wood samples from the tomb of Tutankhamun. In Decorated Surfaces on Ancient Egyptian Objects. Technology, Deterioration and Conservation; Dawson, J., Rozeik, C., Wright, M.M., Eds.; Archetype Publications: London, UK, 2010; pp. 16–24. [Google Scholar]
Detector: FP Shad-o-Box 6K HS | Source: GE 42MF4 | ||
---|---|---|---|
Pixel number | 2304 × 2940 | Target | tungsten |
Active area | 11.4 × 14.6 cm2 | Voltage | 5–200 kV |
Pixel size | 49.5 μm | Max. Current | 10 mA |
A/D converter | 14 bit | Max. Power | 900 W |
Energy range | 15–225 keV | Focal spot (EN12543) | 3 mm |
Scintillator | CsI | Beam angle | 40 × 60° |
Data transfer | Gigabit Ethernet | Exit window | 0.8 ± 0.1 mm, Be |
Furniture [21] | Coffin [10] | Soil block [22] | Taweret | |
---|---|---|---|---|
Dimension of the object | 129 × 59 × 312 cm3 | 31 × 50 × 182 cm3 | 10 × 15 × 40 cm3 | 4 × 12 × 14 cm3 |
X-ray tube voltage | 180 kV | 180 kV | 200 kV | 80 kV |
X-ray tube current | 5 mA | 5 mA | 4.5 mA | 10 mA |
X-ray filter (a) | Al (2 mm) | Al (2 mm) | Al (2 mm) | Al (2 mm) |
Source-Detector Distance (SDD) | 295 cm | 369 cm | 294 cm | 375 cm |
Source-Object Distance (SOD) | 214 cm | 318 cm | 264 cm | 351 cm |
Object-Detector Distance (ODD) | 81 cm | 51 cm | 30 cm | 24 cm |
Magnification | 1.38× | 1.16× | 1.11× | 1.07× |
Dimensions of a projection (b) | 210 × 51.2 cm2 | 90 × 51.2 cm2 | 26 × 51.2 cm2 | 11.4 × 14.6 cm2 |
Area of a projection | 1.07 m2 | 0.46 m2 | 0.13 m2 | 0.017 m2 |
Detector scan speed | 5.0 m/min | 2.2 m/min | 2.0 m/min | Fixed |
Integration time per Pixel | 9.6 ms | 10.9 ms | 6.0 ms | 1.75 s |
Number of projections | 720 | 1080 | 540 | 1440 |
Acquisition time for a projection | 25.2 s | 24.5 s | 7.8 s | 1.75 s |
Total acquisition time (c) | 10 h | 15 h | 3 h 40 min | 1 h 55 min |
Detector pixel size | 200 μm | 200 μm | 200 μm | 49.5 μm |
Pixel dimension (d) | 800 μm | 400 μm | 200 μm | 49.5 μm |
Reconstructed voxel size | 580 μm | 345 μm | 180 μm | 46 μm |
Penumbra | 1.14 mm | 480 μm | 340 μm | 205 μm |
Dimension of one projection | 51.3 Mb | 22.0 Mb | 6.3 Mb | 12.9 Mb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vigorelli, L.; Re, A.; Guidorzi, L.; Cavaleri, T.; Buscaglia, P.; Nervo, M.; Facchetti, F.; Borla, M.; Grassini, S.; Lo Giudice, A. X-ray Imaging Investigation on the Gilding Technique of an Ancient Egyptian Taweret Wooden Statuette. J. Imaging 2021, 7, 229. https://doi.org/10.3390/jimaging7110229
Vigorelli L, Re A, Guidorzi L, Cavaleri T, Buscaglia P, Nervo M, Facchetti F, Borla M, Grassini S, Lo Giudice A. X-ray Imaging Investigation on the Gilding Technique of an Ancient Egyptian Taweret Wooden Statuette. Journal of Imaging. 2021; 7(11):229. https://doi.org/10.3390/jimaging7110229
Chicago/Turabian StyleVigorelli, Luisa, Alessandro Re, Laura Guidorzi, Tiziana Cavaleri, Paola Buscaglia, Marco Nervo, Federica Facchetti, Matilde Borla, Sabrina Grassini, and Alessandro Lo Giudice. 2021. "X-ray Imaging Investigation on the Gilding Technique of an Ancient Egyptian Taweret Wooden Statuette" Journal of Imaging 7, no. 11: 229. https://doi.org/10.3390/jimaging7110229
APA StyleVigorelli, L., Re, A., Guidorzi, L., Cavaleri, T., Buscaglia, P., Nervo, M., Facchetti, F., Borla, M., Grassini, S., & Lo Giudice, A. (2021). X-ray Imaging Investigation on the Gilding Technique of an Ancient Egyptian Taweret Wooden Statuette. Journal of Imaging, 7(11), 229. https://doi.org/10.3390/jimaging7110229