# Roadmap on Recent Progress in FINCH Technology

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{10}

^{11}

^{12}

^{13}

^{14}

^{15}

^{16}

^{17}

^{18}

^{19}

^{20}

^{21}

^{22}

^{23}

^{24}

^{*}

## Abstract

**:**

## 1. Introduction (Joseph Rosen and Vijayakumar Anand)

## 2. Single-Shot Phase-Shifting Fresnel Incoherent Correlation Holography with Dual-Phase Gratings (Teruyoshi Nobukawa)

#### 2.1. Status

#### 2.2. Future Challenges

#### 2.3. Conclusions

## 3. Parallel Phase-Shifting Single-Shot in-Line Fresnel Incoherent Correlation Holography Using a Dual-Focus Checkerboard Lens (Takanori Nomura)

#### 3.1. Status

#### 3.2. Conclusions

## 4. Single-Shot Fresnel Incoherent Digital Holography Based on Geometric Phase Lens (Dong Liang and Jun Liu)

#### 4.1. Status

#### 4.2. Conclusions

## 5. Fresnel Incoherent Correlation Holography with Non-Linear Reconstruction (Vijayakumar Anand and Saulius Juodkazis)

#### 5.1. Status

#### 5.2. Future Challenges

#### 5.3. Conclusions

## 6. FINCH Based on Metasurfaces (Hongqiang Zhou and Lingling Huang)

#### 6.1. Status

**k**space manipulation simultaneously. Hence, various ultra-broadband or multiwavelength behaviors based on metasurfaces have been proposed and demonstrated through smart design and optimization. Metasurfaces have broad applications in metalens, holography, optical encryption, display, beam shaping, active modulation, etc. [71,72,73,74].

#### 6.2. Current and Future Challenges

#### 6.3. Advances of Metalens to Meet Challenges of FINCH

_{2}achromatic metalens can record and reconstruct incoherent fluorescence holography with higher imaging performance in the visible light or UV range.

#### 6.4. Concluding Remarks

## 7. Vortex FINCH in Spiral and Localization Microscopy (Petr Bouchal and Zdeněk Bouchal)

#### 7.1. Status

#### 7.1.1. Demonstration of Spiral FINCH Imaging

#### 7.1.2. Demonstration of Localization FINCH Imaging

#### 7.2. Conclusions

## 8. Three-Dimensional Reconstruction for Living Cell by Using a Femtosecond Laser-Based Phase-Shifting Fresnel Incoherent Digital Hologram (Bang Le Thanh, Munkh-Uchral Erdenebat, and Nam Kim)

#### 8.1. Status

_{s}):

_{1}< z

_{2}< z

_{3}. z

_{1}and z

_{3}are the same as the distance of the recorded hologram.

#### 8.2. Conclusions

## 9. Single-Molecule Localization with FINCH (Peter Kner and Abhijit Marar)

#### 9.1. Status

#### 9.2. Future Work

#### 9.3. Conclusions

## 10. Incoherent Holography Lattice Light-Sheet (IHLLS) (Mariana Potcoava, Christopher Mann, Simon Alford and Jonathan Art)

#### 10.1. Status

#### 10.2. Current and Future Challenges

#### 10.3. Advances in Science and Technology to Meet Challenges

#### 10.4. Conclusions

## 11. Multiwavelength-Multiplexed Incoherent Digital Holography Based on Computational Coherent Superposition (Tatsuki Tahara, Ayumi Ishii, Takako Koujin, Atsushi Matsuda, Yuichi Kozawa, and Ryutaro Oi)

#### 11.1. Status

#### CCS-FINCH

#### 11.2. Other Remarks and Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Rosen, J.; Brooker, G. Digital spatially incoherent Fresnel holography. Opt. Lett.
**2007**, 32, 912–914. [Google Scholar] [CrossRef] [PubMed] - Peters, P.J. Incoherent Holograms with Mercury Light Source. Appl. Phys. Lett.
**1966**, 8, 209. [Google Scholar] [CrossRef] - Sirat, G.; Psaltis, D. Conoscopic holography. Opt. Lett.
**1985**, 10, 4–6. [Google Scholar] [CrossRef] [PubMed] - Yamaguchi, I.; Zhang, T. Phase-shifting digital holography. Opt. Lett.
**1997**, 22, 1268–1270. [Google Scholar] [CrossRef] [PubMed] - Poon, T.-C. Three-dimensional image processing and optical scanning holography. Adv. Imaging Electron Phys.
**2003**, 126, 329–350. [Google Scholar] [CrossRef] - Abookasis, D.; Rosen, J. Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene. Appl. Opt.
**2006**, 45, 6533–6538. [Google Scholar] [CrossRef] [PubMed][Green Version] - Rosen, J.; Vijayakumar, A.; Kumar, M.; Rai, M.R.; Kelner, R.; Kashter, Y.; Bulbul, A.; Mukherjee, S. Recent advances in self-interference incoherent digital holography. Adv. Opt. Photon.
**2019**, 11, 1–66. [Google Scholar] [CrossRef] - Rosen, J.; Kelner, R. Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems. Opt. Express
**2014**, 22, 29048–29066. [Google Scholar] [CrossRef][Green Version] - Goodman, J. Introduction to Fourier Optics, 2nd ed.; McGraw-Hill: New York, NY, USA, 1996; Chapter 4; pp. 63–95. [Google Scholar]
- Brooker, G.; Siegel, N.; Wang, V.; Rosen, J. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy. Opt. Express
**2011**, 19, 5047–5062. [Google Scholar] [CrossRef][Green Version] - Kim, M.K. Adaptive optics by incoherent digital holography. Opt. Lett.
**2012**, 37, 2694–2696. [Google Scholar] [CrossRef] - Nobukawa, T.; Katano, Y.; Goto, M.; Muroi, T.; Kinoshita, N.; Iguchi, Y.; Ishii, N. Incoherent digital holography simulation based on scalar diffraction theory. J. Opt. Soc. Am. A
**2021**, 38, 924–932. [Google Scholar] [CrossRef] [PubMed] - Tahara, T.; Kanno, T.; Arai, Y.; Ozawa, T. Single-shot phase-shifting incoherent digital holography. J. Opt.
**2017**, 19, 065705. [Google Scholar] [CrossRef] - Anand, V.; Katkus, T.; Lundgaard, S.; Linklater, D.P.; Ivanova, E.P.; Ng, S.H.; Juodkazis, S. Fresnel incoherent correlation holography with single camera shot. Opto-Electron. Adv.
**2020**, 3, 200004. [Google Scholar] [CrossRef] - Wu, M.; Tang, M.; Zhang, Y.; Du, Y.; Ma, F.; Liang, E.; Gong, Q. Single-shot Fresnel incoherent correlation holography mi-croscopy with two-step phase-shifting. J. Mod. Opt.
**2021**, 68, 564–572. [Google Scholar] [CrossRef] - Siegel, N.; Brooker, G. Single shot holographic super-resolution microscopy. Opt. Express
**2021**, 29, 15953–15968. [Google Scholar] [CrossRef] - Rosen, J.; Brooker, G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photon.
**2008**, 2, 190–195. [Google Scholar] [CrossRef] - Brooker, G.; Siegel, N.; Rosen, J.; Hashimoto, N.; Kurihara, M.; Tanabe, A. In-line FINCH super resolution digital holo-graphic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens. Opt. Lett.
**2013**, 38, 5264–5267. [Google Scholar] [CrossRef][Green Version] - Kelner, R.; Katz, B.; Rosen, J. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging sys-tem. Optica
**2014**, 1, 70–74. [Google Scholar] [CrossRef][Green Version] - Siegel, N.; Brooker, G. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy. Opt. Express
**2014**, 22, 22298–22307. [Google Scholar] [CrossRef][Green Version] - Kashter, Y.; Rosen, J. Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture. Opt. Express
**2014**, 22, 20551–20565. [Google Scholar] [CrossRef][Green Version] - Kashter, Y.; Vijayakumar, A.; Miyamoto, Y.; Rosen, J. Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination. Opt. Lett.
**2016**, 41, 1558–1561. [Google Scholar] [CrossRef] [PubMed] - Kashter, Y.; Vijayakumar, A.; Rosen, J. Resolving images by blurring: Superresolution method with a scattering mask be-tween the observed objects and the hologram recorder. Optica
**2017**, 4, 932–939. [Google Scholar] [CrossRef] - Rosen, J.; Brooker, G. Fluorescence incoherent color holography. Opt. Express
**2007**, 15, 2244–2250. [Google Scholar] [CrossRef][Green Version] - Kim, M.K. Full color natural light holographic camera. Opt. Express
**2013**, 21, 9636–9642. [Google Scholar] [CrossRef] - Tahara, T.; Koujin, T.; Matsuda, A.; Ishii, A.; Ito, T.; Ichihashi, Y.; Oi, R. Incoherent color digital holography with computational coherent superposition for fluorescence imaging [Invited]. Appl. Opt.
**2021**, 60, A260–A267. [Google Scholar] [CrossRef] - Kelner, R.; Rosen, J. Spatially incoherent single channel digital Fourier holography. Opt. Lett.
**2012**, 37, 3723–3725. [Google Scholar] [CrossRef][Green Version] - Kelner, R.; Rosen, J.; Brooker, G. Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference. Opt. Express
**2013**, 21, 20131–20144. [Google Scholar] [CrossRef] - Vijayakumar, A.; Kashter, Y.; Kelner, R.; Rosen, J. Coded aperture correlation holography—A new type of incoherent digital holograms. Opt. Express
**2016**, 24, 12430–12441. [Google Scholar] [CrossRef] - Bouchal, P.; Kapitán, J.; Chmelík, R.; Bouchal, Z. Point spread function and two-point resolution in Fresnel incoherent cor-relation holography. Opt. Express
**2011**, 19, 15603–15620. [Google Scholar] [CrossRef] [PubMed] - Lai, X.; Zeng, S.; Lv, X.; Yuan, J.; Fu, L. Violation of the Lagrange invariant in an optical imaging system. Opt. Lett.
**2013**, 38, 1896–1898. [Google Scholar] [CrossRef] [PubMed] - Katz, B.; Rosen, J.; Kelner, R.; Brooker, G. Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM). Opt. Express
**2012**, 20, 9109–9121. [Google Scholar] [CrossRef] [PubMed][Green Version] - Nobukawa, T.; Muroi, T.; Katano, Y.; Kinoshita, N.; Ishii, N. Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings. Opt. Lett.
**2018**, 43, 1698–1701. [Google Scholar] [CrossRef] [PubMed] - Sakamaki, S.; Yoneda, N.; Nomura, T. Single-shot in-line Fresnel incoherent holography using a dual-focus checkerboard lens. Appl. Opt.
**2020**, 59, 6612–6618. [Google Scholar] [CrossRef] [PubMed] - Liang, D.; Zhang, Q.; Wang, J.; Liu, J. Single-shot Fresnel incoherent digital holography based on geometric phase lens. J. Mod. Opt.
**2020**, 67, 92–98. [Google Scholar] [CrossRef][Green Version] - Anand, V.; Katkus, T.; Ng, S.H.; Juodkazis, S. Review of Fresnel incoherent correlation holography with linear and non-linear correlations [Invited]. Chin. Opt. Lett.
**2021**, 19, 020501. [Google Scholar] [CrossRef] - Zhou, H.; Huang, L.; Li, X.; Li, X.; Geng, G.; An, K.; Li, Z.; Wang, Y. All-dielectric bifocal isotropic metalens for single-shot hologram generation device. Opt. Express
**2020**, 28, 21549–21559. [Google Scholar] [CrossRef] - Bouchal, P.; Bouchal, Z. Selective edge enhancement in three-dimensional vortex imaging with incoherent light. Opt. Lett.
**2012**, 37, 2949–2951. [Google Scholar] [CrossRef] - Kim, N.; Alam, M.A.; Bang, L.T.; Phan, A.-H.; Piao, M.-L.; Erdenebat, M.-U. Advances in the light field displays based on integral imaging and holographic techniques (Invited Paper). Chin. Opt. Lett.
**2014**, 12, 60005–60009. [Google Scholar] [CrossRef] - Marar, A.; Kner, P. Three-dimensional nanoscale localization of point-like objects using self-interference digital holography. Opt. Lett.
**2020**, 45, 591–594. [Google Scholar] [CrossRef] - Potcoava, M.; Mann, C.; Art, J.; Alford, S. Spatio-temporal performance in an incoherent holography lattice light-sheet mi-croscope (IHLLS). Opt. Express
**2021**, 29, 23888–23901. [Google Scholar] [CrossRef] - Tahara, T.; Ito, T.; Ichihashi, Y.; Oi, R. Multiwavelength three-dimensional microscopy with spatially incoherent light, based on computational coherent superposition. Opt. Lett.
**2020**, 45, 2482–2485. [Google Scholar] [CrossRef] [PubMed] - Bouchal, P.; Bouchal, Z. Concept of coherence aperture and pathways toward white light hire-resolution correlation imaging. N. J. Phys.
**2013**, 15, 123002. [Google Scholar] [CrossRef][Green Version] - Nobukawa, T.; Katano, Y.; Goto, M.; Muroi, T.; Kinoshita, N.; Iguchi, Y.; Ishii, N. Coherence aperture restricted spatial reso-lution for an arbitrary depth plane in incoherent digital holography. Appl. Opt.
**2021**, 60, 5392–5398. [Google Scholar] [CrossRef] [PubMed] - Nobukawa, T.; Katano, Y.; Muroi, T.; Kinoshita, N.; Ishii, N. Sampling requirements and adaptive spatial averaging for in-coherent digital holography. Opt. Express
**2019**, 27, 33634–33651. [Google Scholar] [CrossRef] [PubMed] - Wan, Y.; Man, T.; Wu, F.; Kim, M.K.; Wang, D. Parallel phase-shifting self-interference digital holography with faithful re-construction using compressive sensing. Opt. Lasers Eng.
**2016**, 86, 38–43. [Google Scholar] [CrossRef][Green Version] - Quan, X.; Matoba, O.; Awatsuji, Y. Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings. Opt. Lett.
**2017**, 42, 383–386. [Google Scholar] [CrossRef] [PubMed] - Nguyen, C.M.; Kwon, H.-S. Common-path off-axis incoherent Fourier holography with a maximum overlapping interference are. Opt. Lett.
**2019**, 44, 3406–3409. [Google Scholar] [CrossRef] - Weng, J.; Clark, D.C.; Kim, M.K. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography. Opt. Commun.
**2016**, 366, 88–93. [Google Scholar] [CrossRef] - Choi, K.; Joo, K.-I.; Lee, T.-H.; Kim, H.-R.; Yim, J.; Do, H.; Min, S.-W. Compact self-interference incoherent digital holo-graphic camera system with real-time operation. Opt. Express
**2019**, 27, 4814–4833. [Google Scholar] [CrossRef] - Zhang, Y.; Wu, M.-T.; Tang, M.-Y.; Ma, F.-Y.; Liang, E.-J.; Du, Y.-L.; Duan, Z.-Y.; Gong, Q.-X. Fresnel incoherent correlation hologram recording in real-time. Optik
**2021**, 241, 166938. [Google Scholar] [CrossRef] - Hong, J.; Kim, M.K. Single-shot self-interference incoherent digital holography using off-axis configuration. Opt. Lett.
**2013**, 38, 5196–5199. [Google Scholar] [CrossRef] [PubMed] - Indebetouw, G.; El Maghnouji, A.; Foster, R. Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus. J. Opt. Soc. Am. A
**2005**, 22, 892–898. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zhu, Z.; Shi, Z. Self-interference polarization holographic imaging of a three-dimensional incoherent scene. Appl. Phys. Lett.
**2016**, 109, 091104. [Google Scholar] [CrossRef] - Choi, K.; Yim, J.; Yoo, S.; Min, S.-W. Self-interference digital holography with a geometric-phase hologram lens. Opt. Lett.
**2017**, 42, 3940–3943. [Google Scholar] [CrossRef] - Pancharatnam, S. Generalized theory of interference, and its applications. Proc. Math. Sci.
**1956**, 44, 247–262. [Google Scholar] [CrossRef] - Awatsuji, Y.; Sasada, M.; Kubota, T. Parallel quasiphase-shifting digital holography. Appl. Phys. Lett.
**2004**, 85, 1069–1071. [Google Scholar] [CrossRef] - Horner, J.L.; Gianino, P.D. Phase-only matched filtering. Appl. Opt.
**1984**, 23, 812–816. [Google Scholar] [CrossRef] - Vijayakumar, A.; Kashter, Y.; Kelner, R.; Rosen, J. Coded aperture correlation holography system with improved performance [Invited]. Appl. Opt.
**2017**, 56, F67–F77. [Google Scholar] [CrossRef] - Rai, M.; Vijayakumar, A.; Rosen, J. Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH). Opt. Express
**2018**, 26, 18143–18154. [Google Scholar] [CrossRef] - Anand, V.; Rosen, J.; Ng, S.; Katkus, T.; Linklater, D.; Ivanova, E.; Juodkazis, S. Edge and Contrast Enhancement Using Spatially Incoherent Correlation Holography Techniques. Photon
**2021**, 8, 224. [Google Scholar] [CrossRef] - Tahara, T.; Kozawa, Y.; Ishii, A.; Wakunami, K.; Ichihashi, Y.; Oi, R. Two-step phase-shifting interferometry for self-interference digital holography. Opt. Lett.
**2021**, 46, 669–672. [Google Scholar] [CrossRef] - Katz, B.; Wulich, D.; Rosen, J. Optimal noise suppression in Fresnel incoherent correlation holography (FINCH) configured for maximum imaging resolution. Appl. Opt.
**2010**, 49, 5757–5763. [Google Scholar] [CrossRef] - Choi, K.-H.; Yim, J.; Min, S.-W. Optical defocus noise suppressing by using a pinhole-polarizer in Fresnel incoherent correlation holography. Appl. Opt.
**2017**, 56, F121–F127. [Google Scholar] [CrossRef] [PubMed] - Rai, M.; Rosen, J. Noise suppression by controlling the sparsity of the point spread function in interferenceless coded aperture correlation holography (I-COACH). Opt. Express
**2019**, 27, 24311–24323. [Google Scholar] [CrossRef] - Bulbul, A.; Rosen, J. Super-resolution imaging by optical incoherent synthetic aperture with one channel at a time. Photon. Res.
**2021**, 9, 1172. [Google Scholar] [CrossRef] - Zhou, H.; Sain, B.; Wang, Y.; Schlickriede, C.; Zhao, R.; Zhang, X.; Wei, Q.; Li, X.; Huang, L.; Zentgraf, T. Polariza-tion-Encrypted Orbital Angular Momentum Multiplexed Metasurface Holography. ACS Nano
**2020**, 14, 5553–5559. [Google Scholar] [CrossRef] [PubMed] - Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater.
**2014**, 13, 139–150. [Google Scholar] [CrossRef] - Ni, X.; Kildishev, A.; Shalaev, V.M. Metasurface holograms for visible light. Nat. Commun.
**2013**, 4, 2807. [Google Scholar] [CrossRef] - Huang, L.; Chen, X.; Mühlenbernd, H.; Zhang, H.; Chen, S.; Bai, B.; Tan, Q.; Jin, G.; Cheah, K.W.; Qiu, C.-W.; et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun.
**2013**, 4, 2808. [Google Scholar] [CrossRef][Green Version] - Chen, W.T.; Zhu, A.Y.; Sanjeev, V.; Khorasaninejad, M.; Shi, Z.; Lee, E.; Capasso, F. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol.
**2018**, 13, 220–226. [Google Scholar] [CrossRef][Green Version] - Wang, S.; Wu, P.C.; Su, V.-C.; Lai, Y.-C.; Chen, M.K.; Kuo, H.Y.; Chen, B.H.; Chen, Y.H.; Huang, T.-T.; Wang, J.-H.; et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol.
**2018**, 13, 227–232. [Google Scholar] [CrossRef] - Wei, Q.; Sain, B.; Wang, Y.; Reineke, B.; Li, X.; Huang, L.; Zentgraf, T. Simultaneous Spectral and Spatial Modulation for Color Printing and Holography Using All-Dielectric Metasurfaces. Nano Lett.
**2019**, 19, 8964–8971. [Google Scholar] [CrossRef] [PubMed][Green Version] - Jiang, Q.; Jin, G.; Cao, L. When metasurface meets hologram: Principle and advances. Adv. Opt. Photon.
**2019**, 11, 518–576. [Google Scholar] [CrossRef] - Paniagua-Domínguez, R.; Yu, Y.F.; Khaidarov, E.; Choi, S.; Leong, V.; Bakker, R.M.; Liang, X.; Fu, Y.H.; Valuckas, V.; Krivitsky, L.A.; et al. A Metalens with a Near-Unity Numerical Aperture. Nano Lett.
**2018**, 18, 2124–2132. [Google Scholar] [CrossRef][Green Version] - Zang, X.; Ding, H.; Intaravanne, Y.; Chen, L.; Peng, Y.; Xie, J.; Ke, Q.; Balakin, A.V.; Shkurinov, A.P.; Chen, X.; et al. A Multi-Foci Metalens with Polarization-Rotated Focal Points. Laser Photon. Rev.
**2019**, 13, 1900182. [Google Scholar] [CrossRef] - Chen, C.; Song, W.; Chen, J.-W.; Wang, J.-H.; Chen, Y.H.; Xu, B.; Chen, M.K.; Li, H.; Fang, B.; Chen, J.; et al. Spectral tomographic imaging with aplanatic metalens. Light. Sci. Appl.
**2019**, 8, 99. [Google Scholar] [CrossRef][Green Version] - Gao, S.; Park, C.; Zhou, C.; Lee, S.; Choi, D. Twofold Polarization-Selective All-Dielectric Trifoci Metalens for Linearly Polarized Visible Light. Adv. Opt. Mater.
**2019**, 7, 1900883. [Google Scholar] [CrossRef] - Khorasaninejad, M.; Capasso, F. Metalenses: Versatile multifunctional photonic components. Science
**2017**, 358, eaam8100. [Google Scholar] [CrossRef] [PubMed][Green Version] - Roy, T.; Zhang, S.; Jung, I.W.; Troccoli, M.; Capasso, F.; Lopez, D. Dynamic metasurface lens based on MEMS technology. APL Photon.
**2018**, 3, 021302. [Google Scholar] [CrossRef] - She, A.; Zhang, S.; Shian, S.; Clarke, D.R.; Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv.
**2018**, 4, eaap9957. [Google Scholar] [CrossRef][Green Version] - Rosen, J.; Brooker, G. Fresnel incoherent correlation holography (FINCH)—A review of research. Adv. Opt. Technol.
**2012**, 1, 151. [Google Scholar] [CrossRef] - Bouchal, P.; Bouchal, Z. Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams. J. Eur. Opt. Soc. Rapid Publ.
**2013**, 8, 13011. [Google Scholar] [CrossRef][Green Version] - Siegel, N.; Lupashin, V.; Storrie, B.; Brooker, G. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers. Nat. Photon.
**2016**, 10, 802–808. [Google Scholar] [CrossRef] [PubMed][Green Version] - Rosen, J.; Siegel, N.; Brooker, G. Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging. Opt. Express
**2011**, 19, 26249–26268. [Google Scholar] [CrossRef] [PubMed] - Lee, H.-L.D.; Sahl, S.J.; Lew, M.; Moerner, W.E. The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision. Appl. Phys. Lett.
**2012**, 100, 153701–1537013. [Google Scholar] [CrossRef][Green Version] - Fürhapter, S.; Jesacher, A.; Bernet, S.; Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. Opt. Express
**2005**, 13, 689–694. [Google Scholar] [CrossRef][Green Version] - Fürhapter, S.; Jesacher, A.; Maurer, C.; Bernet, S.; Ritsch-Marte, M. Spiral Phase Microscopy. Adv. Imaging Electron Phys.
**2007**, 146, 56e–59e. [Google Scholar] [CrossRef] - Bouchal, P.; Bouchal, Z. Flexible non-diffractive vortex microscope for three-dimensional depth-enhanced super-localization of dielectric, metal and fluorescent nanoparticles. J. Opt.
**2017**, 19, 105606. [Google Scholar] [CrossRef] - Greengard, A.; Schechner, Y.Y.; Piestun, R. Depth from diffracted rotation. Opt. Lett.
**2006**, 31, 181–183. [Google Scholar] [CrossRef][Green Version] - Baránek, M.; Bouchal, P.; Šiler, M.; Bouchal, Z. Aberration resistant axial localization using a self-imaging of vortices. Opt. Express
**2015**, 23, 15316–15331. [Google Scholar] [CrossRef] - Bouchal, P.; Bouchal, Z. Non-iterative holographic axial localization using complex amplitude of diffraction-free vortices. Opt. Express
**2014**, 22, 30200–30216. [Google Scholar] [CrossRef] - Castejón, O.J. Confocal laser scanning microscope and immunohistochemistry of cerebellar Lugaro cells. Biocell
**2013**, 37, 29–36. [Google Scholar] [CrossRef] - Denk, W.; Piston, D.; Webb, W. Multi-photon molecular excitation in laser-scanning microscope. In Handbook of Biological Confocal Microscope; Pawley, J.B., Ed.; Springer Science & Business Media: Berlin, Germany, 1995; pp. 535–549. [Google Scholar]
- Laperchia, C.; Mascaro, A.L.A.; Sacconi, L.; Andrioli, A.; Mattè, A.; Franceschi, L.D.; Grassi-Zucconi, G.; Bentivoglio, M.; Buffelli, M.; Pavone, F.S. Two-photon microscope imaging of thy1GFP-M transgenic mice: A novel animal model to investigate brain dendritic cell subsets in vivo. PLoS ONE
**2013**, 8, 005614. [Google Scholar] [CrossRef] - Jun, C.; Cheol, K.; Hun, Y.; Ki, J.; Hun, S. Dual-wavelength digital holography microscope for BGA measurement using partial coherence sources. J. Opt. Soc. Korea
**2011**, 4, 352–356. [Google Scholar] - Langecheneberg, P.; Kemper, B.; Dirksen, D. Autofocusing in digital holographic phase contrast microscope on pure phase objects for live cell imaging. Appl. Opt.
**2008**, 47, 176–182. [Google Scholar] [CrossRef] [PubMed] - Mark, A.; David, W. High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscope. Biophys. J.
**2005**, 88, 14–18. [Google Scholar] - Toney, T.; Haro, P.; Sotillo, B.; Solis, J. Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass. Opt. Lett.
**2013**, 38, 5248–5251. [Google Scholar] [CrossRef][Green Version] - Le, T.B.; Piao, M.; Jeong, J.-R.; Jeon, S.-H.; Kim, N. Improving Phase Contrast of Digital Holographic Microscope using Spatial Light Modulator. J. Opt. Soc. Korea
**2015**, 19, 22–28. [Google Scholar] [CrossRef][Green Version] - Ritter, G.; Veith, R.; Siebrasse, J.; Kobitscheck, U. High-contrast single-particle tracking by selective focal plane illumination microscope. Opt. Express
**2008**, 16, 7142–7152. [Google Scholar] [CrossRef] - Patterson, G.; Davidson, M.; Manley, S.; Lippincott-Schwartz, J. Superresolution Imaging using Single-Molecule Localization. Ann. Rev. Phys. Chem.
**2010**, 61, 345–367. [Google Scholar] [CrossRef][Green Version] - Huang, B.; Wang, W.; Bates, M.; Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science
**2008**, 319, 810–813. [Google Scholar] [CrossRef] [PubMed][Green Version] - Pavani, S.R.P.; Thompson, M.A.; Biteen, J.S.; Lord, S.J.; Liu, N.; Twieg, R.J.; Piestun, R.; Moerner, W.E. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. USA
**2009**, 106, 2995–2999. [Google Scholar] [CrossRef][Green Version] - Shechtman, Y.; Weiss, L.; Backer, A.S.; Sahl, S.J.; Moerner, W.E. Precise Three-Dimensional Scan-Free Multiple-Particle Tracking over Large Axial Ranges with Tetrapod Point Spread Functions. Nano Lett.
**2015**, 15, 4194–4199. [Google Scholar] [CrossRef] [PubMed] - Shechtman, Y.; Weiss, L.; Backer, A.S.; Lee, M.Y.; Moerner, W.E. Multicolour localization microscopy by point-spread-function engineering. Nat. Photon.
**2016**, 10, 590–594. [Google Scholar] [CrossRef] [PubMed] - Bon, P.; Maucort, G.; Wattellier, B.; Monneret, S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express
**2009**, 17, 13080–13094. [Google Scholar] [CrossRef] [PubMed] - Bon, P.; Linarès-Loyez, J.; Feyeux, M.; Alessandri, K.; Lounis, B.; Nassoy, P.; Cognet, L. Self-interference 3D super-resolution microscopy for deep tissue investigations. Nat. Methods
**2018**, 15, 449–454. [Google Scholar] [CrossRef] - Liebel, M.; Ortega Arroyo, J.; Beltrán, V.S.; Osmond, J.; Jo, A.; Lee, H.; Quidant, R.; van Hulst, N.F. 3D tracking of extracellular vesicles by holographic fluorescence imaging. Sci. Adv.
**2020**, 6, eabc2508. [Google Scholar] [CrossRef] - Marar, A.; Kner, P. Fundamental precision bounds for three-dimensional optical localization microscopy using self-interference digital holography. Biomed. Opt. Express
**2021**, 12, 20–40. [Google Scholar] [CrossRef] - Smith, C.S.; Joseph, N.; Rieger, B.; Lidke, K.A. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Methods
**2010**, 7, 373–375. [Google Scholar] [CrossRef][Green Version] - Huang, F.; Schwartz, S.L.; Byars, J.M.; Lidke, K.A. Simultaneous multiple-emitter fitting for single molecule su-per-resolution imaging. Biomed. Opt. Express
**2011**, 2, 1377–1393. [Google Scholar] [CrossRef][Green Version] - Jang, C.; Clark, D.C.; Kim, J.; Lee, B.; Kim, M.K. Signal enhanced holographic fluorescence microscopy with guide-star reconstruction. Biomed. Opt. Express
**2016**, 7, 1271–1283. [Google Scholar] [CrossRef][Green Version] - Keller, P.J.; Ahrens, M.B. Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy. Neuron
**2015**, 85, 462–483. [Google Scholar] [CrossRef][Green Version] - Ji, N.; Freeman, N.J.J.; Smith, S.L. Technologies for imaging neural activity in large volumes. Nat. Neurosci.
**2016**, 19, 1154–1164. [Google Scholar] [CrossRef][Green Version] - Gao, L.; Shao, L.; Chen, B.-C.; Betzig, E. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nat. Prot.
**2014**, 9, 1083–1101. [Google Scholar] [CrossRef] [PubMed] - Chen, B.-C.; Legant, W.R.; Wang, K.; Shao, L.; Milkie, D.E.; Davidson, M.W.; Janetopoulos, C.; Wu, X.S.; Hammer, J.A.; Liu, Z.; et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science
**2014**, 346, 1257998. [Google Scholar] [CrossRef] [PubMed][Green Version] - Gabor, D. A New Microscopic Principle. Nat. Cell Biol.
**1948**, 161, 777–778. [Google Scholar] [CrossRef] [PubMed] - Goodman, J.W.; Lawrence, R.W. Digital image formation from electronically detected holograms. Appl. Phys. Lett.
**1967**, 11, 77–79. [Google Scholar] [CrossRef] - Lohmann, A.W. Reconstruction of Vectorial Wavefronts. Appl. Opt.
**1965**, 4, 1667–1668. [Google Scholar] [CrossRef] - Dändliker, R.; Thalmann, R.; Prongué, D. Two-wavelength laser interferometry using superheterodyne detection. Opt. Lett.
**1988**, 13, 339–341. [Google Scholar] [CrossRef] [PubMed] - Tahara, T.; Mori, R.; Arai, Y.; Takaki, Y. Four-step phase-shifting digital holography simultaneously sensing du-al-wavelength information using a monochromatic image sensor. J. Opt.
**2015**, 17, 125707. [Google Scholar] [CrossRef] - Tahara, T.; Mori, R.; Kikunaga, S.; Arai, Y.; Takaki, Y. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms. Opt. Lett.
**2015**, 40, 2810–2813. [Google Scholar] [CrossRef] - Tahara, T.; Otani, R.; Omae, K.; Gotohda, T.; Arai, Y.; Takaki, Y. Multiwavelength digital holography with wave-length-multiplexed holograms and arbitrary symmetric phase shifts. Opt. Express
**2017**, 25, 11157–11172. [Google Scholar] [CrossRef] - Lohmann, A.W. Wavefront Reconstruction for Incoherent Objects. J. Opt. Soc. Am.
**1965**, 55, 1555_1–1556. [Google Scholar] [CrossRef] - Schilling, B.W.; Poon, T.-C.; Indebetouw, G.; Storrie, B.; Shinoda, K.; Suzuki, Y.; Wu, M.H. Three-dimensional holographic fluorescence microscopy. Opt. Lett.
**1997**, 22, 1506–1508. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zhu, B.; Ueda, K.-I. Real-time wavefront measurement based on diffraction grating holography. Opt. Commun.
**2003**, 225, 1–6. [Google Scholar] [CrossRef] - Millerd, J.; Brock, N.; Hayes, J.; Morris, M.N.; Novak, M.; Wyant, J. Pixelated phase-mask dynamic interferometer. Proc. SPIE
**2004**, 5531, 304. [Google Scholar] - Tahara, T.; Ishii, A.; Ito, T.; Ichihashi, Y.; Oi, R. Single-shot wavelength-multiplexed digital holography for 3D fluorescent microscopy and other imaging modalities. Appl. Phys. Lett.
**2020**, 117, 031102. [Google Scholar] [CrossRef] - Hara, T.; Tahara, T.; Ichihashi, Y.; Oi, R.; Ito, T. Multiwavelength-multiplexed phase-shifting incoherent color digital holog-raphy. Opt. Express
**2020**, 28, 10078–10089. [Google Scholar] [CrossRef] - Vijayakumar, A.; Rosen, J. Spectrum and space resolved 4D imaging by coded aperture correlation holography (COACH) with diffractive objective lens. Opt. Lett.
**2017**, 42, 947–950. [Google Scholar] [CrossRef] - Tahara, T.; Ito, T.; Ichihashi, Y.; Oi, R. Single-shot incoherent color digital holographic microscopy system with static polar-ization-sensitive optical elements. J. Opt.
**2020**, 22, 105702. [Google Scholar] [CrossRef] - Tahara, T.; Okamoto, R.; Ishii, A.; Ito, T.; Wakunami, K.; Ichihashi, Y.; Oi, R. Multidimensional digital holographic microscopy based on computational coherent superposition for coherent and incoherent light sensing. Proc. SPIE
**2020**, 11551, 115510M. [Google Scholar] - Ueda, K.; Takuma, H. A Novel Spectrometric Technique based on Fourier Transformation of Transmission Signal of Faraday Rotator. Rev. Laser Eng.
**1984**, 12, 652–659. [Google Scholar] [CrossRef][Green Version] - Yoshimori, K. Interferometric spectral imaging for three-dimensional objects illuminated by a natural light source. J. Opt. Soc. Am. A
**2001**, 18, 765–770. [Google Scholar] [CrossRef]

**Figure 1.**Recording and reconstruction of a hologram in a general self-interference digital holography system.

**Figure 3.**Proof-of-principle experimental results. (

**a**) Captured raw image. (

**b**,

**c**) Reconstructed images through a phase-shifting method and numerical propagation based on an angular spectrum method.

**Figure 6.**Obtained four phase-shifted holograms and reconstructed images at different axial positions.

**Figure 7.**Schematic diagram of the single-shot FINCH system using a GP lens (adapted from [35]).

**Figure 8.**(

**a**) Image of the single-shot raw hologram of a single-plane object and (

**b**–

**e**) four phase-shifted holograms 0, π/4, π/2 and 3π/4, respectively. (

**f**) Reconstruction result of a USAF1951 resolution target. (

**g**) Image of the single-shot raw hologram of a two-planes object consisting of a USAF1951 object and NBS object separated by a distance of 65 mm, (

**h**–

**k**) four phase-shifted holograms 0, π/4, π/2 and 3π/4, respectively. Reconstruction result by numerical propagation to the plane of (

**l**) USAF and (

**m**) NBS. (Adapted from [35].)

**Figure 9.**(

**a**) Fresnel hologram obtained for a point and (

**b**) Fresnel hologram obtained for two points.

**Figure 10.**Optical microscope image of the (

**a**) central part and (

**b**) the outermost part of the fabricated diffractive lens. Images of the (

**c**) PSH and (

**d**) object hologram. (

**e**) Direct imaging at one of the focal planes of the diffractive lens and (

**f**) plot of averaged intensity values of the horizontal and vertical gratings shown in the green dotted box. (

**g**) Reconstruction results and (

**h**) plot of averaged intensity values of the horizontal and vertical gratings shown in the green dotted box. (Adapted from [14].)

**Figure 11.**FINCH optical setup: (

**a**) a Michelson interferometer-type imaging system; (

**b**) a common-path interferometertype based on SLM imaging system. Reprinted with permission from [12]. Copyright (2021) Optical Society of America.

**Figure 12.**COACH optical setup using a synthetic aperture for super-resolution imaging. Reprinted with permission from [66]. Copyright (2021) Optical Society of America.

**Figure 13.**Multifunctional metalens applications. (

**a**) Experimental results of achromatic metalenses. Reprinted with permission from Macmillan Publishers Ltd.: Nature Nanotechnology [72]. Copyright (2018). (

**b**) Schematic illustration of the proposed twofold polarization-selective trifoci metalens (TFML), which establishes three foci at distinct focal planes depending on the linear polarization of incident and transmitted light. Reprinted with permission from Wiley Publisher: Advanced Optical Materials [78]. Copyright (2019). (

**c**) Schematic of a metalens that simultaneously focuses and disperses the incident light. Reprinted with permission from Science [79]. Copyright (2018). (

**d**) Schematic of the device in which a metalens and a DEA with five addressable electrodes are combined to allow for electrical control over the strain field of the metasurfac. Reprinted with permission from Science Advances [81]. Copyright (2018).

**Figure 14.**Schematic of coaxial holography and compress sensing reconstruction based on bifocal metalens [37]. Copyright (2020) Optical Society of America.

**Figure 15.**Illustration of vortex FINCH and spatial light shaping in (

**a**) standard, (

**b**) spiral, and (

**c**) localization FINCH imaging. MO—microscope objective; MD—modulation device; TL—tube lens.

**Figure 16.**Destructive interference of vortex impulse responses (

**a**), and demonstration of intensity images created for (

**b**) and (

**e**) two-point object, (

**c**,

**f**) three-point object, and (

**d**,

**g**) 7 × 5 array of point objects.

**Figure 17.**Imaging of the Palacký University sign, USAF test, and flea created using FINCH and spiral FINCH under incoherent illumination.

**Figure 18.**Localization of 100 nm gold beads by the vortex FINCH microscope: DH PSF and standard deviations for x, y, z coordinates evaluated at seven different depths in the axial range of 13.6 μm.

**Figure 19.**(

**a**) Excitation and emission spectra of the living cell, FINCH with two diffractive lenses: (

**b**) one is positive, and the other is negative, and (

**c**) both are positive (adapted from [39]).

**Figure 20.**(

**a**) Overlapping object points after reconstruction of each layer in the hologram, and (

**b**) the optical setup for the proposed system (adapted from [39]).

**Figure 21.**Reconstructed images for cell with (

**a**) 2 layer, (

**b**) 4 layer, (

**c**) 6 layer, and (

**d**) 8 layer holograms (adapted from [39]).

**Figure 22.**Recorded images with a (

**a**) 2 step phase fringe = 0, π/2 (left-top); (

**b**) 4 step phase fringe = 0, π/2, π/4, 7π/4 (right-top); (

**c**) 6 step phase fringe = π/4, 7π/4, 3π/8, 13π/8, π/8, 15π/8, 0, π/2 (left-bottom); and (

**d**) 8 step fringe with phase = 3π/8, 13π/8, π/8, 15π/8, 0, π/2, π/4, 7π/4 (right-bottom). Reconstructed images of the living cell B16F10 with a (

**e**) 2 step phase fringe (top), (

**f**) 6 step phase fringe (middle) and (

**g**) 8 step phase fringe (bottom).

**Figure 23.**3D localization of a single 0.1 µm fluorescent bead. (

**a**) Histograms of 68 localizations in x, y, and z of one single 0.1 µm red (580/605) fluorescent bead on a coverslip. The standard deviations of the measurements are ${\sigma}_{x}={\sigma}_{y}=5\mathrm{nm}$, and ${\sigma}_{z}=40\mathrm{nm}$. (

**b**) Representative hologram of a single bead acquired in one 50 ms exposure. Scale bar is 50 µm. (

**c**) Scatter plot of localizations. Reprinted with permission from [40].

**Figure 24.**Schematics of the IHLLS systems with one diffractive lens of focal length, f

_{SLM}= 400 mm (IHLLS 1L) and two diffractive lenses with focal lengths f

_{d1}= 220 mm and f

_{d2}= 2356 mm (IHLLS 2L). A collimated 30 Bessel beam is focused by an excitation objective lens which generates a lattice light sheet. It excites fluorophores in the focal plane and in/off the focal plane of the detection objective lens, which is a water immersed microscope objective MO (Nikon 25X, NA 1.1, WD 2 mm). The detection system also includes two pairs of lenses for beam size adjustment to fit the size of the SLM active area, L

_{1}= L

_{4}with focal lengths 175 mm, L

_{2}= L

_{3}with focal lengths 100 mm; mirrors M

_{1}, M

_{2}, M

_{3}; polarizer P; 40 nm band pass filter BPF centered on the 520 nm wavelength, spatial light modulator SLM, and CMOS camera. While the z-galvo and z-piezo are moved along the z axis to acquire stacks in LLS and IHLLS 1L

**,**in IHLLS 2L only the z-galvo is moved at various z positions (Visualization 1 [41]). The diffraction mask in the excitation path was positioned for all experiments on the anulus of 0.55 outer NA and 0.48 inner NA. The detection magnification ${M}_{T-LLS}$ = 62.5 and the illumination wavelength ${\lambda}_{illumination}$ = 488 nm. The width of the light sheet in the center of the FOV is about 400 nm.

**Figure 25.**IHLLS 2L imaging of a lamprey spinal cord ventral horn neuron with dendrites; (

**a**) Amplitude reconstruction of a neuronal cell at three z-galvo positions: (

**a**) +30 µm, (

**b**) 0 µm, (

**c**) −30 µm, and (

**d**) the superposition of all three; Phase reconstruction of a neuronal cell at z-galvo positions: (

**e**) +30 µm, (

**f**) 0 µm, (

**g**) −30 µm, and (

**h**) the superposition of all three. (Images are taken from [41] with permission).

**Figure 26.**Schematic of CCS. (

**a**) A self-interference digital holography system with CCS and FINCH. (

**b**) Image-reconstruction procedures.

**Figure 27.**Experimental results. Reconstructed images at wavelengths of (

**a**) 618, (

**b**) 530, and (

**c**) 455 nm. (

**d**) Photograph of the specimen and (

**e**) color-synthesized image generated from (

**a**–

**c**). Plots of borderlines in (

**d**,

**e**) along groups (

**f**) 7, (

**g**) 8, and (

**h**) 9. Red lines in (

**d**,

**e**) indicate the locations where the plots are selected. In (

**e**), the white balance was calculated during synthesis. Red and blue lines in (

**f**–

**h**) indicate the results obtained from (

**d**,

**e**), respectively.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rosen, J.; Alford, S.; Anand, V.; Art, J.; Bouchal, P.; Bouchal, Z.; Erdenebat, M.-U.; Huang, L.; Ishii, A.; Juodkazis, S.; Kim, N.; Kner, P.; Koujin, T.; Kozawa, Y.; Liang, D.; Liu, J.; Mann, C.; Marar, A.; Matsuda, A.; Nobukawa, T.; Nomura, T.; Oi, R.; Potcoava, M.; Tahara, T.; Thanh, B.L.; Zhou, H. Roadmap on Recent Progress in FINCH Technology. *J. Imaging* **2021**, *7*, 197.
https://doi.org/10.3390/jimaging7100197

**AMA Style**

Rosen J, Alford S, Anand V, Art J, Bouchal P, Bouchal Z, Erdenebat M-U, Huang L, Ishii A, Juodkazis S, Kim N, Kner P, Koujin T, Kozawa Y, Liang D, Liu J, Mann C, Marar A, Matsuda A, Nobukawa T, Nomura T, Oi R, Potcoava M, Tahara T, Thanh BL, Zhou H. Roadmap on Recent Progress in FINCH Technology. *Journal of Imaging*. 2021; 7(10):197.
https://doi.org/10.3390/jimaging7100197

**Chicago/Turabian Style**

Rosen, Joseph, Simon Alford, Vijayakumar Anand, Jonathan Art, Petr Bouchal, Zdeněk Bouchal, Munkh-Uchral Erdenebat, Lingling Huang, Ayumi Ishii, Saulius Juodkazis, Nam Kim, Peter Kner, Takako Koujin, Yuichi Kozawa, Dong Liang, Jun Liu, Christopher Mann, Abhijit Marar, Atsushi Matsuda, Teruyoshi Nobukawa, Takanori Nomura, Ryutaro Oi, Mariana Potcoava, Tatsuki Tahara, Bang Le Thanh, and Hongqiang Zhou. 2021. "Roadmap on Recent Progress in FINCH Technology" *Journal of Imaging* 7, no. 10: 197.
https://doi.org/10.3390/jimaging7100197