# Variational Anisotropic Gradient-Domain Image Processing

## Abstract

**:**

## 1. Introduction and Background

## 2. Variational Anisotropic Gradient-Domain Formulation

## 3. Results and Discussion

#### 3.1. Implementation

#### 3.2. The Diffusion Tensor

#### 3.3. Linear Local Contrast Enhancement

#### 3.4. Nonlinear Local Contrast Enhancement

#### 3.5. Colour Image Daltonisation

## 4. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Fattal, R.; Lischinski, D.; Werman, M. Gradient domain high dynamic range compression. ACM Trans. Graph.
**2002**, 21, 249–256. [Google Scholar] [CrossRef] [Green Version] - Pérez, P.; Gangnet, M.; Blake, A. Poisson image editing. ACM Trans. Graph.
**2003**, 22, 313–318. [Google Scholar] [CrossRef] - Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell.
**1990**, 12, 629–639. [Google Scholar] [CrossRef] [Green Version] - Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom.
**1992**, 60, 259–268. [Google Scholar] [CrossRef] - Blomgren, P.; Chan, T.F. Color TV: Total variation methods for restoration of vector-valued images. IEEE T. Image Process.
**1998**, 7, 304–309. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Di Zenzo, S. A note on the gradient of a multi-image. Comput. Vis. Graph. Image Process.
**1986**, 33, 116–125. [Google Scholar] [CrossRef] - Bigun, J.; Granlund, G. Optimal orientation detection of linear symmetry. In Proceedings of the First International Conference on Computer Vision, ICCV, London, UK, 8–11 June 1987; pp. 433–438. [Google Scholar]
- Sapiro, G.; Ringach, D.L. Anisotropic Diffusion of Multivalued Images with Applications to Color Filtering. IEEE Trans. Image Process.
**1996**, 5, 1582–1586. [Google Scholar] [CrossRef] [PubMed] - Tschumperlé, D.; Deriche, R. Vector-valued image regularization with PDEs: A common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell.
**2005**, 27, 506–517. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Farup, I. Individualised Halo-Free Gradient-Domain Colour Image Daltonisation. J. Imaging
**2020**, 6, 116. [Google Scholar] [CrossRef] [PubMed] - Alsam, A.; Farup, I. Spatial Colour Gamut Mapping by Means of Anisotropic Diffusion. In Proceedings of the Computational Colour Imaging Workshop (CCIW), Milan, Italy, 20–21 April 2011; Lecture Notes in Computer Science. Springer: Berlin, Germany, 2011; Volume 6626, pp. 113–124. [Google Scholar]
- Thomas, J.B.; Farup, I. Demosaicing of Periodic and Random Colour Filter Arrays by Linear Anisotropic Diffusion. J. Imaging Sci. Technol.
**2018**, 62, 050401-1–050401-8. [Google Scholar] [CrossRef] [Green Version] - Farup, I.; Pedersen, M.; Alsam, A. Colour-to-Greyscale Image Conversion by Linear Anisotropic Diffusion of Perceptual Colour Metrics. In Proceedings of the 2018 Colour and Visual Computing Symposium (CVCS), Gjovik, Norway, 19–20 September 2018. [Google Scholar]

**Figure 2.**The diffusion coefficients $2\partial {\psi}^{\prime}/\partial {\lambda}_{+}^{\prime}$ (

**left**) and $2\partial {\psi}^{\prime}/\partial {\lambda}_{-}^{\prime}$ (

**right**) for one of the test images.

**Figure 3.**Example results for linear contrast enhancement with $a=2$. Original images in the first column, Poisson solution in the second, ad hoc anisotropic diffusion with $K={10}^{-3}$ in the third, and the proposed variational with $K=3\times {10}^{-4}$ in the fourth. All images are available under the CC0 licence.

**Figure 4.**Example results for gamma contrast enhancement with $\gamma =0.7$. Original images in the first column, Poisson solution in the second, ad hoc anisotropic diffusion with $K={10}^{-3}$ in the third, and the proposed variational with $K=0.3\times {10}^{-4}$ in the fourth. All images are available under the CC0 licence.

**Figure 5.**Example of colour image Daltonisation by the proposed method. Colour images in the left column, and corresponding colour–vision–deficiency simulations in the right. Top to bottom: original image, simple global Daltonisation, ad hoc anisotropic gradient domain Daltonisation, and the proposed variational gradient-domain solution.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Farup, I.
Variational Anisotropic Gradient-Domain Image Processing. *J. Imaging* **2021**, *7*, 196.
https://doi.org/10.3390/jimaging7100196

**AMA Style**

Farup I.
Variational Anisotropic Gradient-Domain Image Processing. *Journal of Imaging*. 2021; 7(10):196.
https://doi.org/10.3390/jimaging7100196

**Chicago/Turabian Style**

Farup, Ivar.
2021. "Variational Anisotropic Gradient-Domain Image Processing" *Journal of Imaging* 7, no. 10: 196.
https://doi.org/10.3390/jimaging7100196