The Potential of Optical Profilometry in the Study of Cultural Stone Weathering
Abstract
:1. Introduction
2. Optical Techniques for Assessing Surface Degradation and Material Loss
- Possibility of use in situ;
- Low sensitivity to external disturbances;
- Good measurement sensitivity;
- Low cost and simplicity of the system;
- Possibility of easy use even by operators not specialized in non-destructive techniques;
- Full digital and automated data processing.
2.1. Holographic Contouring
2.2. ESPI
2.3. Fringe Projection
2.4. Conoscopic Holography
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Amoroso, G.G.; Fassina, V. Stone Decay and Conservation; Elsevier: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Winkler, E.M. Stone in Architecture: Properties, Durability; Springer: New York, NY, USA, 1994. [Google Scholar]
- Doehne, E.; Price, C.A. Stone Conservation. An Overview of Current Research; The Getty Conservation Institute: Los Angeles, CA, USA, 2010. [Google Scholar]
- Siegesmund, S.; Snethlage, R. (Eds.) Stone in Architecture, 5th ed.; Springer: Berlin, Germany, 2014. [Google Scholar]
- Wilhelm, K. Improving Non-Destructive Techniques for Stone Weathering Research In Situ. Ph.D. Thesis, University of Oxford, Oxford, UK, June 2016. [Google Scholar]
- Pope, G.A.; Meierding, T.C.; Paradise, T.R. Geomorphology’s Role in the Study of Weathering of Cultural Stone. Geomorphology 2002, 47, 211–225. [Google Scholar] [CrossRef]
- Winkler, E.M. Weathering Rates Exemplified by Cleopatra’s Needle in New York City. J. Geol. Educ. 1965, 13, 50–52. [Google Scholar] [CrossRef]
- Winkler, E.M. The Complex History of Salt Weathering Observed on Cleopatra’s Needle in New York Central Park. Geol. Soc. Am. Abstr. Prog. 1978, 10, 578. [Google Scholar]
- Camuffo, D. Acid Rain and Deterioration of Monuments: How Old is the Phenomenon? Atmos. Environ. 1992, 26B, 241–247. [Google Scholar] [CrossRef]
- Del Monte, M.; Ausset, P.; Lefèvre, R.A.; Thiébault, S. Evidence of Pre-industrial Air Pollution from the Heads of the Kings of Juda Statues from Notre Dame Cathedral in Paris. Sci. Total Environ. 2001, 273, 101–110. [Google Scholar] [CrossRef]
- Brimblecombe, P. London Air Pollution, 1500–1900. Atmos. Environ. 1977, 11, 1157–1162. [Google Scholar] [CrossRef]
- Turkington, A.V.; Paradise, T.R. Sandstone weathering: A century of research and innovation. Geomorphology 2005, 67, 229–253. [Google Scholar] [CrossRef]
- Inpken, R.J.; Cooke, R.U.; Viles, H.A. Processes and Rates of Urban Limestone Weathering. In Rock Weathering and Landform Evolution; Robinson, D.A., Williams, R.B.G., Eds.; Wiley: Chichester, UK, 1994; pp. 119–130. [Google Scholar]
- Yerrapragada, S.S.; Chirra, S.R.; Jaynes, J.H.; Li, P.; Bandyopadhyay, J.P.; Gauri, K.L. Weathering Rates of Marble in Laboratory and Outdoor Conditions. J. Environ. Eng. 1996, 122, 856–863. [Google Scholar] [CrossRef]
- Klein, M. Weathering Rates of Limestone Tombstones Measured in Haifa. Z. Geomorphol. 1984, 28, 105–111. [Google Scholar]
- Stonestrom, D.A.; White, A.F.; Akstin, K.C. Determining Rates of Chemical Weathering in Soils-solute Transport versus Profile Evolution. J. Hydrol. 1998, 209, 331–345. [Google Scholar] [CrossRef]
- Chen, F.; Brown, G.M.; Song, M. Overview of Three-Dimensional Shape Measurement using Optical Methods. Opt. Eng. 2000, 39, 10–22. [Google Scholar]
- Godin, G.; Beraldin, J.-A.; Taylor, J.; Cournoyer, L.; Rioux, M.; El-Hakim, S.; Baribeau, B.; Blais, F.; Boulanger, P.; Domey, J.; et al. Active Optical 3D Imaging for Heritage Applications. IEEE Comp. Graph. Appl. 2002, 22, 24–36. [Google Scholar] [CrossRef]
- Geng, J. Structured-light 3D surface imaging: A tutorial. Adv. Opt. Photon. 2011, 3, 128–160. [Google Scholar] [CrossRef]
- Vest, C.M. Holographic Interferometry; Wiley: New York, NY, USA, 1979. [Google Scholar]
- Rastogi, P.K. (Ed.) Digital Speckle Pattern Interferometry and Related Techniques; Wiley: Chichester, UK, 2001. [Google Scholar]
- Rastogi, P.K. (Ed.) Digital Optical Measurement Techniques and Applications; Artech House: Norwood, MA, USA, 2015. [Google Scholar]
- Paoletti, D.; Schirripa Spagnolo, G. Interferometric methods for Artwork Diagnostics. In Progress in Optics; Wolf, E., Ed.; North Holland: Amsterdam, The Netherlands, 1996; Volume 35, pp. 197–255. [Google Scholar]
- Ambrosini, D.; Paoletti, D. Holographic and speckle methods for the analysis of panel paintings. Developments since the early 1970s. Rev. Conserv. 2004, 5, 38–48. [Google Scholar] [CrossRef]
- Tornari, V.; Orphanos, Y.; Dabu, R.; Blanaru, C.; Stratan, A.; Pacala, O.; Ursu, D. Non-destructive speckle interferometry diagnosis method for art conservation. Proc. SPIE 2006, 6606, 6606W. [Google Scholar]
- Tornari, V. Laser interference-based techniques and applications in structural inspection of works of art. Anal. Bioanal. Chem. 2007, 387, 761–780. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, D.; Schirripa Spagnolo, G. Fast Fourier Transformed Electronic Speckle Contouring for Diffuse Surfaces Profilometry. Opt. Lasers Eng. 1994, 20, 87–96. [Google Scholar] [CrossRef]
- Paoletti, D.; Schirripa Spagnolo, G.; Quaresima, R.; Schippa, G.; Scoccia, G.; Volpe, R. Electronic Speckle Pattern Interferometry for Marble Erosion Measurements. In Proceedings of the Second International Symposium for the Conservation of Monuments in the Mediterranean Basin, Geneva, Switzerland, 19–21 November 1991. [Google Scholar]
- Schirripa Spagnolo, G.; Ambrosini, D.; Paoletti, D.; Accardo, G. Fibre optic projected fringes for monitoring marble surface status. J. Cult. Herit. 2000, 1, S337–S343. [Google Scholar] [CrossRef]
- Schirripa Spagnolo, G.; Guattari, G.; Sapia, C.; Ambrosini, D.; Paoletti, D.; Accardo, G. Three-dimensional optical profilometry for artwork inspection. J. Opt. A Pure Appl. Opt. 2000, 2, 353–361. [Google Scholar] [CrossRef]
- Schirripa Spagnolo, G.; Guattari, G.; Sapia, C.; Ambrosini, D.; Paoletti, D.; Accardo, G. Contouring of Artwork Surface by Fringe Projection and FFT Analysis. Opt. Lasers Eng. 2000, 33, 141–156. [Google Scholar] [CrossRef]
- Schirripa Spagnolo, G.; Ambrosini, D. Diffractive optical element-based profilometer for surface inspection. Opt. Eng. 2001, 40, 44–52. [Google Scholar]
- Sirat, G.Y.; Psaltis, D. Conoscopic Holography. Opt. Lett. 1985, 10, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Malet, Y.; Sirat, G.Y. Conoscopic Holography Application: Multipurpose range finder. J. Opt. 1998, 29, 183–187. [Google Scholar] [CrossRef]
- Álvarez, I.; Enguita, J.M.; Frade, M.; Marina, J.; Ojea, G. On-line metrology with Conoscopic Holography: Beyond triangulation. Sensors 2009, 9, 7021–7037. [Google Scholar] [CrossRef] [PubMed]
- Schirripa Spagnolo, G.; Majo, R.; Carli, M.; Ambrosini, D.; Paoletti, D. Virtual Gallery of Ancient Coins through Conoscopic Holography. Proc. SPIE 2003, 5146, 202–209. [Google Scholar]
- Carcagnì, P.; Cavallo, E.; Della Patria, A.; Gianfrate, G.; Pezzati, L.; Piccolo, R.; Pingi, P. Noninvasive conoscopic holography-based device for artworks surface acquisition. Proc. SPIE 2009, 7391, 73910Z. [Google Scholar]
- Rautureau, M.; Cooke, R.U.; Boyde, A. The Application of Confocal Microscopy to the Study of Stone Weathering. Earth Surf. Process. Landf. 1993, 18, 769–775. [Google Scholar] [CrossRef]
- Blanco, D.; Valiño, G.; Fernández, P.; Rico, J.C.; Palomo, S. Influence of roughness on Conoscopic Holography digitizing of DIN34CrMo4 surfaces. Procedia Eng. 2013, 63, 472–480. [Google Scholar] [CrossRef]
- Striova, J.; Fontana, R.; Barucci, M.; Felici, A.; Marconi, E.; Pampaloni, E.; Raffaelli, M.; Riminesi, C. Optical devices provide unprecedented insights into the laser cleaning of calcium layers. Microchem. J. 2016, 124, 331–337. [Google Scholar] [CrossRef]
Technique | Sensitivity | Portability | Cost |
---|---|---|---|
HI | ≈ 1 μm | poor | high |
ESPI | ≈ 1 μm | good | medium |
FP1 | ≈ 5 μm | good | low |
FP2 | ≈ 5 μm | good | low |
FP3 | ≈ 5 μm | very good | low |
CH | ≈ 0.1 μm | medium–good | medium |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrosini, D.; de Rubeis, T.; Nardi, I.; Paoletti, D. The Potential of Optical Profilometry in the Study of Cultural Stone Weathering. J. Imaging 2019, 5, 60. https://doi.org/10.3390/jimaging5060060
Ambrosini D, de Rubeis T, Nardi I, Paoletti D. The Potential of Optical Profilometry in the Study of Cultural Stone Weathering. Journal of Imaging. 2019; 5(6):60. https://doi.org/10.3390/jimaging5060060
Chicago/Turabian StyleAmbrosini, Dario, Tullio de Rubeis, Iole Nardi, and Domenica Paoletti. 2019. "The Potential of Optical Profilometry in the Study of Cultural Stone Weathering" Journal of Imaging 5, no. 6: 60. https://doi.org/10.3390/jimaging5060060
APA StyleAmbrosini, D., de Rubeis, T., Nardi, I., & Paoletti, D. (2019). The Potential of Optical Profilometry in the Study of Cultural Stone Weathering. Journal of Imaging, 5(6), 60. https://doi.org/10.3390/jimaging5060060