Automated Analysis of Spatially Resolved X-ray Scattering and Micro Computed Tomography of Artificial and Natural Enamel Carious Lesions
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Sample Preparation
2.3. Micro Computed Tomography
2.4. Small-Angle X-ray Scattering Data Acquisition
2.5. Segmentation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marcenes, W.; Kassebaum, N.J.; Bernabé, E.; Flaxman, A.; Naghavi, M.; Lopez, A.; Murray, C.J.L. Global burden of oral conditions in 1990–2010: A systematic analysis. J. Dent. Res. 2013, 92, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Magitot, E. Treatise on Dental Caries. Experimental and Therapeutic Investigations; Houghton, Osgood and Company: Boston, MA, USA, 1878. [Google Scholar]
- Miller, W.D. Agency of micro-organisms in decay of human teeth. Dent. Cosmos 1883, 25, 1–12. [Google Scholar]
- Braga, M.M.; Mendes, F.M.; Martignon, S.; Ricketts, D.N.J.; Ekstrand, K.R. In vitro Comparison of Nyvad’s System and ICDAS-II with Lesion Activity Assessment for Evaluation of Severity and Activity of Occlusal Caries Lesions in Primary Teeth. Caries Res. 2009, 43, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, K.W.; Rodrigues, J.A.; Hug, I.; Stich, H.; Lussi, A. Performance of laser fluorescence devices, visual and radiographic examination for the detection of occlusal caries in primary molars. Clin. Oral Investig. 2011, 15, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef]
- Bozdemir, E.; Aktan, A.M.; Ozsevik, A.; Kararslan, E.S.; Ciftci, M.E.; Cebe, M.A. Comparison of different caries detectors for approximal caries detection. J. Dent. Sci. 2016, 11, 293–298. [Google Scholar] [CrossRef]
- Boca, C.; Truyen, B.; Henin, L.; Schulte, A.G.; Stachniss, V.; De Clerck, N.; Cornelis, J.; Bottenberg, P. Comparison of micro-CT imaging and histology for approximal caries detection. Sci. Rep. 2017, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Abogazalah, N.; Ando, M. Alternative methods to visual and radiographic examinations for approximal caries detection. J. Oral Sci. 2017, 59, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.X.; Shao, J.J.; Gao, X.X.; Tao, C.; Ge, J.Y.; Liu, X.J. Noninvasive Assessment of Early Dental Lesion Using a Dual-Contrast Photoacoustic Tomography. Sci. Rep. 2016, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Fratzl, P.; Jakob, J.F.; Rinnerthaler, S.; Roschger, P.; Klaushofer, K. Position-resolved small-angle X-ray scattering of complex biological materials. J. Appl. Crystallogr. 1997, 30, 765–769. [Google Scholar] [CrossRef]
- Gupta, H.S.; Roschger, P.; Zizak, I.; Fratzl-Zelman, N.; Nader, A.; Klaushofer, K.; Fratzl, P. Mineralized microstructure of calcified avian tendons: A scanning small angle X-ray scattering study. Calcif. Tissue Int. 2003, 72, 567–576. [Google Scholar] [PubMed]
- Paris, O. From diffraction to imaging: New avenues in studying hierarchical biological tissues with X-ray microbeams (Review). Biointerphases 2008, 3, FB16–FB26. [Google Scholar] [CrossRef] [PubMed]
- Zizak, I.; Roschger, P.; Paris, O.; Misof, B.M.; Berzlanovich, A.; Brenstorff, S.; Amenitsch, H.; Klaushofer, K.; Fratzl, P. Characteristics of mineral particles in the human bone/cartilage interface. J. Struct. Biol. 2003, 141, 208–217. [Google Scholar] [CrossRef]
- Gutierrez, P.; Piña, C.; Lara, V.H.; Bosch, P. Characterization of enamel with variable caries risk. Arch. Oral. Biol. 2005, 50, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Al-Jawad, M.; Streuwer, A.; Kilconey, S.H.; Shore, R.C.; Cywinski, R.; Wood, D.J. 2D mapping of texture and lattice parameters of dental enamel. Biomaterials 2007, 28, 2908–2914. [Google Scholar] [CrossRef] [PubMed]
- Deyhle, H.; White, S.N.; Bunk, O.; Beckmann, F.; Müller, B. Nanostructure of the carious tooth enamel lesion. Acta Biomater. 2014, 10, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.; Anderson, P.; Al-Jawad, M. Recovery of Crystallographic Texture in Remineralized Dental Enamel. PLoS ONE 2014, 9, e108879. [Google Scholar] [CrossRef] [PubMed]
- Simmons, L.M.; Al Jawad, M.; Kilcoyne, S.H.; Wood, D.J. Distribution of enamel crystallite orientation through an entire tooth crown studied using synchrotron X-ray diffraction. Eur. J. Oral Sci. 2011, 119, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Yagi, N.; Ohta, T.; Matsuo, Y.; Terada, H.; Kamasaka, K.; To-o, K.; Kometani, T.; Kuriki, T. Evaluation of the distribution and orientation of remineralized enamel crystallites in subsurface lesions by X-ray diffraction. Car. Res. 2010, 44, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Yagi, N.; Ohta, T.; Matsuo, T.; Tanaka, T.; Terada, Y.; Kamasaka, H.; To-o, K.; Kometani, T.; Kuriki, T. Evaluation of enamel crystallites in subsurface lesion by microbeam X-ray diffraction. J. Synchrotron Radiat. 2009, 16, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Shahmoradi, M.; Swain, M.V. Quantitative characterization and micro-CT mineral mapping of natural fissural enamel lesions. J. Dent. 2016, 46, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Rovaris, K.; Matos Ferreira, L.; Oliveira Sousa, T.; Vieira Peroni, L.; Queiroz Freitas, D.; Wenzel, A.; Haiter-Neto, F. Feasibility of micro-computed tomography to detect and classify proximal caries lesions in vitro. Dent. Res. J. 2018, 15, 123–129. [Google Scholar]
- Yagi, N.; Ohta, T.; Matsuo, T.; Tanaka, T.; Terada, Y.; Kamasaka, H.; Kometani, T. A microbeam small-angle X-ray scattering study on enamel crystallites in subsurface lesion. J. Phys. Conf. Ser. 2010, 247, 012024. [Google Scholar] [CrossRef]
- Chien, Y.C.; Burwell, A.K.; Saeki, K.; Fernandez-Martinez, A.; Pugach, M.K.; Nonomura, G.; Habelitz, S.; Ho, S.P.; Rapozo-Hilo, M.; Featherstone, J.D.; et al. Distinct decalcification process of dentin by different cariogenic organic acids: Kinetics, ultrastructure and mechanical properties. Arch. Oral Biol. 2016, 63, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Giannini, C.; Siliqi, D.; Ladisa, M.; Altamura, D.; Diaz, A.; Beraudi, A.; Sibillano, T.; De Caro, L.; Stea, S.; Baruffaldi, F.; et al. Scanning SAXS-WAXS microscopy on osteoarthritis-affected bone—An age-related study. J. Appl. Crystallogr. 2014, 47, 110–117. [Google Scholar] [CrossRef]
- Lewis, R.A.; Rogers, K.D.; Hall, C.J.; Towns-Andrews, E.; Slawson, S.; Evans, A.; Pinder, S.E.; Ellis, I.O.; Boggis, C.R.M.; Hufton, A.P.; et al. Breast cancer diagnosis using scattered X-rays. J. Synchrotron Radiat. 2000, 7, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Falzon, G.; Pearson, S.; Murison, R.; Hall, C.; Siu, K.; Round, A.; Schultke, E.; Kaye, A.H.; Lewis, R. Myelin structure is a key difference in the X-ray scattering signature between meningioma, schwannoma and glioblastoma multiforme. Phys. Med. Biol. 2007, 52, 6543–6553. [Google Scholar] [CrossRef] [PubMed]
- Botta, L.-M.; White, S.N.; Deyhle, H.; Dziadowiec, I.; Schulz, G.; Thalmann, P.; Müller, B. Comparing natural and artificial carious lesions in human crowns by means of conventional hard X-ray micro-tomography and two-dimensional X-ray scattering with synchrotron radiation. Proc. SPIE 2016, 9967, 99670S. [Google Scholar]
- Kind, L.; Stevanovic, S.; Wuttig, S.; Wimberger, S.; Hofer, J.; Müller, B.; Pieles, U. Biomimetic remineralization of carious lesions by self-assembling peptide. J. Dent. Res. 2017, 96, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Deyhle, H.; Schulz, G.; Khimchenko, A.; Bikis, C.N.; Hieber, S.E.; Jaquiery, C.; Kunz, C.; Müller-Gerbl, M.; Hoechel, S.; Saxer, T.; et al. Imaging tissues for biomedical research using the high-resolution micro-tomography system nanotom® m. Proc. SPIE 2016, 9967, 99670Q. [Google Scholar]
- Dziadowiec, I.; Beckmann, F.; Schulz, G.; Deyhle, H.; Müller, B. Characterization of a human tooth with carious lesions using conventional and synchrotron radiation-based micro computed tomography. Proc. SPIE 2014, 9212, 92120W. [Google Scholar]
- Bunk, O.; Bech, M.; Jensen, T.H.; Feidenhans’l, R.; Binderup, T.; Menzel, A.; Pfeiffer, F. Multimodal X-ray scatter imaging. New J. Phys. 2009, 11, 123016. [Google Scholar] [CrossRef]
- Lloyd, S.P. Least square quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Müller, B.; Beckmann, F.; Huser, M.; Maspero, F.; Szekely, G.; Ruffieux, K.; Thurner, P.; Wintermantel, E. Non-destructive three-dimensional evaluation of a polymer sponge by micro-tomography using synchrotron radiation. Biomol. Eng. 2002, 19, 73–78. [Google Scholar] [CrossRef]
- Deyhle, H.; Bunk, O.; Müller, B. Nanostructure of healthy and caries-affected human teeth. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Sui, T.; Sandholzer, M.A.; Baimpas, N.; Dolbnya, I.P.; Landini, G.; Korsunsky, A.M. Hierarchical modelling of elastic behaviour of human enamel based on synchrotron diffraction characterisation. J. Struct. Biol. 2013, 184, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Schulz, G.; Waschkies, C.; Pfeiffer, F.; Zanette, I.; Weitkamp, T.; David, C.; Müller, B. Multimodal imaging of human cerebellum—Merging X-ray phase microtomography, magnetic resonance microscopy and histology. Sci. Rep. 2012, 2, 826. [Google Scholar] [CrossRef] [PubMed]
- Stalder, A.; Ilgenstein, B.; Chicerova, N.; Deyhle, H.; Beckmann, F.; Müller, B.; Hieber, S.E. Combined use of micro computed tomography and histology to evaluate the regenerative capacity of bone grafting materials. Int. J. Mater. Res. 2014, 105, 679–691. [Google Scholar] [CrossRef]
- Deyhle, H.; Dziadowiec, I.; Kind, L.; Thalmann, P.; Schulz, G.; Müller, B. Mineralization of early stage carious lesions in vitro—A quantitative approach. Dent. J. 2015, 3, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Ten Cate, J.M.; Dundon, K.A.; Vernon, P.G.; Damato, F.A.; Huntington, E.; Exterkate, R.A.M.; Wefel, J.S.; Jordan, T.; Stephen, K.W.; Roberts, A.J. Preparation and measurement of artificial enamel lesions, a four-laboratory ring test. Car. Res. 1996, 30, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T. Refraction and Scattering Based X-ray Imaging; University of Copenhagen: Copenhagen, Denmark, 2010. [Google Scholar]
- Lautensack, J.; Rack, A.; Redenbach, C.; Zabler, S.; Fischer, H.; Graber, H.G. In situ demineralisation of human enamel studied by synchrotron-based X-ray microtomography—A descriptive pilot-study. Micron 2013, 44, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Arends, J.; Christoffersen, J. The nature of early caries lesions in enamel. J. Dent. Res. 1986, 65, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Bech, M.; Bunk, O.; Kraft, P.; Eikenberry, E.F.; Brönnimann, C.; Grünzweig, C.; David, C. Hard-X-ray dark-field imaging using a grating interferometer. Nat. Mater. 2008, 7, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Revol, V.; Jerjen, I.; Kottler, C.; Schutz, P.; Kaufmann, R.; Luthi, T.; Sennhauser, U.; Straumann, U.; Urban, C. Sub-pixel porosity revealed by X-ray scatter dark field imaging. J. Appl. Phys. 2011, 110, 5. [Google Scholar] [CrossRef]
- Jensen, T.; Bech, M.; Zanette, I.; Weitkamp, T.; David, C.; Deyhle, H.; Feidenhans’l, R.; Pfeiffer, F. Directional X-ray dark-field imaging of strongly ordered systems. Phys. Rev. B 2010, 82, 214103. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deyhle, H.; White, S.N.; Botta, L.; Liebi, M.; Guizar-Sicairos, M.; Bunk, O.; Müller, B. Automated Analysis of Spatially Resolved X-ray Scattering and Micro Computed Tomography of Artificial and Natural Enamel Carious Lesions. J. Imaging 2018, 4, 81. https://doi.org/10.3390/jimaging4060081
Deyhle H, White SN, Botta L, Liebi M, Guizar-Sicairos M, Bunk O, Müller B. Automated Analysis of Spatially Resolved X-ray Scattering and Micro Computed Tomography of Artificial and Natural Enamel Carious Lesions. Journal of Imaging. 2018; 4(6):81. https://doi.org/10.3390/jimaging4060081
Chicago/Turabian StyleDeyhle, Hans, Shane N. White, Lea Botta, Marianne Liebi, Manuel Guizar-Sicairos, Oliver Bunk, and Bert Müller. 2018. "Automated Analysis of Spatially Resolved X-ray Scattering and Micro Computed Tomography of Artificial and Natural Enamel Carious Lesions" Journal of Imaging 4, no. 6: 81. https://doi.org/10.3390/jimaging4060081
APA StyleDeyhle, H., White, S. N., Botta, L., Liebi, M., Guizar-Sicairos, M., Bunk, O., & Müller, B. (2018). Automated Analysis of Spatially Resolved X-ray Scattering and Micro Computed Tomography of Artificial and Natural Enamel Carious Lesions. Journal of Imaging, 4(6), 81. https://doi.org/10.3390/jimaging4060081