Nitrogen (N) Mineral Nutrition and Imaging Sensors for Determining N Status and Requirements of Maize
Abstract
:1. Introduction
2. Maize Nitrogen Mineral Nutrition
2.1. Nitrogen Metabolism in the Plant
2.2. Nitrogen in Soils
- Biological N fixation: is a process by which N2 in the atmosphere is converted into NH4+.
- Mineralization: is the conversion of organic-N to NH4+.
- Nitrification: The process of the transformation of NH4+ into NO3−.
- Immobilization: This is the conversion of mineral N (NH4+ and NO3−) to organic N.
- Volatilization: This is the transformation of CO(NH2)2 to NH3 gas.
- Denitrification: This is the reduction of NO3− to NO and N2.
2.3. Nitrogen Management in Maize
3. Imaging Sensors to Determine N Requirements in-Season
3.1. Leaf Chlorophyll and Polyphenolics Measurement Method
3.2. The Normalized Difference Vegetation Index (NDVI)
3.3. The Dark Green Color Index (DGCI)
4. Current State and Future Prospects
Acknowledgments
Author Contributions
Conflicts of Interest
References
- USDA. International Data Base 2013. National Agricultural Statistics Services: Washington, DC, USA. Available online: http://www.nass.usda.gov/Statistics_by_Subject/index.php?sector=CROPS (accessed on 10 November 2017).
- Shapiro, C.A.; Wortmann, C.S. Corn response to nitrogen rate, row spacing and plant density in Eastern Nebraska. Agron. J. 2006, 98, 529–535. [Google Scholar] [CrossRef]
- Ladha, K.J.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of Fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- McKeem, H.S. Nitrogen Metabolism in Plants; Oxford University Press: London, UK, 1962; pp. 1–18. [Google Scholar]
- Maathuis, F.J.M. Physiological functions of mineral macronutrients. Curr. Opin. Inplant Biol. 2009, 2, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Pearsall, W.H. The distribution of the insoluble nitrogen in Beta leaves of different ages. J. Exp. Biol. 1931, 8, 279–285. [Google Scholar]
- Wullschleger, S.D. Biochemical limitations to carbon assimilation in C3 plants—A retrospective analysis of the A/Ci curves from 109 species. J. Exp. Bot. 1993, 44, 907–920. [Google Scholar] [CrossRef]
- Hallberg, G.R. Nitrogen Management and Ground Water Protection; Follett, R.F., Ed.; Elsevier: Amsterdam, The Netherlands, 1989; p. 74. [Google Scholar]
- Cox, W.J.; Kalonge, S.; Cherney, D.J.R.; Reid, W.S. Growth, yield, and quality of forage corn under different nitrogen management practices. Agron. J. 1993, 85, 341–347. [Google Scholar] [CrossRef]
- Raun, R.W.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef]
- Stehfest, E.; Bouwman, L. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosyst. 2006, 74, 207–228. [Google Scholar] [CrossRef]
- Savci, S. Investigation of effect of chemical fertilizers on environment. APCB Procedia 2012, 1, 287–292. [Google Scholar] [CrossRef]
- Halvorson, D.A.; Mosier, A.R.; Reule, C.A.; Bausch, W.C. Nitrogen and tillage effects on irrigated continuous corn yields. Agron. J. 2006, 98, 63–71. [Google Scholar] [CrossRef]
- Tucker, T.C. Diagnosis of nitrogen deficiency in plants. In Nitrogen in Crop Production; Hauck, R.D., Ed.; American Society of Agronomy: Madison, WI, USA, 1984; pp. 249–262. [Google Scholar]
- Abbasi, M.K.; Khaliq, A.; Shafiq, M.; Kazmi, M.; Ali, I. Comparative effectiveness of urea N, poultry manure and their combination in changing soil properties and maize productivity under rainfed conditions in northeast Pakistan. Exp. Agric. 2010, 46, 211. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Tahir, M.M.; Sadiq, A.; Iqbal, M.; Zafar, M. Yield and nitrogen use efficiency of rainfed maize response to splitting and nitrogen rates in Kashmir, Pakistan. Agron. J. 2012, 104, 448. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Tahir, M.M.; Rahim, N. Effect of N fertilizer source and timing on yield and N use efficiency of rainfed maize (Zea mays L.) in Kashmir–Pakistan. Geoderma 2013, 195, 87–93. [Google Scholar] [CrossRef]
- López-Bellido, R.; López-Bellido, L. Efficiency of nitrogen in wheat under Mediterranean conditions: Effect of tillage, crop rotation and N fertilization. Field Crop. Res. 2001, 71, 31–46. [Google Scholar] [CrossRef]
- Schepers, J.S.; Varvel, G.E.; Watts, D.G. Nitrogen and water management strategies to reduce nitrate leaching under irrigated maize. J. Contam. Hydrol. 1995, 20, 227–239. [Google Scholar] [CrossRef]
- Setiyono, T.D.; Yang, H.; Walters, D.T.; Dobermann, A.; Ferguson, R.B.; Roberts, D.F.; Lyon, D.J.; Clay, D.E.; Cassaman, K.G. Maize-N: A decision tool for nitrogen management in maize. Agron. J. 2011, 103, 1276–1283. [Google Scholar] [CrossRef]
- Samborski, S.M.; Tremblay, N.; Fallon, E. Strategies to make use of plant sensors based diagnostic information for nitrogen recommendations. Agron. J. 2009, 101, 800–816. [Google Scholar] [CrossRef]
- Pagola, M.; Ortiz, R.; Ignacio, I.; Bustince, H.; Barrenechea, E.; Tejo, P.A.; Lamsfus, C.; Lasa, B. New method to assess barley nitrogen nutrition status based on image color analysis comparison with SPAD-502. Comput. Electron. Agric. 2009, 65, 213–218. [Google Scholar] [CrossRef]
- Rorie, R.L.; Purcell, L.C.; Mozaffari, M.; Karcher, D.E.; King, A.C.; Marsh, M.C.; Longer, D.E. Association of ‘’greenness” in corn with yield and leaf nitrogen concentration. Agron. J. 2011, 103, 529–535. [Google Scholar] [CrossRef]
- Purcell, L.C.; Siddons, U.G.; Karcher, D.E.; Rorie, R.L. System and Method of in Season Nitrogen Measurement and Fertilization of Non-Leguminous Crops from Digital Image Analysis. U.S. Patent 9,117,140 B2, 25 August 2015. [Google Scholar]
- Chlorophyll Meters. Available online: https://www.specmeters.com/nutrient-management/chlorophyll-meters/ (accessed on 10 November 2017).
- Brady, N.C. Nitrogen and sulfur economy in soils. In Nature and Properties of Soil; Macmillan Publishing Company: Basingstoke, UK, 1990; p. 621. [Google Scholar]
- Oikeha, S.O.; Klinga, J.G.; Horstb, W.J.; Chudec, V.O.; Carskya, R.J. Growth and distribution of maize roots under nitrogen fertilization in plinthite soil. Field Crops Res. 1999, 61, 1–13. [Google Scholar] [CrossRef]
- Barker, V.A.; Bryson, G.M. Nitrogen. In Hand Book of Plant Nutrition; Taylor and Francis: Abingdon, UK, 2007; p. 661. [Google Scholar]
- Evans, J.H.; Nason, A. Pyridine nucleotide nitrate reduction from higher plants. Plant Physiol. 1953, 28, 233–254. [Google Scholar] [CrossRef] [PubMed]
- Baron, A.C.; Tobin, T.H.; Wallsgrove, R.M.; Tobin, A.K. A metabolic control analysis of the glutamine synthetase/glutamate synthase cycle in isolated barely in isolated barely (Hordeumvulgare L.) chloroplasts. Plant Physiol. 1994, 105, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Lea, J.P.; Ireland, R.J. Nitrogen metabolism in higher plants. In Plant Amino Acids: Biochemistry and Biotechnology; Singh, B.K., Ed.; CRC Press: Boca Raton, FL, USA, 1999; p. 47. [Google Scholar]
- Westgate, M.E.; Otegue, M.E.; Andrade, F.H. Physiology of the corn plant. In Corn: Origine, History, Technology and Production; Smith, C.W., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004; p. 935. [Google Scholar]
- Leikam, D.; Randall, G.; Mallarino, A. A further look into fertilizer recommendation adequacy regarding phosphorus and potassium. Fluid J. 2010, 18, 8–11. [Google Scholar]
- Bruun, S.; Luxhoi, J.; Magid, J.; Deneergaard, A.; Jensen, L. A nitrogen mineralization model based on relationships for gross mineralization and immobilization. Soil Biol. Biochem. 2006, 38, 2712–2721. [Google Scholar] [CrossRef]
- Clément, A.; Ladha, J.K.; Chalifour, F.P. Crops residue effects on nitrogen mineralization, microbial biomass, and rice yield in submerged soils. Soil Sci. Soc. Am. J. 1995, 59, 1595–1603. [Google Scholar] [CrossRef]
- Ransom, J.K.; Carsky, R.J.; Palmer, A.F.E. World Corn Production Practices: Corn, Origin, History, Technology, and Production; Wiley Series in Crop Science; Wiley: Hoboken, NJ, USA, 2004; p. 949. [Google Scholar]
- Espinoza, L.; Ross, J. Fertilization and liming. In Corn Production Handbook; Espinoza, U.A., Ed.; University of Arkansas: Fayetteville, AR, USA, 2009; p. 97. [Google Scholar]
- Shepard, A.; Thomison, P.; Nafziger, E.; Mullen, R.; Clucas, C. Nutridense corn response to nitrogen rates. Agron. J. 2011, 103, 169–174. [Google Scholar] [CrossRef]
- Halvorson, D.A.; Schweissing, F.C.; Bartolo, M.E.; Reule, C.A. Corn response to nitrogen fertilization in a soil with high residual nitrogen. Agron. J. 2005, 97, 1222–1229. [Google Scholar] [CrossRef]
- Gehl, R.J.; Schmidt, J.P.; Maddux, L.D.; Gordon, W.B. Corn yield response to nitrogen rate and timing in sandy irrigated soils. Agron. J. 2005, 97, 1230–1238. [Google Scholar] [CrossRef]
- Heckman, J.R.; Hlubik, W.T.; Prostak, D.J.; Paterson, J.W. Pre-side dress soil nitrate test for sweet corn. Hortscience 1995, 30, 1033–1036. [Google Scholar]
- Hartz, T.K. Vegetable production best management practices to minimize nutrient loss. Hort. Technol. 2006, 16, 398–403. [Google Scholar]
- Guillard, K.; Morris, T.F.; Kopp, K.L. The Pre-side dress soil nitrate test and nitrate leaching from Corn. J. Environ. Qual. 1999, 28, 1845–1852. [Google Scholar] [CrossRef]
- Ma, L.B.; Subedi, K.D.; Costa, C. Pre-side dress nitrate test and other crop based indicators for fresh market and processing sweet corn. Agron. J. 2007, 99, 384–389. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S. Application of spectral remote sensing for agronomic decisions. Agron. J. 2008, 117–131. [Google Scholar] [CrossRef]
- Pinter, P.J., Jr.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote sensing for crop management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef]
- Dwyer, L.M.; Tollenaar, M.; Muldon, J.F. A non-destructive method to monitor leaf greenness in corn. Can. J. Plant Sci. 1997, 71, 505–509. [Google Scholar] [CrossRef]
- Markwel, J.; Osternman, J.C.; Mitchell, J.L. Calibration of the minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 1995, 46, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.K.; Sharma, M.; Meshram, M.R. An analysis of leaf chlorophyll measurement method using chlorophyll meter and image processing technique. Procedia Compt. Sci. 2016, 85, 286–292. [Google Scholar] [CrossRef]
- Piekielek, W.P.; Fox, R.H. Use of chlorophyll meter to predict side dress nitrogen requirements for maize. Agron. J. 1992, 84, 59–65. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S. Use of a chlorophyll meter to monitor nitrogen status and schedule FERTIGATION for Corn. J. Prod. Agric. 1995, 8, 56–60. [Google Scholar] [CrossRef]
- Varvel, G.E.; Schepers, J.S.; Francis, D.D. Ability for In-season correction of nitrogen deficiency in corn using chlorophyll meters. Soil Sci. Soc. Am. J. 1997, 61, 1233–1239. [Google Scholar] [CrossRef]
- Zhang, J.; Blackmer, A.M.; Ellsworth, J.W.; Koehler, K.J. Sensitivity of chlorophyll meters for diagnosing nitrogen deficiencies of corn in production agriculture. Agron. J. 2008, 100, 543–550. [Google Scholar] [CrossRef]
- Cartelat, A.; Cerovic, Z.G.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.-L.; Barbottin, A.; Jeuffroy, M.-H.; Gate, P.; Agati, G.; et al. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crop. Res. 2005, 91, 35–49. [Google Scholar] [CrossRef]
- Sripada, P.R.; Heiniger, R.W.; White, J.G.; Meijer, D.A. Aerial color infrared photography for determining early-season nitrogen requirements in corn. Agron. J. 2006, 97, 1443–1451. [Google Scholar] [CrossRef]
- Scharf, P.C.; Lory, J.A. Calibrating reflectance measurements to predict optimal side dress nitrogen rate for corn. Agron. J. 2002, 101, 615–625. [Google Scholar] [CrossRef]
- Ma, B.L.; Morrison, M.J.; Dwyer, L.M. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of corn. Agron. J. 1996, 88, 915–920. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.; Tringe, J.M.; Schlemmer, M.R.; Major, D.J. Use of remote-sensing imagery to estimate corn grain yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Holland, K.H.; Schepers, J.S.; Francis, D.D.; Schlemmer, M.R.; Caldwell, R. Use of a crop canopy reflectance sensor to assess corn leaf chlorophyll content. ASA Spec. Publ. 2003, 66, 135–150. [Google Scholar]
- Raun, R.W.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Mullen, R.W.; Freeman, K.W.; Thomason, W.E.; Lukina, E.V. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J. 2002, 94, 815–820. [Google Scholar] [CrossRef]
- Mullen, W.R.; Kyle, W.F.; Raun, W.R.; Johnson, G.V.; Stone, M.L.; Solie, J.B. Identifying an in-season response index and the potential to increase wheat yield with nitrogen. Agron. J. 2003, 95, 347–351. [Google Scholar] [CrossRef]
- Goulas, Y.; Cerovic, A.; Cartelat, A.; Moya, I. Dualex: A new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl. Opt. 2004, 43, 4488–4496. [Google Scholar] [CrossRef] [PubMed]
- Varvel, G.E.; Wilhelm, W.W.; Shanahan, J.F.; Schepers, J.S. An algorithm for corn nitrogen recommendations using a chlorophyll meter based sufficiency index. Agron. J. 2007, 99, 701–706. [Google Scholar] [CrossRef]
- Schelmmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinform. 2013, 25, 47–54. [Google Scholar] [CrossRef]
- Bhandari, A.K.; Kumar, A.; Singh, G.K. Feature extraction using normalized difference vegetation index (NDVI): A case study of Jabalpur city. Procedia Technol. 2012, 6, 612–621. [Google Scholar] [CrossRef]
- Freeman, W.K.; Girma, K.; Arnall, D.B.; Mullen, R.W.; Martin, K.L.; Teal, R.K.; Raun, W.R. By-plant prediction of corn forage biomass and nitrogen uptake at various growth stages using remote sensing and plant height. Agron. J. 2007, 99, 530–536. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident detection of crop water stress, nitrogen status and canopy density usingground-based multispectral data. In Proceedings of the Fifth International Conference of Precision Agriculture, Madison, WI, USA, 16–19 July 2000. [Google Scholar]
- Fitzgerald, G.J. Characterizing vegetation indices derived from active and passive sensors. Int. J. Remote Sens. 2010, 31, 4335–4348. [Google Scholar] [CrossRef]
- Martin, K.L.; Girma, K.; Freeman, K.W.; Raun, W.R. Expression of variability in corn as influenced by growth stage using optical sensor measurements. Agron. J. 2007, 99, 384–389. [Google Scholar] [CrossRef]
- Karcher, E.D.; Richardson, M.D. Quantifying turf grass color using digital image analysis. Crop Sci. 2003, 43, 943–951. [Google Scholar] [CrossRef]
- Rhezali, A.; Purcell, L.C.; Roberts, T.L. Evaluation of Dark Green Color Technology as a Method of Real Time in Season Maize Nitrogen Measurement and Evaluation. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2016; p. 103. [Google Scholar]
- Bai, H. High Throughput Phenotypic Evaluation of Drought-Related Traits in Soybean. Ph.D. Thesis, University of Arkansas, Fayetteville, AR, USA, 2016; p. 191. [Google Scholar]
Growth Stage | Days after Emergence | % of N Uptake of N Amount Applied | % of Final N Accumulated |
---|---|---|---|
4-leaf | 32 | 0.81 | <1 |
8-leaf | 44 | 2.16 | 3 |
12-Leaf | 59 | 5.6 | 9 |
Tassel | 72 | 15.33 | 23.9 |
Silk | 84 | 14.18 | 38.7 |
Blister | 108 | 15.4 | 54.1 |
Early dent | 139 | 23.17 | 77.3 |
Maturity | 144 | 23.31 | 100 |
Yield Goal kg·ha−1 | Recommended N, kg·ha−1 | kg Yield·kg−1 N |
---|---|---|
Up to 7875 | 134 | 69 |
9450 | 168 | 56 |
11,025 | 202 | 55 |
12,600 | 235 | 54 |
14,175 | 268 | 53 |
Yield Goal kg·ha−1 | Recommended N kg·ha−1 | NUE kg·kg−1 N |
---|---|---|
Up to 6300 | 140 | 45 |
7560 | 196 | 39 |
8820 | 252 | 35 |
10,080 | 336 | 30 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhezali, A.; Lahlali, R. Nitrogen (N) Mineral Nutrition and Imaging Sensors for Determining N Status and Requirements of Maize. J. Imaging 2017, 3, 51. https://doi.org/10.3390/jimaging3040051
Rhezali A, Lahlali R. Nitrogen (N) Mineral Nutrition and Imaging Sensors for Determining N Status and Requirements of Maize. Journal of Imaging. 2017; 3(4):51. https://doi.org/10.3390/jimaging3040051
Chicago/Turabian StyleRhezali, Abdelaziz, and Rachid Lahlali. 2017. "Nitrogen (N) Mineral Nutrition and Imaging Sensors for Determining N Status and Requirements of Maize" Journal of Imaging 3, no. 4: 51. https://doi.org/10.3390/jimaging3040051
APA StyleRhezali, A., & Lahlali, R. (2017). Nitrogen (N) Mineral Nutrition and Imaging Sensors for Determining N Status and Requirements of Maize. Journal of Imaging, 3(4), 51. https://doi.org/10.3390/jimaging3040051