An Excursus on Infrared Thermography Imaging
Abstract
:1. Introduction
2. Thermo-Fluid-Dynamics Applications
2.1. Impinging Jets
2.2. Hot Water Release
2.3. Flow Instability on a Rotating Disk
3. Materials Inspection
3.1. Non-Destructive Testing
3.2. Monitoring of Impact Tests
- ➢
- Negative ∆T values indicate thermoelastic effects and account for bending of the material under the impact force.
- ➢
- Depending on the type of material, small positive ∆T values indicate formation of micro-crack, delamination and/or light deformation.
- ➢
- High ∆T values indicate material breakage.
- ➢
- Evolution in time of ∆T.
- ➢
- Minima and maxima ∆T values.
- ➢
- ∆T profiles along specific directions.
- ➢
- Extension of delaminated zones.
4. Cultural Heritage
5. Predictive Maintenance (PM)
6. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Rinaldi, R. Infrared Devices: Short History and New Trends. In Infrared Thermography: Recent Advances and Future Trends; Meola, C., Ed.; Bentham Science Publishers Ltd.: Oak Park, IL, USA, 2012. [Google Scholar]
- Meola, C.; Carlomagno, G.M. Recent advances in the use of infrared thermography. Meas. Sci. Technol. 2004, 15, R27–R58. [Google Scholar] [CrossRef]
- Carlomagno, G.M.; Cardone, G. Infrared thermography for convective heat transfer measurements. Exp. Fluids 2010, 49, 1187–1218. [Google Scholar] [CrossRef]
- Astarita, T.; Carlomagno, G.M. Infrared Thermography for Thermo-Fluid-Dynamics; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Carlomagno, G.M.; Ianiro, A. Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: A review. Exp. Therm. Fluid Sci. 2014, 58, 15–35. [Google Scholar] [CrossRef]
- Glauert, M.B. The wall jet. J. Fluid Mech. 1956, 1, 625–643. [Google Scholar] [CrossRef]
- Bakke, P. An experimental investigation of a wall jet. J. Fluid Mech. 1957, 2, 467–472. [Google Scholar] [CrossRef]
- Metzger, D.E.; Florschuetz, L.W.; Takeuchi, D.I.; Behee, R.D.; Berry, R.A. Heat transfer characteristics for inline and staggered arrays of circular jets with crossflow of spent air. J. Heat Transf. 1979, 101, 526–531. [Google Scholar] [CrossRef]
- Florschuetz, L.W.; Su, C.C. Effects of crossflow temperature on heat transfer within an array of impinging jets. J. Heat Transf. 1987, 109, 74–82. [Google Scholar] [CrossRef]
- Kercher, D.M.; Tabakoff, W. Heat transfer by a square array of round air jets impinging perpendicular to a flat surface including the effect of spent air. J. Eng. Power 1970, 92, 73–82. [Google Scholar] [CrossRef]
- Obot, N.T.; Trabold, T.A. Impingement heat transfer within arrays of circular jets, part 1: Effects of minimum, intermediate, and complete crossflow for small and large spacings. J. Heat Transf. 1987, 109, 872–879. [Google Scholar] [CrossRef]
- Goldstein, R.J.; Sobolik, K.A.; Seol, W.S. Effect of entrainment on the heat transfer to a heated circular air jet impinging on a flat surface. J. Heat Transf. 1990, 112, 608–611. [Google Scholar] [CrossRef]
- Didden, N.; Ho, C.M. Unsteady separation in a boundary layer produced by an impinging jet. J. Fluid Mech. 1985, 160, 235–256. [Google Scholar] [CrossRef]
- Monkewitz, B.R.; Bechert, D.W.; Barsikow, B.; Lehmann, B. Self-excited oscillations and mixing in a heated round. Jet. J. Fluid Mech. 1990, 213, 611–639. [Google Scholar] [CrossRef]
- Meola, C.; de Luca, L.; Carlomagno, G.M. Azimuthal instability in an impinging jet: Adiabatic wall temperature distribution. Exp. Fluids 1985, 18, 303–310. [Google Scholar] [CrossRef]
- Meola, C.; de Luca, L.; Carlomagno, G.M. Influence of shear layer dynamics on impingement heat transfer. Exp. Therm. Fluid Sci. 1996, 13, 29–37. [Google Scholar] [CrossRef]
- Gardon, R. Heat transfer between a flat plate and jets of air impinging on it. Int. Dev. Heat Transfer (ASME) 1962, 454–460. [Google Scholar]
- Carlomagno, G.M.; de Luca, L. Infrared Thermography in Convective Heat Transfer. In Handbook of Flow Visualization; Yang, W.J., Ed.; Taylor and Francis: London, UK, 2001; pp. 547–575. [Google Scholar]
- Carlomagno, G.M.; de Luca, L.; Cardone, G.; Astarita, T. Heat flux sensors for infrared thermography in convective heat transfer. Sensors 2014, 14, 21065–21116. [Google Scholar] [CrossRef] [PubMed]
- Meola, C.; Carlomagno, G.M. Intensive cooling of large surfaces with arrays of jets. In Proceedings of the International Conference on Quantitative Infrared Thermography Conference (QIRT06), Padua, Italy, 28–30 June 2006.
- Vicinanza, D.; Meola, C.; Carlomagno, G.M.; Di Natale, M. Temperature distribution of a hot water discharge in a wave environment. In Proceedings of the International Conference on the Mediterranean Coastal Environment, Hammamet, Tunisia, 23–27 October 2001.
- Astarita, T.; Cardone, G.; Carlomagno, G.M. Spiral vortices detection on a rotating disk. In Proceedings of the 23rd International Congress of Aeronautical Sciences, Toronto, ON, Canada, 8–13 September 2002.
- Carlomagno, G.M.; Berardi, P.G. Unsteady thermotopography in non-destructive testing. In Proceedings of the 3rd Biannual Infrared Information Exchange (IRIE ‘76), St. Louis, MO, USA, 24–26 August 1976.
- Busse, G. Optoacoustic phase angle measurement for probing a metal. Appl. Phys. Lett. 1979, 35, 759–760. [Google Scholar] [CrossRef]
- Thomas, R.L.; Pouch, J.J.; Wong, Y.H.; Favro, L.D.; Kuo, P.K.; Rosencwaig, A. Subsurface flaw detection in metals by photoacoustic microscopy. J. Appl. Phys. 1980, 51, 1152–1156. [Google Scholar] [CrossRef]
- Letho, A.; Jaarinen, J.; Tiusanen, T.; Jokinen, M.; Luukkala, M. Magnitude and phase in thermal wave imaging. Electron. Lett. 1981, 17, 364–365. [Google Scholar]
- Bennett, C.A., Jr.; Patty, R.R. Thermal wave interferometry: A potential application of the photoacoustic effect. Appl. Opt. 1982, 21, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, J.L.; Merienne, E.; Danjoux, R.; Egee, M. Numerical system for infrared scanners and application to the subsurface control of materials by photo thermal radiometry Infrared Technology and Applications. Proc. SPIE 1985, 590, 287–292. [Google Scholar]
- Kuo, P.K.; Feng, Z.J.; Ahmed, T.; Favro, L.D.; Thomas, R.L.; Hartikainen, J. Parallel Thermal Wave Imaging Using a Vector Lockin Video Technique. In Photoacoustic and Photothermal Phenomena; Hess, P., Pelzl, J., Eds.; Springer: Heidelberg, Germany, 1987; pp. 415–418. [Google Scholar]
- Busse, G.; Wu, D.; Karpen, W. Thermal wave imaging with phase sensitive modulated thermography. J. Appl. Phys. 1992, 71, 3962–3965. [Google Scholar] [CrossRef]
- Wu, D.; Rantala, J.; Karpen, W.; Zenzinger, G.; Schönbach, B.; Rippel, W.; Steegmüller, R.; Diener, L.; Busse, G. Applications of lockin-thermography methods. In Review of Progress in Quantitative Nondestructive Evaluation; Thompson, D.O., Chimenti, D.E., Eds.; Plenum: New York, NY, USA, 1996; Volume 15, pp. 511–519. [Google Scholar]
- Meola, C.; Carlomagno, G.M.; Squillace, A.; Giorleo, G. Non-destructive control of industrial materials by means of lock-in thermography. Meas. Sci. Technol. 2002, 13, 1583–1590. [Google Scholar] [CrossRef]
- Meola, C.; Squillace, A.; Giorleo, G.; Nele, L. Experimental characterization of an innovative Glare® fibre reinforced metal laminate in pin bearing. J. Compos. Mater. 2003, 37, 1543–1552. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M.; Prisco, U.; Vitiello, A. Non-destructive control of polyethylene blanket insulation. Res. Nondestruct. Eval. 2004, 15, 55–63. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M.; Squillace, A.; Giorleo, G. The use of infrared thermography for nondestructive evaluation of joints. Infrared Phys. Technol. 2004, 46, 93–99. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M.; Giorleo, L. The use of infrared thermography for materials characterization. J. Mater. Process. Technol. 2004, 155–156, 1132–1137. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M.; Giorleo, L. Geometrical limitations to detection of defects in composites by means of infrared thermography. J. Nondestruct. Eval. 2004, 23, 125–132. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M. Application of infrared thermography to adhesion science. J. Adhes. Sci. Technol. 2006, 20, 589–632. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M.; Squillace, A.; Vitiello, A. Nondestructive evaluation of aerospace materials with lock-in thermography. Eng. Fail. Anal. 2006, 13, 380–388. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M.; Di Foggia, M.; Natale, O. Infrared thermography to detect residual ceramic in gas turbine blades. Appl. Phys. A 2008, 91, 685–691. [Google Scholar] [CrossRef]
- Bonavolontà, C.; Valentino, M.; Meola, C.; Carlomagno, G.M.; Volponi, R.; Rosca, I.D. Non destructive testing of carbon nanotube reinforced composite using HTS-SQUID and electromagnetic techniques. Supercond. Sci. Technol. 2009, 22. [Google Scholar] [CrossRef]
- Meola, C.; Boccardi, S.; Carlomagno, G.M. Infrared Thermography in the Evaluation of Aerospace Composite Materials; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Meola, C.; Boccardi, S.; Carlomagno, G.M.; Boffa, N.D.; Monaco, E.; Ricci, F. Nondestructive evaluation of carbon fibre reinforced composites with infrared thermography and ultrasonics. Compos. Struct. 2015, 134, 845–853. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M. Infrared thermography to impact-driven thermal effects. Appl. Phys. A 2009, 96, 759–762. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M. Impact damage in GFRP: New insights with infrared thermography. Compos. Part A 2010, 41, 1839–1847. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M.; Ricci, F. Monitoring of impact damage in carbon fibre reinforced polymers. In Proceedings of the 11th International Conference on Quantitative Infrared Thermography (QIRT 2012), Napoli, Italy, 11–14 June 2012.
- Meola, C.; Carlomagno, G.M. Infrared thermography to evaluate impact damage in glass/epoxy with manufacturing defects. Int. J. Impact Eng. 2014, 67, 1–11. [Google Scholar] [CrossRef]
- Boccardi, S.; Carlomagno, G.M.; Meola, C.; Russo, P.; Simeoli, G. Monitoring impact damaging of thermoplastic composites. J. Phys. Conf. Ser. 2015, 658. [Google Scholar] [CrossRef]
- Meola, C.; Boccardi, S.; Boffa, N.D.; Ricci, F.; Simeoli, G.; Russo, P.; Carlomagno, G.M. New perspectives on impact damaging of thermoset- and thermoplastic-matrix composites from thermographic images. Compos. Struct. 2016, 152, 746–754. [Google Scholar] [CrossRef]
- Boccardi, S.; Carlomagno, G.M.; Simeoli, G.; Russo, P.; Meola, C. Evaluation of impact affected areas of glass fibres thermoplastic composites from thermographic images. Meas. Sci. Technol. 2016, 7, 075602. [Google Scholar] [CrossRef]
- Meola, C.; Boccardi, S.; Carlomagno, G.M. Measurements of very small temperature variations with LWIR QWIP infrared camera. J. Infrared Phys. Technol. 2015, 72, 195–203. [Google Scholar] [CrossRef]
- Boccardi, S.; Carlomagno, G.M.; Meola, C. Basic temperature correction of QWIP cameras in thermo-elastic-plastic tests of composite materials. Appl. Opt. 2016, 55, D87–D94. [Google Scholar] [CrossRef] [PubMed]
- Grinzato, E.; Bison, P.G.; Martinetti, S. Monitoring of ancient buildings by the thermal method. J. Cult. Herit. 2002, 3, 21–29. [Google Scholar] [CrossRef]
- Grinzato, E.; Bressan, C.; Martinetti, S.; Bison, P.G.; Bonacina, C. Monitoring of the Scrovegni Chapel by IR thermography: Giotto at infrared. J. Infrared Phys. Technol. 2002, 43, 165–169. [Google Scholar] [CrossRef]
- Carlomagno, G.M.; Di Maio, R.; Meola, C.; Roberti, N. Infrared thermography and geophysical techniques in cultural heritage conservation. QIRT J. 2005, 2, 5–24. [Google Scholar] [CrossRef]
- Carlomagno, G.M.; Meola, C. Infrared thermography in the restoration of cultural properties. Proc. SPIE 2001, 4360, 203–216. [Google Scholar]
- Carlomagno, G.M.; Meola, C. Comparison between thermographic techniques for frescoes NDT. NDT E Int. 2002, 35, 559–565. [Google Scholar] [CrossRef]
- Meola, C.; Di Maio, R.; Roberti, N.; Carlomagno, G.M. Application of infrared thermography and geophysical methods to the architectural field. Eng. Fail. Anal. 2005, 12, 875–892. [Google Scholar] [CrossRef]
- Carlomagno, G.M.; Di Maio, R.; Fedi, M.; Meola, C. Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys. J. Geophys. Eng. 2011, 8, S93–S105. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meola, C.; Boccardi, S.; Carlomagno, G.M. An Excursus on Infrared Thermography Imaging. J. Imaging 2016, 2, 36. https://doi.org/10.3390/jimaging2040036
Meola C, Boccardi S, Carlomagno GM. An Excursus on Infrared Thermography Imaging. Journal of Imaging. 2016; 2(4):36. https://doi.org/10.3390/jimaging2040036
Chicago/Turabian StyleMeola, Carosena, Simone Boccardi, and Giovanni Maria Carlomagno. 2016. "An Excursus on Infrared Thermography Imaging" Journal of Imaging 2, no. 4: 36. https://doi.org/10.3390/jimaging2040036
APA StyleMeola, C., Boccardi, S., & Carlomagno, G. M. (2016). An Excursus on Infrared Thermography Imaging. Journal of Imaging, 2(4), 36. https://doi.org/10.3390/jimaging2040036