Viewing Geometry Sensitivity of Commonly Used Vegetation Indices towards the Estimation of Biophysical Variables in Orchards
Abstract
:1. Introduction
2. Materials
2.1. Synthetic Imagery
- •
- •
- •
- Scenario 3 (S3), a variable weed and soil background, consisting of a weed background with random and irregular soil patches (65/35% cover fraction distribution), depicted in Figure 2c.
- •
- Scenario 4 (S4), a variable weed background with a chlorophyll gradient. The weed background was modified similar to the leaf reflectances, increasing the chlorophyll content from 75% to the reference value (i.e., uniform weed background). A true color representation of the variable weed background is shown in Figure 2d.
2.2. Real Imagery
2.2.1. Study Area
2.2.2. Satellite Imagery
2.2.3. Reference Plots
3. Methods
3.1. Vegetation Indices
3.2. Vegetation Index Correction
3.3. Determination of in situ Measured Biophysical and Structural Variables
4. Results
4.1. Synthetic Imagery
4.2. Real Imagery
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zarco-Tejada, P.J.; Berjon, A.; Lopez-Lozano, R.; Miller, J.R.; Martin, P.; Cachorro, V.; Gonzalez, M.R.; de Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Stagakis, S.; Markos, N.; Sykioti, O.; Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations. Remote Sens. Environ. 2010, 114, 977–994. [Google Scholar] [CrossRef]
- Stagakis, S.; González-Dugo, V.; Cid, P.; Guillén-Climent, M.L.; Zarco-Tejada, P.J. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices. ISPRS J. Photogramm. Remote Sens. 2012, 71, 47–61. [Google Scholar] [CrossRef]
- Van Beek, J.; Tits, L.; Somers, B.; Coppin, P. Stem Water Potential Monitoring in Pear Orchards through WorldView-2 Multispectral Imagery. Remote Sens. 2013, 5, 6647–6666. [Google Scholar] [CrossRef]
- Delalieux, S.; Somers, B.; Hereijgers, S.; Verstraeten, W.; Keulemans, W.; Coppin, P. A near-infrared narrow-waveband ratio to determine Leaf Area Index in orchards. Remote Sens. Environ. 2008, 112, 3762–3772. [Google Scholar] [CrossRef]
- Pinter, P.J.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote Sensing for Crop Management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Zurita-Milla, R.; de Wit, A.J.W.; Brazile, J.; Singh, R.; Schaepman, M.E. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 165–193. [Google Scholar] [CrossRef]
- Gamon, J.A.; Penuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar]
- Penuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- Moran, S.; Fitzgerald, G.; Rango, A.; Walthall, C.; Barnes, E.; Bausch, W.; Clarke, T.; Daughtry, C.; Everitt, J.; Escobar, D.; et al. Sensor Development and Radiometric Correction for Agricultural Applications. Photogramm. Eng. Remote Sens. 2003, 69, 705–718. [Google Scholar] [CrossRef]
- Perry, E.M.; Dezzani, R.J.; Seavert, C.F.; Pierce, F.J. Spatial variation in tree characteristics and yield in a pear orchard. Precis. Agric. 2009, 11, 42–60. [Google Scholar] [CrossRef]
- Stuckens, J.; Dzikiti, S.; Verstraeten, W.W.; Verreynne, S.; Swennen, R.; Coppin, P. Physiological interpretation of a hyperspectral time series in a citrus orchard. Agric. For. Meteorol. 2011, 151, 1002–1015. [Google Scholar] [CrossRef]
- Meggio, F.; Zarco-Tejada, P.J.; Miller, J.R.; Martín, P.; González, M.R.; Berjón, A. Row orientation and viewing geometry effects on row-structured vine crops for chlorophyll content estimation. Can. J. Remote Sens. 2008, 34, 220–234. [Google Scholar]
- Chopping, M.; Moisen, G.G.; Su, L.; Laliberte, A.; Rango, A.; Martonchik, J.V.; Peters, D.P.C. Large area mapping of southwestern forest crown cover, canopy height, and biomass using the NASA Multiangle Imaging Spectro-Radiometer. Remote Sens. Environ. 2008, 112, 2051–2063. [Google Scholar] [CrossRef]
- Wolf, A.; Berry, J.A.; Asner, G.P. Allometric constraints on sources of variability in multi-angle reflectance measurements. Remote Sens. Environ. 2010, 114, 1205–1219. [Google Scholar] [CrossRef]
- Shepherd, J.D.; Dymond, J.R. BRDF Correction of Vegetation in AVHRR Imagery. Remote Sens. Environ. 2000, 74, 397–408. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.O.; Breon, F.-M. Towards a Generalized Approach for Correction of the BRDF Effect in MODIS Directional Reflectances. IEEE Trans. Geosci. Remote Sens. 2009, 47, 898–908. [Google Scholar] [CrossRef]
- Bréon, F.-M.; Vermote, E. Correction of MODIS surface reflectance time series for BRDF effects. Remote Sens. Environ. 2012, 125, 1–9. [Google Scholar] [CrossRef]
- De Abelleyra, D.; Verón, S.R. Comparison of different BRDF correction methods to generate daily normalized MODIS 250m time series. Remote Sens. Environ. 2014, 140, 46–59. [Google Scholar] [CrossRef]
- Sandmeier, S.; Müller, C.; Hosgood, B.; Andreoli, G. Physical mechanisms in hyperspectral BRDF data of grass and watercress. Remote Sens. Environ. 1998, 66, 222–233. [Google Scholar] [CrossRef]
- Okin, G.S.; Clarke, K.D.; Lewis, M.M. Comparison of methods for estimation of absolute vegetation and soil fractional cover using MODIS normalized BRDF-adjusted reflectance data. Remote Sens. Environ. 2013, 130, 266–279. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 2008, 112, 2341–2353. [Google Scholar] [CrossRef]
- Hall, F.G.; Hilker, T.; Coops, N.C.; Lyapustin, A.; Huemmrich, K.F.; Middleton, E.; Margolis, H.; Drolet, G.; Black, T.A. Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy shadow fraction. Remote Sens. Environ. 2008, 112, 3201–3211. [Google Scholar] [CrossRef]
- Galvão, L.S.; Roberts, D.A.; Formaggio, A.R.; Numata, I.; Breunig, F.M. View angle effects on the discrimination of soybean varieties and on the relationships between vegetation indices and yield using off-nadir Hyperion data. Remote Sens. Environ. 2009, 113, 846–856. [Google Scholar] [CrossRef]
- Stuckens, J.; Somers, B.; Albrigo, G.L.; Dzikiti, S.; Verstraeten, W.W. Off-nadir Viewing for Reducing Spectral Mixture Issues in Citrus Orchards. Photogramm. Eng. Remote Sens. 2010, 76, 1261–1274. [Google Scholar] [CrossRef]
- Van Beek, J.; Tits, L.; Somers, B.; Deckers, T.; Janssens, P.; Coppin, P. Reducing background effects in orchards through spectral vegetation index correction. Int. J. Appl. Earth Obs. Geoinf. 2014, 34, 167–177. [Google Scholar] [CrossRef]
- Tits, L.; Somers, B.; Saeys, W.; Coppin, P. Site-Specific Plant Condition Monitoring through Hyperspectral Alternating Least Squares Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3606–3618. [Google Scholar] [CrossRef]
- Tits, L.; De Keersmaecker, W.; Somers, B.; Asner, G.P.; Farifteh, J.; Coppin, P. Hyperspectral shape-based unmixing to improve intra- and interclass variability for forest and agro-ecosystem monitoring. ISPRS J. Photogramm. Remote Sens. 2012, 74, 163–174. [Google Scholar] [CrossRef]
- Tits, L.; Somers, B.; Stuckens, J.; Farifteh, J.; Coppin, P. Integration of in situ measured soil status and remotely sensed hyperspectral data to improve plant production system monitoring: Concept, perspectives and limitations. Remote Sens. Environ. 2013, 128, 197–211. [Google Scholar] [CrossRef]
- Stuckens, J.; Somers, B.; Delalieux, S.; Verstraeten, W.W.; Coppin, P. The impact of common assumptions on canopy radiative transfer simulations: A case study in Citrus orchards. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 1–21. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. Prospect: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Pharr, M.; Humphreys, G. Physically Based Rendering, From Theory to Implementation; Morgan Kaufmann: San Fransisco, CA, USA, 2004; p. 1019. [Google Scholar]
- Widlowski, J.-L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.-P.; Gobron, N.; Kuusk, A.; Lavergne, T.; et al. Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models. J. Geophys. Res. 2007, 112, D09111. [Google Scholar] [CrossRef]
- Widlowski, J.-L.; Mio, C.; Disney, M.; Adams, J.; Andredakis, I.; Atzberger, C.; Brennan, J.; Busetto, L.; Chelle, M.; Ceccherini, G.; et al. The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing. Remote Sens. Environ. 2015, 169, 418–437. [Google Scholar] [CrossRef]
- Somers, B.; Delalieux, S.; Verstraeten, W.W.; Coppin, P. A Conceptual Framework for the Simultaneous Extraction of Sub-pixel Spatial Extent and Spectral Characteristics of Crops. Photogramm. Eng. Remote Sens. 2009, 75, 57–68. [Google Scholar] [CrossRef]
- FAO. Soils Map of the World: Revised Legend; Food and Agriculture Organization of the United Nations: Rome, Italy, 1988. [Google Scholar]
- Somers, B.; Gysels, V.; Verstraeten, W.W.; Delalieux, S.; Coppin, P. Modelling moisture-induced soil reflectance changes in cultivated sandy soils: a case study in citrus orchards. Eur. J. Soil Sci. 2010, 61, 1091–1105. [Google Scholar] [CrossRef]
- Hosgood, B.; Jacquemoud, S.; Andreoli, G.; Verdebout, J.; Pedrini, A.; Schmuck, G. Leaf Optical Properties EXperiment 93 (LOPEX93); Report EUR 16095 EN; European Commission—Joint Research Centre: Ispra, Italy, 1994. [Google Scholar]
- Sansavini, S.; Musacchi, S. Canopy architecture, training and pruning in the modern European pear orchards: An overview. Acta Hortic. 1994, 367, 152–172. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Janssens, P.; Deckers, T.; Elsen, F.; Elsen, A.; Schoofs, H.; Verjans, W.; Vandendriessche, H. Sensitivity of root pruned “Conference” pear to water deficit in a temperate climate. Agric. Water Manag. 2011, 99, 58–66. [Google Scholar] [CrossRef]
- Updike, T.; Comp, C. Radiometric Use of WorldView-2 Imagery Technical Note; DigitalGlobe: Westminster, CO, USA, 2010; p. 16. [Google Scholar]
- Adler-Golden, S.M.; Berk, A.; Bernstein, L.S.; Richtsmeier, S.; Acharya, P.K.; Matthew, M.W.; Anderson, G.P.; Allred, C.L.; Jeong, L.S.; Chetwynd, J.H. FLAASH, A MODTRAN4 Atmospheric correction package for Hyperspectral Data retrievals and simulations. In Proceedings of the Summaries of the Seventh JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 12–16 January 1998; p. 442.
- Grodecki, J.; Dial, G. Block Adjustment of High-Resolution Satellite Images Described by Rational Polynomials. Photogramm. Eng. Remote Sens. 2003, 69, 59–68. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation; NASA Technical Report 1974; NASA: College Station, TX, USA; p. 371.
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 107, 95–107. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; Brown de Colstoun, E.; McMurtrey, J.E., III. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Noland, T.L.; Mohammed, G.H.; Sampson, P.H. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1491–1507. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I.; Lloret, P.; Munoz, F.; Vilajeliu, M. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 1995, 16, 2727–2733. [Google Scholar] [CrossRef]
- Penuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance Indices Associated with Physiological Changes in Nitrogen- and Water-Limited Sunflower Leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Carter, G.A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int. J. Remote Sens. 1994, 15, 697–703. [Google Scholar] [CrossRef]
- Carter, G.A.; Cibula, W.G.; Dell, T.R. Spectral reflectance characteristics and digital imagery of a pine needle blight in the southeastern United States. Can. J. For. Res. 1996, 26, 402–407. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Hunt, E.R.; Rock, B.N. Detection of changes in leaf water of, content using near- and middle-infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar]
- Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.-M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Nagler, P.L.; Daughtry, C.S.T.; Goward, S.N. Plant litter and soil reflectance. Remote Sens. Environ. 2000, 71, 207–215. [Google Scholar] [CrossRef]
- Gao, B. NDWI A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Hunt, E.R.; Jackson, T.J. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sens. Environ. 2008, 112, 2514–2522. [Google Scholar] [CrossRef]
- Rodríguez-pérez, J.R.; Riaño, D.; Carlisle, E.; Ustin, S.; Smart, D.R. Evaluation of Hyperspectral Reflectance Indexes to Detect Grapevine Water Status in Vineyards. Am. J. Enol. Vitic. 2007, 58, 302–317. [Google Scholar]
- Laurikkala, J.; Juhola, M.; Kentala, E. Informal Identification of Outliers in Medical Data. In Fifth International Workshop on Intelligent Data Analysis in Medicine and Pharmacology IDAMAP-2000 Berlin, 22 August, Proceedings of the Organized as a workshop of the 14th European Conference on Artificial Intelligence ECAI-2000, Berlin, Germany, 20–25 August 2000.
- Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent No. 6,011,875, 4 January 2000. [Google Scholar]
- Tou, J.T.; Gonzalez, R.C. Pattern Recognition Principles; Addison-Wesley Publishing Company: Reading, MA, USA, 1974; p. 377. [Google Scholar]
- Hamada, Y.; Stow, D.A.; Roberts, D.A. Estimating life-form cover fractions in California sage scrub communities using multispectral remote sensing. Remote Sens. Environ. 2011, 115, 3056–3068. [Google Scholar] [CrossRef]
- López-Lozano, R.; Baret, F.; García de Cortázar-Atauri, I.; Bertrand, N.; Casterad, M.A. Optimal geometric configuration and algorithms for LAI indirect estimates under row canopies: The case of vineyards. Agric. For. Meteorol. 2009, 149, 1307–1316. [Google Scholar] [CrossRef]
- Demarez, V.; Duthoit, S.; Baret, F.; Weiss, M.; Dedieu, G. Estimation of leaf area and clumping indexes of crops with hemispherical photographs. Agric. For. Meteorol. 2008, 148, 644–655. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Barton, C.V.M.; North, P.R.J. Remote sensing of canopy light use efficiency using the photochemical reflectance index: Model and sensitivity analysis. Remote Sens. Environ. 2001, 78, 264–273. [Google Scholar] [CrossRef]
- Seaquist, J.W.; Olsson, L. A simple method to account for off-nadir-scattering in the NOAA/NASA Pathfinder AVHRR Land Data Set. Int. J. Remote Sens. 1998, 19, 1425–1431. [Google Scholar] [CrossRef]
- Goodin, D.G.; Gao, J.; Henebry, G.M. The Effect of Solar Illumination Angle and Sensor View Angle on Observed Patterns of Spatial Structure in Tallgrass Prairie. IEEE Trans. Geosci. Remote Sens. 2004, 42, 154–165. [Google Scholar] [CrossRef]
- Van Beek, J.; Tits, L.; Somers, B.; Deckers, T.; Verjans, W.; Bylemans, D.; Janssens, P.; Coppin, P. Temporal Dependency of Yield and Quality Estimation through Spectral Vegetation Indices in Pear Orchards. Remote Sens. 2015, 7, 9886–9903. [Google Scholar] [CrossRef]
- Suárez, L.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; Pérez-Priego, O.; Miller, J.R.; Jiménez-Muñoz, J.C.; Sobrino, J. Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sens. Environ. 2008, 112, 560–575. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R. Minimization of shadow effects in forest canopies for chlorophyll content estimation using red edge optical indices through radiative transfer: implications for MERIS. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, 2001. (IGARSS ’01), Sydney, NSW, Australia, 9–13 July 2001; Volume 2, pp. 736–738.
Location | Year | Day Of Year (DOY) | Off-Nadir Viewing Angle (°) | Satellite Azimuth (°) | Satellite Elevation (°) |
---|---|---|---|---|---|
Irrigated Orchard | 2011 | 214 | 10.8 | 45.9 | 78 |
2012 | 148 | 2.7 | 181.1 | 86.7 | |
232 | 18.9 | 209.8 | 68.6 | ||
2013 | 189 | 26.1 | 14.7 | 60.7 | |
214 | 25.6 | 107.9 | 61 | ||
Rainfed Orchard | 2011 | 196 | 43.3 | 116.1 | 39.7 |
214 | 4.8 | 68.6 | 84.7 | ||
2012 | 148 | 15 | 199.8 | 72.9 | |
232 | 23.7 | 211.1 | 62.9 | ||
2013 | 187 | 28 | 99.1 | 58.2 | |
214 | 27.4 | 133.5 | 58.7 |
Index | Formulation | Reference | WorldView-2 Band Combination |
---|---|---|---|
Chlorophyll content related indices | |||
NDVI (Normalized Difference Vegetation Index) | (RNIR − RRed)/(RNIR + RRed) | [47] | (RNIR1 − RRed)/(RNIR1 + RRed) |
OSAVI (Optimization SAVI ª) | (1 + 0.16) * (R800 − R670)/(R800 − R670 + 0.16) | [48] | (1 + 0.16) * (RNIR1 − RRed)/(RNIR1 − RRed + 0.16) |
MCARI (Modified CARI b) | [(R700 − R670) − 0.2 * (R700 − R550) ]* (R700/R670) | [49] | [(RRed-edge − RRed) − 0.2 * (RRed-edge − RGreen) ]* (RRed-edge/RRed) |
TCARI (Transformed CARI b) | 3 * (R700 − R670) − 0.2 * (R700 − R550) * (R700/R670) | [50] | 3 * (RRed-edge − RRed) − 0.2 * (RRed-edge − RGreen) * (RRed-edge/RRed) |
ZM (Zarco and Miller) | R750/R710 | [51] | - |
SRPI (Simple Ratio Pigment Index) | R430/R680 | [52] | RCoastal/RRed |
PRI (Photochemical Reflectance Index) | (R531 − R570)/(R531 + R570) | [8] | (RGreen − RBlue)/(RGreen + RBlue) |
NPCI (Normalized Pigment Chlorophyll Index) | (R680 − R430)/(R680 + R430) | [53] | (RRed − RCoastal)/(RRed + RCoastal) |
CTR1 (Carter Index) | R695/R420 | [54] | (RRed-edge + RRed)/(2*RCoastal) |
CTR2 (Carter Index) | R695/R760 | [55] | (RRed-edge + RRed)/(2*RNIR1) |
SIPI (Structure Insensitive Pigment Index) | (R800 − R450)/(R800 + R650) | [52] | (RNIR1 − RCoastal)/(RNIR1 + RRed) |
GM (Gitelson and Merzlyak Index) | R750/R550 | [56] | RRed-edge/RGreen |
Water content related indices | |||
WI (Water Index) | R900/R970 | [9] | RNIR1/RNIR2 |
MSI (Moisture Stress Index) | R1600/R820 | [57,58] | - |
CAI (Cellulose Absorption Index) | 0.5 * (R2000 + R2200) − R2100 | [59] | - |
NDWI (Normalized Difference Water Index) | (R850 − R1240)/(R850 + R1240) | [60] | - |
LAI related indices | |||
RDVI (Renormalized Difference Vegetation Index) | (R800 − R670)/√(R800 + R670) | [61] | (RNIR1 − RRed)/√(RNIR1 + RRed) |
TVI (Triangular Vegetation Index) | 0.5 * [ 120 * (R750 − R550) − 200* (R670 − R550)] | [62] | 0.5 * [ 120 * (RRed − RGreen) − 200* (RRed − RGreen)] |
NDII (Normalized Difference Infrared Index) | (R850 − R1650)/(R850 + R1650) | [63] | - |
sLAIDI (standardized LAI Determining Index) | 5 * [(R1050 − R1250)/(R1050 + R1250)] | [5] | - |
Location | Chlorophyll Content (µg/cm²) | Water Content (mg/cm²) | LAI |
---|---|---|---|
Irrigated Orchard | 82.9 (±14.1) | 19.1 (±2.0) | 2.5 (±0.6) |
Rainfed Orchard | 81.3 (±10.8) | 17.8 (±3.2) | 1.5 (±0.5) |
Index | Reference R2 Range | S1 R2 Range | S2 R2 Range | S3 R2 Range | S4 R2 Range |
---|---|---|---|---|---|
Chlorophyll content related indices | |||||
NDVI | 0.67 *–0.77 * | 0.03 *–0.20 * | 0.26 *–0.39 * | 0.06 *–0.21 * | 0.30 *–0.43 * |
OSAVI | 0.31 *–0.61 * | 0.01 *–0.06 * | 0.01 *–0.11 * | 0.01 *–0.05 * | 0.02 *–0.12 * |
MCARI | 0.77 *–0.95 * | 0.42 *–0.53 * | 0.09 *–0.46 * | 0.09 *–0.33 * | 0.11 *–0.49 * |
TCARI | 0.93 *–0.97 * | 0.40 *–0.65 * | 0.25 *–0.67 * | 0.29 *–0.55 * | 0.29 *–0.65 * |
ZM | 0.78 *–0.90 * | 0.31 *–0.50 * | 0.37 *–0.57 * | 0.31 *–0.50 * | 0.43 *–0.59 * |
SRPI | 0.81 *–0.94 * | 0.41 *–0.57 * | 0.59 *–0.67 * | 0.45 *–0.61 * | 0.59 *–0.70 * |
PRI | 0.68 *–0.71 * | 0.56 *–0.62 * | 0.52 *–0.60 * | 0.34 *–0.58 * | 0.55 *–0.65 * |
NPCI | 0.83 *–0.93 * | 0.40 *–0.57 * | 0.57 *–0.67 * | 0.44 *–0.61 * | 0.58 *–0.69 * |
CTR1 | 0.87 *–0.91 * | 0.42 *–0.58 * | 0.40 *–0.63 * | 0.22 *–0.48 * | 0.40 *–0.66 * |
CTR2 | 0.80 *–0.89 * | 0.19 *–0.42 * | 0.39 *–0.58 * | 0.18 *–0.39 * | 0.45 *–0.61 * |
SIPI | 0.69 *–0.81 * | 0.04 *–0.22 * | 0.24 *–0.43 * | 0.07 *–0.21 * | 0.28 *–0.48 * |
GM | 0.79 *–0.90 * | 0.31 *–0.51 * | 0.40 *–0.61 * | 0.30 *–0.50 * | 0.44 *–0.61 * |
Water content related indices | |||||
WI | 0.22 *–0.41 * | 0.07 *–0.21 * | 0.10 *–0.20 * | 0.07 *–0.16 * | 0.08 *–0.21 * |
MSI | 0.18 *–0.45 * | 0.02 *–0.12 * | 0.04 *–0.17 * | 0.01 *–0.08 * | 0.04 *–0.17 * |
CAI | 0.50 *–0.84 * | 0.01 *–0.13 * | 0.02 *–0.25 * | 0.00–0.12 * | 0.02 *–0.21 * |
NDWI | 0.24 *–0.45 * | 0.05 *–0.15 * | 0.08 *–0.18 * | 0.03 *–0.08 * | 0.08 *–0.20 * |
LAI related indices | |||||
RDVI | 0.26 *–0.55 * | 0.01 *–0.10 * | 0.00–0.13 * | 0.01 *–0.08 * | 0.00–0.15 * |
TVI | 0.23 *–0.71 * | 0.00–0.01 * | 0.00–0.06 * | 0.00–0.01 * | 0.00–0.02 * |
NDII | 0.30 *–0.53 * | 0.07 *–0.29 * | 0.09 *–0.26 * | 0.05 *–0.22 * | 0.09 *–0.26 * |
SLAIDI | 0.53 *–0.75 * | 0.04 *–0.21 * | 0.00 *–0.21 * | 0.03 *–0.17 * | 0.02 *–0.20 * |
Index | R2 Values both Orchards (n = 232) | R2 Values Irrigated Orchard (n = 144) | R2 Values Rainfed Orchard (n = 88) | Index | R2 Values both Orchards (n = 232) | R2 Values Irrigated Orchard (n = 144) | R2 Values Rainfed Orchard (n = 88) |
---|---|---|---|---|---|---|---|
Chlorophyll content related indices | Water content related indices | ||||||
NDVI | 0.03 | 0.00 | 0.59 * | WI | 0.00 | 0.01 | 0.16 * |
OSAVI | 0.01 | 0.06 * | 0.64 * | MSI | - | - | - |
MCARI | 0.03 | 0.12 * | 0.48 * | CAI | - | - | - |
TCARI | 0.01 | 0.00 | 0.02 | NDWI | - | - | - |
ZM | - | - | - | ||||
SRPI | 0.14 * | 0.04 | 0.30 * | LAI related indices | |||
PRI | 0.25 * | 0.06 * | 0.16 * | RDVI | 0.00 | 0.00 | 0.01 |
NPCI | 0.18 * | 0.03 | 0.40 * | TVI | 0.01 | 0.01 | 0.02 |
CTR1 | 0.37 * | 0.01 | 0.27 * | NDII | - | - | - |
CTR2 | 0.12 * | 0.04 * | 0.58 * | SLAIDI | - | - | - |
SIPI | 0.02 | 0.02 | 0.38 * | ||||
GM | 0.05 * | 0.02 | 0.43 * |
Index | R2 Values both Orchards (n = 160) | R2 Values Irrigated Orchard (n = 112) | R2 Values Rainfed Orchard (n = 48) | Index | R2 Values both Orchards (n = 160) | R2 Values Irrigated Orchard (n = 112) | R2 Values Rainfed Orchard (n = 48) |
---|---|---|---|---|---|---|---|
Chlorophyll content related indices | Water content related indices | ||||||
NDVI | 0.01 | 0.01 | 0.01 | WI | 0.07 * | 0.13 * | 0.00 |
OSAVI | 0.04 | 0.07 * | 0.04 | MSI | - | - | - |
MCARI | 0.14 * | 0.22 * | 0.00 | CAI | - | - | - |
TCARI | 0.06 * | 0.04 | 0.02 | NDWI | - | - | - |
ZM | - | - | - | ||||
SRPI | 0.07 * | 0.09 * | 0.13 | LAI related indices | |||
PRI | 0.24 * | 0.28 * | 0.20 | RDVI | 0.02 | 0.05 | 0.00 |
NPCI | 0.09 * | 0.11 * | 0.14 | TVI | 0.00 | 0.17 * | 0.01 |
CTR1 | 0.37 * | 0.42 * | 0.29 * | NDII | - | - | - |
CTR2 | 0.02 | 0.06* | 0.01 | SLAIDI | - | - | - |
SIPI | 0.16* | 0.24* | 0.21 | ||||
GM | 0.20* | 0.23* | 0.07 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Beek, J.; Tits, L.; Somers, B.; Deckers, T.; Janssens, P.; Coppin, P. Viewing Geometry Sensitivity of Commonly Used Vegetation Indices towards the Estimation of Biophysical Variables in Orchards. J. Imaging 2016, 2, 15. https://doi.org/10.3390/jimaging2020015
Van Beek J, Tits L, Somers B, Deckers T, Janssens P, Coppin P. Viewing Geometry Sensitivity of Commonly Used Vegetation Indices towards the Estimation of Biophysical Variables in Orchards. Journal of Imaging. 2016; 2(2):15. https://doi.org/10.3390/jimaging2020015
Chicago/Turabian StyleVan Beek, Jonathan, Laurent Tits, Ben Somers, Tom Deckers, Pieter Janssens, and Pol Coppin. 2016. "Viewing Geometry Sensitivity of Commonly Used Vegetation Indices towards the Estimation of Biophysical Variables in Orchards" Journal of Imaging 2, no. 2: 15. https://doi.org/10.3390/jimaging2020015
APA StyleVan Beek, J., Tits, L., Somers, B., Deckers, T., Janssens, P., & Coppin, P. (2016). Viewing Geometry Sensitivity of Commonly Used Vegetation Indices towards the Estimation of Biophysical Variables in Orchards. Journal of Imaging, 2(2), 15. https://doi.org/10.3390/jimaging2020015