Evaluation of AI Performance in Spinal Radiographic Measurements Compared to Radiologists: A Study of Accuracy and Efficiency
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Image Acquisition
2.3. Image Analysis
2.4. Statistical Analysis
3. Results
3.1. Patient Population
3.2. Image Acquisition
3.3. Image Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
MSK | Musculoskeletal |
MR | Magnetic Resonance |
AP | Anteroposterior |
LL | Latero-lateral (Lateral View) |
CCC | Concordance Correlation Coefficient |
MAE | Mean Absolute Error |
IRB | Institutional Review Board |
References
- Zerunian, M.; Pucciarelli, F.; Caruso, D.; De Santis, D.; Polici, M.; Masci, B.; Nacci, I.; Del Gaudio, A.; Argento, G.; Redler, A.; et al. Fast high-quality MRI protocol of the lumbar spine with deep learning-based algorithm: An image quality and scanning time comparison with standard protocol. Skelet. Radiol. 2024, 53, 151–159. [Google Scholar] [CrossRef]
- Almahmoud, O.H.; Baniodeh, B.; Musleh, R.; Asmar, S.; Zyada, M.; Qattousah, H. Overview of adolescent idiopathic scoliosis and associated factors: A scoping review. Int. J. Adolesc. Med. Health 2023, 35, 437–441. [Google Scholar] [CrossRef]
- Kim, Y.-T.; Jeong, T.S.; Kim, Y.J.; Kim, W.S.; Kim, K.G.; Yee, G.T. Automatic Spine Segmentation and Parameter Measurement for Radiological Analysis of Whole-Spine Lateral Radiographs Using Deep Learning and Computer Vision. J. Digit. Imaging 2023, 36, 1447–1459. [Google Scholar] [CrossRef]
- Hussain, D.; Han, S.-M. Computer-aided osteoporosis detection from DXA imaging. Comput. Methods Programs Biomed. 2019, 173, 87–107. [Google Scholar] [CrossRef] [PubMed]
- Harvey, H.B.; Gowda, V. Clinical applications of AI in MSK imaging: A liability perspective. Skelet. Radiol. 2022, 51, 235–238. [Google Scholar] [CrossRef]
- Huber, F.A.; Guggenberger, R. AI MSK clinical applications: Spine imaging. Skelet. Radiol. 2022, 51, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Joseph, G.B.; McCulloch, C.E.; Sohn, J.H.; Pedoia, V.; Majumdar, S.; Link, T.M. AI MSK clinical applications: Cartilage and osteoarthritis. Skelet. Radiol. 2022, 51, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Yi, P.H.; Mutasa, S.; Fritz, J. AI MSK clinical applications: Orthopedic implants. Skelet. Radiol. 2022, 51, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Ruitenbeek, H.C.; Oei, E.H.G.; Visser, J.J.; Kijowski, R. Artificial intelligence in musculoskeletal imaging: Realistic clinical applications in the next decade. Skelet. Radiol. 2024, 53, 1849–1868. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Novak, A.; Hollowday, M.; Morgado, A.T.E.; Oke, J.; Shelmerdine, S.; Woznitza, N.; Metcalfe, D.; Costa, M.L.; Wilson, S.; Kiam, J.S.; et al. Evaluating the impact of artificial intelligence-assisted image analysis on the diagnostic accuracy of front-line clinicians in detecting fractures on plain X-rays (FRACT-AI): Protocol for a prospective observational study. BMJ Open 2024, 14, e086061. [Google Scholar] [CrossRef]
- Does AI Help or Hurt Human Radiologists’ Performance? It Depends on the Doctor|Harvard Medical School. 2024. Available online: https://hms.harvard.edu/news/does-ai-help-or-hurt-human-radiologists-performance-depends-doctor (accessed on 26 June 2025).
- Li, R.; Liu, G.; Zhang, M.; Rong, D.; Su, Z.; Shan, Y.; Lu, J. Integration of artificial intelligence in radiology education: A requirements survey and recommendations from faculty radiologists, residents, and medical students. BMC Med. Educ. 2025, 25, 380. [Google Scholar] [CrossRef]
- Lassalle, L.; Regnard, N.E.; Durteste, M.; Ventre, J.; Marty, V.; Clovis, L.; Zhang, Z.; Nitche, N.; Ducarouge, A.; Laredo, J.-D.; et al. Evaluation of a deep learning software for automated measurements on full-leg standing radiographs. Knee Surg. Relat. Res. 2024, 36, 40. [Google Scholar] [CrossRef]
- Lassalle, L.; Regnard, N.-E.; Ventre, J.; Marty, V.; Clovis, L.; Zhang, Z.; Nitche, N.; Guermazi, A.; Laredo, J.-D. Automated weight-bearing foot measurements using an artificial intelligence–based software. Skelet. Radiol. 2025, 54, 229–241. [Google Scholar] [CrossRef]
- Suri, A.; Tang, S.; Kargilis, D.; Taratuta, E.; Kneeland, B.J.; Choi, G.; Agarwal, A.; Anabaraonye, N.; Xu, W.; Parente, J.B.; et al. Conquering the Cobb Angle: A Deep Learning Algorithm for Automated, Hardware-Invariant Measurement of Cobb Angle on Radiographs in Patients with Scoliosis. Radiol. Artif. Intell. 2023, 5, e220158. [Google Scholar] [CrossRef]
- Li, K.; Gu, H.; Colglazier, R.; Lark, R.; Hubbard, E.; French, R.; Smith, D.; Zhang, J.; McCrum, E.; Catanzano, A.; et al. Deep learning automates Cobb angle measurement compared with multi-expert observers. arXiv 2024, arXiv:2403.12115. [Google Scholar] [CrossRef]
- Boel, F.; de Vos-Jakobs, S.; Riedstra, N.; Lindner, C.; Runhaar, J.; Bierma-Zeinstra, S.; Agricola, R. Automated radiographic hip morphology measurements: An open-access method. Osteoarthr. Imaging 2024, 4, 100181. [Google Scholar] [CrossRef]
- Jensen, J.; Graumann, O.; Overgaard, S.; Gerke, O.; Lundemann, M.; Haubro, M.H.; Varnum, C.; Bak, L.; Rasmussen, J.; Olsen, L.B.; et al. A Deep Learning Algorithm for Radiographic Measurements of the Hip in Adults—A Reliability and Agreement Study. Diagnostics 2022, 12, 2597. [Google Scholar] [CrossRef] [PubMed]
- Harake, E.S.; Linzey, J.R.; Jiang, C.; Joshi, R.S.; Zaki, M.M.; Jones, J.C.; Khalsa, S.S.S.; Lee, J.H.; Wilseck, Z.; Joseph, J.R.; et al. Development and validation of an artificial intelligence model to accurately predict spinopelvic parameters. J. Neurosurg. Spine 2024, 41, 88–96. [Google Scholar] [CrossRef]
- Hoppe, B.F.; Rueckel, J.; Dikhtyar, Y.; Heimer, M.; Fink, N.; Sabel, B.O.; Ricke, J.; Rudolph, J.; Cyran, C.C. Implementing Artificial Intelligence for Emergency Radiology Impacts Physicians’ Knowledge and Perception: A Prospective Pre- and Post-Analysis. Investig. Radiol. 2024, 59, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Korfiatis, P.; Kline, T.L.; Meyer, H.M.; Khalid, S.; Leiner, T.; Loufek, B.T.; Blezek, D.; Vidal, D.E.; Hartman, R.P.; Joppa, L.J.; et al. Implementing Artificial Intelligence Algorithms in the Radiology Workflow: Challenges and Considerations. Mayo Clin. Proc. Digit. Health 2025, 3, 100188. [Google Scholar] [CrossRef] [PubMed]
Cobb Angle (°) | p Value | Pelvic Obliquity (mm) | p Value | Thoracic Kyphosis (°) | p Value | Lumbar Lordosis (°) | p Value | |
---|---|---|---|---|---|---|---|---|
AI vs. Experienced Radiologist | 12.75 ± 11.46 | 0.110 | 2.49 ± 1.08 | 0.572 | 38.42 ± 11.47 | 0.336 | 58.25 ± 11.74 | 0.282 |
AI vs. Radiology Resident | 12.75 ± 11.46 | 0.062 | 2.49 ± 1.08 | 0.336 | 38.42 ± 11.47 | 0.062 | 58.25 ± 11.74 | 0.135 |
Experienced Radiologist vs. Radiology Resident | 12.57 ± 11.27 | 0.356 | 2.53 ± 1.06 | 0.562 | 38.04 ± 11.81 | 0.127 | 57.83 ± 11.40 | 0.265 |
MAE (Resident) | MAE (AI) | CCC (Expert–Trainee) | CCC (Expert–AI) | CCC (Trainee–AI) | |
---|---|---|---|---|---|
COBB ANGLE | 0.632 | 0.577 | 0.996 | 0.997 | 0.994 |
THORACIC KYPHOSIS | 2.375 | 2.464 | 0.904 | 0.913 | 0.989 |
LUMBAR LORDOSIS | 1.902 | 1.395 | 0.909 | 0.984 | 0.898 |
PELVIC OBLIQUITY | 0.296 | 0.475 | 0.994 | 0.988 | 0.988 |
Analysis Time (Seconds) | p-Value | ||
---|---|---|---|
AI vs. Experienced Radiologist | 50.00 ± 0.00 | 147.34 ± 18.78 | p < 0.001 |
AI vs. Radiology Resident | 50.00 ± 0.00 | 231.78 ± 20.15 | p < 0.001 |
Experienced Radiologist vs. Radiology Resident | 147.34 ± 18.78 | 231.78 ± 20.15 | p = 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pucciarelli, F.; Gentiloni Silveri, G.; Zerunian, M.; De Santis, D.; Polici, M.; Del Gaudio, A.; Masci, B.; Polidori, T.; Tremamunno, G.; Persechino, R.; et al. Evaluation of AI Performance in Spinal Radiographic Measurements Compared to Radiologists: A Study of Accuracy and Efficiency. J. Imaging 2025, 11, 310. https://doi.org/10.3390/jimaging11090310
Pucciarelli F, Gentiloni Silveri G, Zerunian M, De Santis D, Polici M, Del Gaudio A, Masci B, Polidori T, Tremamunno G, Persechino R, et al. Evaluation of AI Performance in Spinal Radiographic Measurements Compared to Radiologists: A Study of Accuracy and Efficiency. Journal of Imaging. 2025; 11(9):310. https://doi.org/10.3390/jimaging11090310
Chicago/Turabian StylePucciarelli, Francesco, Guido Gentiloni Silveri, Marta Zerunian, Domenico De Santis, Michela Polici, Antonella Del Gaudio, Benedetta Masci, Tiziano Polidori, Giuseppe Tremamunno, Raffaello Persechino, and et al. 2025. "Evaluation of AI Performance in Spinal Radiographic Measurements Compared to Radiologists: A Study of Accuracy and Efficiency" Journal of Imaging 11, no. 9: 310. https://doi.org/10.3390/jimaging11090310
APA StylePucciarelli, F., Gentiloni Silveri, G., Zerunian, M., De Santis, D., Polici, M., Del Gaudio, A., Masci, B., Polidori, T., Tremamunno, G., Persechino, R., Argento, G., Francone, M., Laghi, A., & Caruso, D. (2025). Evaluation of AI Performance in Spinal Radiographic Measurements Compared to Radiologists: A Study of Accuracy and Efficiency. Journal of Imaging, 11(9), 310. https://doi.org/10.3390/jimaging11090310