Fundus Image-Based Eye Disease Detection Using EfficientNetB3 Architecture
Abstract
1. Introduction
2. Related Works
3. Materials and Methods
3.1. Dataset Description
3.2. Data Preprocessing
3.3. Model Architecture
- The feature maps are flattened while maintaining spatial context using a global average pooling layer.
- A dense, fully linked layer that uses dropout regularization and ReLU activation to lessen overfitting.
- The final classification layer, which generates class probabilities for the four categories of cataract, diabetic retinopathy, glaucoma, and normal, has a softmax activation function.
- −
- For multi-class classification tasks, categorical cross-entropy is an appropriate loss function.
- −
- With an initial learning rate adjusted between 1 × 10−4 and 1 × 10−5, Adam optimizer for adaptive learning is used.
- −
- A cosine annealing learning rate scheduler facilitates smoother convergence during training by progressively lowering the learning rate.
- −
- To improve generalization and lessen overfitting, dropout layers are placed in between dense connections.
4. Results and Discussion
4.1. Implementation Details
4.2. Evaluation Metrics
4.2.1. Accuracy
- -
- TP (True Positive): Correctly classified diseased images.
- -
- TN (True Negative): Correctly classified normal (healthy) images.
- -
- FP (False Positive): Healthy images incorrectly predicted as diseased.
- -
- FN (False Negative): Diseased images incorrectly predicted as healthy.
4.2.2. Precision
4.2.3. Recall (Sensitivity)
4.2.4. Specificity
4.2.5. F1-Score
4.2.6. Matthews Correlation Coefficient (MCC)
4.2.7. Dice Score
4.2.8. Jaccard Index
4.3. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Ting, D.S.W.; Cheung, C.Y.; Lim, G.; Tan, G.S.W.; Quang, N.D.; Gan, A.; Hamzah, H.; Garcia-Franco, R.; Yeo, I.Y.S.; Lee, S.Y.; et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017, 318, 2211–2223. [Google Scholar] [CrossRef]
- Rajalakshmi, R.; Subashini, R.; Anjana, R.M.; Mohan, V. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye 2018, 32, 1138–1144. [Google Scholar] [CrossRef]
- Pratt, H.; Coenen, F.; Broadbent, D.M.; Harding, S.P.; Zheng, Y. Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 2016, 90, 200–205. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning (ICML), Long Beach, CA, USA, 10–15 June 2019; PMLR: Long Beach, CA, USA, 2019; pp. 6105–6114. [Google Scholar]
- Khan, S.; Rahmani, H.; Shah, S.A.A.; Bennamoun, M. A Guide to Convolutional Neural Networks for Computer Vision; Synthesis Lectures on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2018; Volume 8, pp. 1–207. [Google Scholar] [CrossRef]
- Li, Z.; Keel, S.; Liu, C.; He, Y.; Meng, W.; Scheetz, J.; Lee, P.Y.; Shaw, J.; Ting, D.; Wong, T.Y.; et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs. Diabetes Care 2018, 41, 2509–2516. [Google Scholar] [CrossRef]
- Lam, C.; Yu, C.; Huang, L.; Rubin, D. Retinal lesion detection with deep learning using image patches. Investig. Ophthalmol. Vis. Sci. 2018, 59, 590–596. [Google Scholar] [CrossRef]
- Sahlsten, J.; Jaskari, J.; Kivinen, J.; Turunen, L.; Jaanio, E.; Hietala, K.; Kaski, K. Deep learning fundus image analysis for diabetic retinopathy and macular edema grading. Sci. Rep. 2019, 9, 10750. [Google Scholar] [CrossRef]
- Fu, H.; Cheng, J.; Xu, Y.; Zhang, C.; Wong, D.W.K.; Liu, J.; Cao, X. Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans. Med. Imaging 2018, 37, 2493–2501. [Google Scholar] [CrossRef]
- Saha, S.K.; Fernando, B.; Cuadros, J.; Tang, S.J. Efficient deep learning model for COVID-19 detection using retinal OCT images. Comput. Biol. Med. 2020, 124, 103962. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE: Venice, Italy, 2017. [Google Scholar]
- Sharma, A.; Kumar, V. Fundus image-based diabetic retinopathy detection using EfficientNetB3 and SE block. Biomed. Signal Process. Control 2025, 84, 105348. [Google Scholar] [CrossRef]
- Patel, R.; Singh, M. Modified EfficientNetB3 deep learning model to classify colour fundus images of eye diseases. J. Comput. Vis. Intell. Syst. 2024, 6, 44–56. [Google Scholar]
- Rahman, M.; Alam, T. Identification of ocular disease from fundus images using CNN with EfficientNetB3. Int. J. Electr. Electron. Comput. Syst. 2024, 28, 302–310. [Google Scholar]
- Deshmukh, A.; Joshi, S. Diabetic retinopathy detection using pre-trained EfficientNetB3 model. Int. J. Eng. Res. Technol. 2023, 12, 980–984. [Google Scholar]
- Obasi, C.; Nwachukwu, E. EfficientNet-based model for automated classification of retinal diseases using fundus images. Eur. J. Comput. Sci. Inf. Technol. 2024, 12, 22–35. [Google Scholar]
- Iqbal, M.; Rajesh, M. Diabetic retinopathy multistage classification using EfficientNetB3. In Smart and Intelligent Systems; Springer: Singapore, 2024; pp. 475–489. [Google Scholar] [CrossRef]
- Kumar, A.; Rani, A. Transfer learning for automated classification of eye disease in fundus images from pretrained model. Trait. Du Signal 2024, 41, 957–964. [Google Scholar] [CrossRef]
- Divya, S.; Thompson, S. Advanced deep learning algorithms for early ocular disease detection using fundus images. In Deep Learning in Biomedical Engineering; CRC Press: Boca Raton, FL, USA, 2023; pp. 37–56. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003369059-4 (accessed on 1 March 2025).
- Tashkandi, A. Eye care: Predicting eye diseases using deep learning based on retinal images. Computation 2025, 13, 91. [Google Scholar] [CrossRef]
- Khalid, M.; Sajid, M.Z.; Youssef, A.; Khan, N.A.; Hamid, M.F.; Abbas, F. CAD-EYE: An automated system for multi-eye disease classification using feature fusion with deep learning models and fluorescence imaging for enhanced interpretability. Diagnostics 2024, 14, 2679. [Google Scholar] [CrossRef]
- Wahab Sait, A.R. Artificial intelligence-driven eye disease classification model. Appl. Sci. 2023, 13, 11437. [Google Scholar] [CrossRef]
- Acevedo, E.; Orantes, D.; Acevedo, M.; Carreño, R. Identification of eye diseases through deep learning. Diagnostics 2025, 15, 916. [Google Scholar] [CrossRef]
- Shamsan, A.; Senan, E.M.; Shatnawi, H.S.A. Automatic classification of colour fundus images for prediction eye disease types based on hybrid features. Diagnostics 2023, 13, 1706. [Google Scholar] [CrossRef]
- Du, K.; Nair, A.R.; Shah, S.; Gadari, A.; Vupparaboina, S.C.; Bollepalli, S.C.; Sutharahan, S.; Sahel, J.-A.; Jana, S.; Chhablani, J.; et al. Detection of disease features on retinal OCT scans using RETFound. Bioengineering 2024, 11, 1186. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Mukundan, A.; Liu, Y.S.; Tsao, Y.M.; Lin, F.C.; Fan, W.S.; Wang, H.C. Optical identification of diabetic retinopathy using hyperspectral imaging. J. Pers. Med. 2023, 13, 939. [Google Scholar] [CrossRef]
Reference | Dataset | Methodology | Accuracy/Metrics |
---|---|---|---|
[1] | EyePACS | CNN with dropout and data normalization | ~85% Accuracy |
[2] | APTOS | VGG16 + Transfer Learning | 90.3% Accuracy |
[3] | Messidor | ResNet50 with global average pooling | 92.1% Accuracy |
[4] | Private Fundus Images | DenseNet121 + Attention Gate | 94.5% Accuracy |
[5] | Kaggle(Eye Disease) | InceptionV3 + Fine-tuning | 93.6% Accuracy |
[6] | Kaggle (EyePACS + APTOS) | Hybrid CNN with handcrafted feature fusion + ensemble | 95.7% Accuracy |
[7] | Kaggle(Eye Disease Classification) | EfficientNetB0 + Voting Ensemble | 94.8% Accuracy |
[8] | Kaggle + Messidor | Vision Transformer (ViT) + Transfer Learning | 96.02% Accuracy, F1-score: 0.93 |
[9] | EyePACS | Swin Transformer + Pretrained Weights | 95.9% Accuracy |
[10] | Kaggle(Eye Disease Classification) | MobileNetV2 + Data Augmentation + LR scheduling | 93.5% Accuracy |
[11] | Kaggle + EyePACS | Ensemble (ResNet + EfficientNet + DenseNet) | 96.3% Accuracy, MCC: 0.91 |
[12] | Kaggle(Eye Disease Classification) | EfficientNetB3 + Augmentation + Cosine LR Scheduler (your model) | 95.12% Accuracy, High Precision, MCC: ~0.925 |
Parameter | Description |
---|---|
Number of images | 4217 images across 4 disease classes |
Classes | Cataract, Diabetic Retinopathy, Glaucoma, Normal |
Image format | RGB fundus photographs |
Image size | 224 × 224 pixels |
Color channels | 3 (Red, Green, Blue) |
Class balancing | Manually checked and confirmed with histograms and pie charts |
Label format | Integer-encoded class labels |
Dataset Split | 70% training, 20% validation, 10% testing |
Shuffling | Enabled for training to ensure randomness |
Normalization | Pixel values scaled to [0, 1] |
Data generator | TensorFlow’s image_dataset_from_directory and Keras ImageDataGenerator |
Augmentation Methods | Rotation, Zoom, Brightness Shift, Horizontal Flip |
Basic Configuration | Value |
---|---|
TensorFlow Version | 2.14.0 |
Python Version | 3.1 |
GPU | NVIDIA RTX 3060 (12 GB) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsohemi, R.; Dardouri, S. Fundus Image-Based Eye Disease Detection Using EfficientNetB3 Architecture. J. Imaging 2025, 11, 279. https://doi.org/10.3390/jimaging11080279
Alsohemi R, Dardouri S. Fundus Image-Based Eye Disease Detection Using EfficientNetB3 Architecture. Journal of Imaging. 2025; 11(8):279. https://doi.org/10.3390/jimaging11080279
Chicago/Turabian StyleAlsohemi, Rahaf, and Samia Dardouri. 2025. "Fundus Image-Based Eye Disease Detection Using EfficientNetB3 Architecture" Journal of Imaging 11, no. 8: 279. https://doi.org/10.3390/jimaging11080279
APA StyleAlsohemi, R., & Dardouri, S. (2025). Fundus Image-Based Eye Disease Detection Using EfficientNetB3 Architecture. Journal of Imaging, 11(8), 279. https://doi.org/10.3390/jimaging11080279