Dual-Model Synergy for Fingerprint Spoof Detection Using VGG16 and ResNet50
Abstract
:1. Introduction
- Novel Dual-Model Framework: We propose the dual-model framework in fingerprint presentation attack detection (PAD) that combines VGG16 and ResNet50 architectures. This innovative approach employs the complementary strengths of both models (VGG16’s high-resolution feature extraction and ResNet50’s deep feature learning) to achieve superior generalization across diverse spoofing materials and sensor types. This contribution is significant because it is simple but yet addresses the limitations of single-model approaches that often struggle with variability in spoofing materials and sensor conditions.
- Enhanced Feature Representation: By concatenating features from VGG16 and ResNet50, our framework creates a more robust and comprehensive representation of fingerprint data. This fusion enables the model to capture both fine-grained details (via VGG16) and high-level abstract features (via ResNet50), leading to improved discrimination between live and spoofed fingerprints. This represents a clear advancement over existing methods that rely on single-model feature extraction, as demonstrated by our state-of-the-art results on the LivDet2013 and LivDet2015 datasets.
- State-of-the-Art Performance: Our framework achieves 99.72% accuracy on LivDet2013 and 96.32% accuracy on LivDet2015, outperforming several existing methods, including Gram model, Pretrained CNN, and CNN. Moreover, our devised framework achieves consistently low error rates, with a BPCER of 0.28% on LivDet2013 and 1.45% on LivDet2015, and an APCER of 0.35% on LivDet2013 and 3.68% on LivDet2015. These results demonstrate the practical effectiveness of our approach and its potential for real-world deployment in biometric security systems.
- Robustness to Unseen Spoof Materials: While our framework shows strong performance across known spoofing materials, we also identify areas for improvement, particularly in handling unseen spoof materials (e.g., higher APCER in the Crossmatch subset of LivDet2015). The analysis provides valuable insights for future research in improving generalization to unknown attack scenarios. This contribution highlights both the strengths and limitations of our approach, offering a clear direction for further optimization.
2. Proposed Dual-Stream Fingerprint Presentation Detection Framework
2.1. Data Preprocessing
2.2. Feature Extraction
2.3. Feature Concatenation
- These networks capture complementary features (ResNet50 excels at abstract, high-level features, while VGG16 specializes in simpler, low-level features).
- We want to preserve the distinct information each network provides, rather than blending it together through addition.
- Concatenation results in a larger and more diverse feature space, which can help the final classifier make more informed decisions.
2.4. Model Building
Algorithm 1: Fingerprint Liveness Detection Using Dual Pre-Trained Models |
1: Procedure |
2: Input |
- X_train, Y_train: Training dataset and labels. - VGG16(·): Pre-trained VGG16 model for high-resolution feature extraction. - ResNet50(·): Pre-trained ResNet50 model for deep feature extraction. - F(·): Fully connected layers combining features for classification. - Optimizer: Adam optimizer with a learning rate of 0.001. - Loss: Binary Crossentropy loss function. |
3: Output |
- Trained dual-stream model for fingerprint liveness detection. |
4: Begin |
5: Feature Extraction |
- Extract features from training images: |
- FVGG = VGG16(Xtrain)F_{VGG} = VGG16(X_{train})FVGG = VGG16(Xtrain). |
- FResNet = ResNet50(Xtrain)F_{ResNet} = ResNet50(X_{train})FResNet = ResNet50(Xtrain). |
6: Features Fusion |
- Concatenate the features: |
- Fcombined = [FVGG,FResNet]F_{combined} = [F_{VGG}, F_{ResNet}]Fcombined = [FVGG,FResNet]. |
7: Model Architecture |
- Define fully connected layers: |
- Layer 1: Dense layer with 256 neurons and ReLU activation. |
- Layer 2: Dense layer with 128 neurons and ReLU activation. |
- Layer 3: Dense output layer with 1 neuron and Sigmoid activation. |
8: Compilation |
- Compile the model using Adam optimizer and Binary Crossentropy loss. |
9: Training |
- Train the model using FcombinedF_{combined}Fcombined and YtrainY_{train}Ytrain: |
- Batch size: 32 |
- Epochs: 50 |
- Validation split: 10% |
10: Evaluation |
- Evaluate on test dataset for performance metrics (accuracy, precision, recall, F1-score). |
11: End Procedure |
3. Experimental Setup
3.1. Database
3.2. Performance Metrics
4. Experimental Results and Comparative Evaluation
4.1. Experimental Results and Comparative Evaluation on LiveDet 2013 Database
4.2. Experimental Results and Comparative Evaluation on LiveDet 2015 Database
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grosz, S.A.; Jain, A.K. AFR-Net: Attention-Driven Fingerprint Recognition Network. IEEE Trans. Biom. Behav. Identity Sci. 2024, 6, 30–42. [Google Scholar] [CrossRef]
- Kohila, N.; Ramprabha, T. Gaussian Proximal Hough Transformative Regularized Incremental Extreme Learning Machines for Palmprint Detection. Int. J. Data Inform. Intell. Comput. 2024, 3, 23–35. [Google Scholar]
- Grosz, S.A.; Jain, A.K. SpoofGAN: Synthetic Fingerprint Spoof Images. IEEE Trans. Inform. Forensic Secur. 2023, 18, 730–743. [Google Scholar] [CrossRef]
- Grosz, S.A.; Wijewardena, K.P.; Jain, A.K. ViT Unified: Joint Fingerprint Recognition and Presentation Attack Detection. In Proceedings of the 2023 IEEE International Joint Conference on Biometrics (IJCB), Ljubljana, Slovenia, 25–28 September 2023; pp. 1–9. [Google Scholar] [CrossRef]
- Chugh, T.; Jain, A.K. Fingerprint Spoof Detector Generalization. IEEE Trans. Inform. Forensic Secur. 2021, 16, 42–55. [Google Scholar] [CrossRef]
- Ghiani, L.; Yambay, D.A.; Mura, V.; Marcialis, G.L.; Roli, F.; Schuckers, S.A. Review of the Fingerprint Liveness Detection (LivDet) Competition Series: 2009 to 2015. Image Vis. Comput. 2017, 58, 110–128. [Google Scholar] [CrossRef]
- Nogueira, R.F.; De Alencar Lotufo, R.; Campos Machado, R. Fingerprint Liveness Detection Using Convolutional Neural Networks. IEEE Trans. Inform. Forensic Secur. 2016, 11, 1206–1213. [Google Scholar] [CrossRef]
- Park, E.; Cui, X.; Kim, W.; Liu, J.; Kim, H. Patch-Based Fake Fingerprint Detection Using a Fully Convolutional Neural Network with a Small Number of Parameters and an Optimal Threshold. arXiv 2018, arXiv:1803.07817. [Google Scholar]
- Park, E.; Kim, W.; Li, Q.; Kim, J.; Kim, H. Fingerprint Liveness Detection Using CNN Features of Random Sample Patches. In Proceedings of the 2016 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 21–23 September 2016; pp. 1–4. [Google Scholar]
- Jang, H.-U.; Choi, H.-Y.; Kim, D.; Son, J.; Lee, H.-K. Fingerprint Spoof Detection Using Contrast Enhancement and Convolutional Neural Networks. In Information Science and Applications 2017; Kim, K., Joukov, N., Eds.; Lecture Notes in Electrical Engineering; Springer: Singapore, 2017; Volume 424, pp. 331–338. ISBN 978-981-10-4153-2. [Google Scholar]
- Rai, A.; Anshul, A.; Jha, A.; Jain, P.; Sharma, R.P.; Dey, S. An Open Patch Generator Based Fingerprint Presentation Attack Detection Using Generative Adversarial Network. Multimed. Tools Appl. 2023, 83, 27723–27746. [Google Scholar] [CrossRef]
- Rai, A.; Tiwari, P.K.; Baishya, J.; Sharma, R.P.; Dey, S. DyFFPAD: Dynamic Fusion of Convolutional and Handcrafted Features for Fingerprint Presentation Attack Detection. arXiv 2023, arXiv:2308.10015. [Google Scholar]
- Yuan, C.; Xu, Z.; Li, X.; Zhou, Z.; Huang, J.; Guo, P. An Interpretable Siamese Attention Res-CNN for Fingerprint Spoofing Detection. IET Biom. 2024, 2024, 6630173. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Zhang, E. Striver: An Image Descriptor for Fingerprint Liveness Detection. SIViP 2024, 18, 8229–8239. [Google Scholar] [CrossRef]
- Li, Z.; Li, B. Fingerprint Liveness Detection Based on Contourlet, Various Entropy Algorithms and Multiobjective Genetic Algorithm-Based Ensemble Classifier. Smart Sci. 2024, 1–12. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, S.; Liu, E.; Zhao, H. LFLDNet: Lightweight Fingerprint Liveness Detection Based on ResNet and Transformer. Sensors 2023, 23, 6854. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Ghiani, L.; Yambay, D.; Mura, V.; Tocco, S.; Marcialis, G.L.; Roli, F.; Schuckcrs, S. LivDet 2013 Fingerprint Liveness Detection Competition 2013. In Proceedings of the 2013 International Conference on Biometrics (ICB), Madrid, Spain, 4–7 June 2013; pp. 1–6. [Google Scholar]
- Park, E.; Cui, X.; Kim, W.; Kim, H. End-to-End Fingerprints Liveness Detection Using Convolutional Networks with Gram Module. arXiv 2018, arXiv:1803.07830. [Google Scholar]
- Yuan, C.; Sun, X.; Wu, Q.M.J. Difference Co-Occurrence Matrix Using BP Neural Network for Fingerprint Liveness Detection. Soft Comput. 2019, 23, 5157–5169. [Google Scholar] [CrossRef]
- Yuan, C.; Xia, Z.; Jiang, L.; Cao, Y.; Jonathan Wu, Q.M.; Sun, X. Fingerprint Liveness Detection Using an Improved CNN With Image Scale Equalization. IEEE Access 2019, 7, 26953–26966. [Google Scholar] [CrossRef]
- Jung, H.Y.; Heo, Y.S.; Lee, S. Fingerprint Liveness Detection by a Template-Probe Convolutional Neural Network. IEEE Access 2019, 7, 118986–118993. [Google Scholar] [CrossRef]
- Uliyan, D.M.; Sadeghi, S.; Jalab, H.A. Anti-Spoofing Method for Fingerprint Recognition Using Patch Based Deep Learning Machine. Eng. Sci. Technol. Int. J. 2020, 23, 264–273. [Google Scholar] [CrossRef]
- Sharma, R.P.; Dey, S. Fingerprint Liveness Detection Using Local Quality Features. Vis. Comput. 2019, 35, 1393–1410. [Google Scholar] [CrossRef]
- Jung, H.Y.; Heo, Y.S. Fingerprint Liveness Map Construction Using Convolutional Neural Network. Electron. Lett. 2018, 54, 564–566. [Google Scholar] [CrossRef]
- Bhatti, K.A.; Parveen, D.S.; Bhatti, N.N.; Larik, K.A.; Soomro, Q. Fingerprint Liveness Detection Using Dynamic Local Ternary Pattern (DLTP). VFAST Trans. Softw. Eng. 2024, 12, 123–131. [Google Scholar] [CrossRef]
- Monteiro, J.; Albuquerque, I.; Akhtar, Z.; Falk, T.H. Generalizable adversarial examples detection based on bimodel decision mismatch. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 2839–2844. [Google Scholar]
Dataset | Live (Train/Test) | Spoof (Train/Test) | Spoofing Materials | |||||
---|---|---|---|---|---|---|---|---|
Ecoflex | Gelatine | Latex | WoodGlue | Liquid Ecoflex | RTV | |||
Digital Persona | 1000/1000 | 1000/1500 | 250 | 250 | 250 | 250 | 250 | 250 |
Green Bit | 1000/1000 | 1000/1500 | 250 | 250 | 250 | 250 | 250 | 250 |
Biometrika | 1000/1000 | 1000/1500 | 250 | 250 | 250 | 250 | 250 | 250 |
Dataset | Live (Train/Test) | Spoof (Train/Test) | Spoofing Materials | ||||
---|---|---|---|---|---|---|---|
Body Double | Ecoflex | Playdoh | OOMOO | Gelatin | |||
CrossMatch | 1510/1500 | 1473/1448 | 300 | 270 | 281 | 297 | 300 |
Dataset | Live (Train/Test) | Spoof (Train/Test) | Spoofing Materials | ||||
---|---|---|---|---|---|---|---|
Ecoflex | Gelatine | Latex | WoodGlue | Modasil | |||
ItalData | 1000/1000 | 1000/1000 | 200 | 200 | 200 | 200 | 200 |
Biometrika | 1000/1000 | 1000/1000 | 200 | 200 | 200 | 200 | 200 |
Dataset | Subsets | BPCER (%) | APCER (%) | ACE (%) |
---|---|---|---|---|
Livedet2013 | Biometrika | 0.25 | 0.25 | 0.25 |
Italdata | 0.29 | 0.33 | 0.31 | |
Averag | 0.27 | 0.29 | 0.28 |
Liveness Detection Methodology | Accuracy (%) | ||
---|---|---|---|
Biometrika | Italdata | Average | |
Gram model [22] | 99.15 | 98.75 | 98.95 |
BP-ANN [23] | 96.45 | 97.65 | 97.05 |
Improved DCNN [24] | 95.65 | 98.6 | 97.12 |
Pre-trainedCNN [7] | 99.20 | 97.7 | 98.45 |
TP/LM CNN [25] | 94.12 | 97.92 | 96.02 |
DRBM + DBM [26] | 96.00 | 94.50 | 95.25 |
LFLDNet [16] | 99.25 | 99.80 | 99.52 |
Proposed Method | 99.75 | 99.69 | 99.72 |
Dataset | Subsets | BPCER | APCER (Known) | APCER (Unknown) | ACE (%) |
---|---|---|---|---|---|
Livedet2015 | Crossmatch | 4.05 | 4.18 | 4.13 | 4.12 |
Digital Persona | 3.78 | 3.92 | 3.85 | 3.85 | |
Biometrika | 3.20 | 3.50 | 3.35 | 3.33 | |
Greenbit | 3.30 | 3.45 | 3.51 | 3.42 | |
Average | 3.58 | 3.76 | 3.71 | 3.68 |
Liveness Detection Methodology | Accuracy | ||||
---|---|---|---|---|---|
Crossmatch | Biometrika | Digital Persona | Greenbit | Average | |
Gram model [22] | 99.63 | 95.9 | 91.5 | 97.30 | 96.08 |
RF classifier [27] | 98.07 | 95.22 | 94.16 | 95.7 | 95.78 |
CNN [28] | 98.60 | 95.80 | 90.50 | 96.20 | 95.27 |
LivDet 2015 [6] | 98.10 | 94.36 | 93.72 | 95.40 | 95.39 |
LFLDNet [16] | 97.28 | 98.68 | 96.44 | 98.64 | 97.8 |
DRBM+DBM [26] | 95.00 | - | - | - | 95.00 |
DLTP [29] | - | - | - | - | 86.39 |
Proposed Method | 95.88 | 96.67 | 96.15 | 96.58 | 96.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheniti, M.; Akhtar, Z.; Chandaliya, P.K. Dual-Model Synergy for Fingerprint Spoof Detection Using VGG16 and ResNet50. J. Imaging 2025, 11, 42. https://doi.org/10.3390/jimaging11020042
Cheniti M, Akhtar Z, Chandaliya PK. Dual-Model Synergy for Fingerprint Spoof Detection Using VGG16 and ResNet50. Journal of Imaging. 2025; 11(2):42. https://doi.org/10.3390/jimaging11020042
Chicago/Turabian StyleCheniti, Mohamed, Zahid Akhtar, and Praveen Kumar Chandaliya. 2025. "Dual-Model Synergy for Fingerprint Spoof Detection Using VGG16 and ResNet50" Journal of Imaging 11, no. 2: 42. https://doi.org/10.3390/jimaging11020042
APA StyleCheniti, M., Akhtar, Z., & Chandaliya, P. K. (2025). Dual-Model Synergy for Fingerprint Spoof Detection Using VGG16 and ResNet50. Journal of Imaging, 11(2), 42. https://doi.org/10.3390/jimaging11020042