Lightweight Statistical and Texture Feature Approach for Breast Thermogram Analysis †
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. ROI Extraction
2.3. Feature Extraction
- (a)
- Statistical features
- Mean (): The average intensity value of the pixels that make up an image, indicating the mean color or brightness value in the image, where represents the temperature at position in an image of size .
- Standard deviation () and variance (): Indicate the dispersion of values in an image. Variance measures how much the pixel values deviate from the overall mean of these values in the image. The standard deviation, which is the square root of the variance, provides a more direct measure of dispersion. Both metrics offer insights into the variability of texture and contrast in the image.
- Skewness (): A measure that indicates the degree of symmetry in the pixel distribution, with a particular emphasis on asymmetry. If the intensity values in an image are concentrated at one end of the spectrum, it suggests asymmetry, which may reveal specific patterns or features in the image.
- Kurtosis (k): A quantitative metric that characterizes the shape of the pixel distribution. It is utilized in image analysis to detect underlying patterns that may not be discernible through visual inspection.
- Entropy (H): A measure of randomness in the distribution of pixel values in an image. It is a tool that provides a representative value of the complexity in a specific section of the image, where G is the number of gray levels.
- Maximum and minimum values: Values that represent the extremes of the range of pixel intensities in an image. In the case of thermographic images, the minimum value indicates the lowest intensity (temperature) detected, while the maximum value indicates the highest intensity.
- Coefficient of variation (): A measure that evaluates the deviations of pixels from their mean and the dispersion among them. In a thermographic image, the coefficient of variation indicates the variability of temperature in the image.
- (b)
- Texture features
- Homogeneity: A measure that indicates how uniform the distribution of pixel values is within a region of an image. High homogeneity suggests that the gray levels in the image are very similar to each other.
- Contrast: It measures the difference in intensity between the pixels of an image. A higher contrast indicates that there are significant differences in pixel intensities.
- Correlation: A measure that describes the relationship between pixel values, helping to identify patterns or trends in their arrangement. High contrast indicates that the pixel values are uniformly distributed in the GLCM.
- Energy (E): A measure that describes the variation in intensity between pixels, taking into account how factors such as color, brightness, magnitude, shadows, or textures change as one moves from one pixel to another. In an image, areas with edges or textured patterns contain higher energy, indicating greater visual complexity. In thermographic images, energy is calculated by summing the intensities (temperatures) of each pixel in the image, as shown in Equation (10).
2.4. Feature Selection
2.5. Model Validation
2.6. Classification Methods
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zarate, C.M.; Jankowski, M.R.; Sullivan, S.E. Effect of Promensil on T47D Breast Cancer Cells with Respect to Estrogen Receptors Alpha and Beta; Worcester Polytechnic Institute: Worcester, MA, USA, 2020. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Morton Cuthrell, K.; Tzenios, N. Breast Cancer: Updated and Deep Insights. Int. Res. J. Oncol. 2023, 6, 104–118. [Google Scholar]
- Ginsburg, O.; Yip, C.H.; Brooks, A.; Cabanes, A.; Caleffi, M.; Dunstan Yataco, J.A.; Gyawali, B.; McCormack, V.; McLaughlin de Anderson, M.; Mehrotra, R.; et al. Breast cancer early detection: A phased approach to implementation. Cancer 2020, 126, 2379–2393. [Google Scholar] [CrossRef]
- Kiymet, S.; Aslankaya, M.Y.; Taskiran, M.; Bolat, B. Breast cancer detection from thermography based on deep neural networks. In Proceedings of the 2019 Innovations in Intelligent Systems and Applications Conference (ASYU), Izmir, Turkey, 31 October–2 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Liu, Q.; Li, M.; Wang, W.; Jin, S.; Piao, H.; Jiang, Y.; Li, N.; Yao, H. Infrared thermography in clinical practice: A literature review. Eur. J. Med. Res. 2025, 30, 33. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Hernandez, J.L.; Recinella, A.N.; Kandlikar, S.G.; Dabydeen, D.; Medeiros, L.; Phatak, P. Technology, application and potential of dynamic breast thermography for the detection of breast cancer. Int. J. Heat Mass Transf. 2019, 131, 558–573. [Google Scholar] [CrossRef]
- Singh, D.; Singh, A.K. Role of image thermography in early breast cancer detection-Past, present and future. Comput. Methods Programs Biomed. 2020, 183, 105074. [Google Scholar] [CrossRef]
- Cook, K.M.; Figg, W.D. Angiogenesis inhibitors: Current strategies and future prospects. CA Cancer J. Clin. 2010, 60, 222–243. [Google Scholar] [CrossRef] [PubMed]
- Spalding, S.; Kwoh, C.; Boudreau, R.; Enama, J.; Lunich, J.; Huber, D.; Denes, L.; Hirsch, R. Three-dimensional and thermal surface imaging produces reliable measures of joint shape and temperature: A potential tool for quantifying arthritis. Arthritis Res. Ther. 2008, 10, 10. [Google Scholar] [CrossRef]
- Adam, M.; Ng, E.; Tan, J.; Heng, M.; Tong, J.; Acharya, U. Computer aided diagnosis of diabetic foot using infrared thermography: A review. Comput. Biol. Med. 2017, 91, 326–336. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y. Detecting intersegmental plane in thoracoscopic segmentectomy using infrared thermography. Chin. Med. J. 2022, 135, 119–120. [Google Scholar] [CrossRef]
- Mambou, S.J.; Maresova, P.; Krejcar, O.; Selamat, A.; Kuca, K. Breast cancer detection using infrared thermal imaging and a deep learning model. Sensors 2018, 18, 2799. [Google Scholar] [CrossRef] [PubMed]
- Kesztyüs, D.; Bae, H.; Wilson, C.; Schön, M.; Kesztyüs, T. Non-invasive infrared thermography for screening, diagnosis and monitoring of skin cancer. J. Dtsch. Dermatol. Ges. 2024, 23, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Tao, C.; Wu, J.; Su, Y.; Wang, Y.; Wang, Y.; Lyu, P. Detection of cervical lymph node metastasis from oral cavity cancer using a non-radiating, noninvasive digital infrared thermal imaging system. Sci. Rep. 2018, 8, 7219. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Ahmed, M. Computer vision to enhance healthcare domain: An overview of features, implementation, and opportunities. Intell. Pharm. 2024, 2, 792–803. [Google Scholar] [CrossRef]
- Kaushik, R.; Sivaselvan, B.; Kamakoti, V. Clinical Thermography for Breast Cancer Screening: A Systematic Review on Image Acquisition, Segmentation, and Classification. IETE Tech. Rev. 2024, 41, 238–260. [Google Scholar] [CrossRef]
- Mashekova, A.; Zhao, Y.; Ng, E.Y.; Zarikas, V.; Fok, S.C.; Mukhmetov, O. Early detection of the breast cancer using infrared technology—A comprehensive review. Therm. Sci. Eng. Prog. 2022, 27, 101142. [Google Scholar] [CrossRef]
- Silva, L.; Saade, D.; Sequeiros, G.; Silva, A.; Paiva, A.; Bravo, R.; Conci, A. A new database for breast research with infrared image. J. Med. Imaging Health Inform. 2014, 4, 92–100. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: Prentice Hall, NJ, USA, 2017; ISBN 9780133356724. [Google Scholar]
- Motoyoshi, I.; Nishida, S.; Sharan, L.; Adelson, E.H. Image statistics and the perception of surface qualities. Nature 2007, 447, 206–209. [Google Scholar] [CrossRef]
- Dey, S. Hands-On Image Processing with Python: Expert Techniques for Advanced Image Analysis and Effective Interpretation of Image Data; Packt Publishing Ltd.: Birmingham, UK, 2018. [Google Scholar]
- Singh, H.; Sharma, V.; Singh, D. Comparative analysis of proficiencies of various textures and geometric features in breast mass classification using k-nearest neighbor. Vis. Comput. Ind. Biomed. Art 2022, 5, 3. [Google Scholar] [CrossRef]
- Rindskopf, D.; Shiyko, M. Measures of Dispersion, Skewness and Kurtosis. In International Encyclopedia of Education, 3rd ed.; Peterson, P., Baker, E., McGaw, B., Eds.; Elsevier: Oxford, UK, 2010; pp. 267–273. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A. Texture Feature Extraction Methods: A Survey. IEEE Access 2019, 7, 8975–9000. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, U.; Pandey, C.M.; Mishra, P.; Pandey, G. Application of student’s t-test, analysis of variance, and covariance. Ann. Card. Anaesth. 2019, 22, 407–411. [Google Scholar] [CrossRef]
- King, A.P.; Eckersley, R. Statistics for Biomedical Engineers and Scientists: How to Visualize and Analyze Data; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Mahesh, T.R.; Vinoth Kumar, V.; Dhilip Kumar, V.; Geman, O.; Margala, M.; Guduri, M. The stratified K-folds cross-validation and class-balancing methods with high-performance ensemble classifiers for breast cancer classification. Healthc. Anal. 2023, 4, 100247. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press Cambridge: Cambridge, MA, USA, 2016; Volume 1. [Google Scholar]
- Domingos, P. A few useful things to know about machine learning. Commun. ACM 2012, 55, 78–87. [Google Scholar] [CrossRef]
- Wang, P.; Fan, E.; Wang, P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognit. Lett. 2021, 141, 61–67. [Google Scholar] [CrossRef]
- Hwang, J.H.; Seo, J.W.; Kim, J.H.; Park, S.; Kim, Y.J.; Kim, K.G. Comparison between deep learning and conventional machine learning in classifying iliofemoral deep venous thrombosis upon CT venography. Diagnostics 2022, 12, 274. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.; Khanna, R. Support vector machines for classification. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Springer Nature: Berlin/Heidelberg, Germany, 2015; pp. 39–66. [Google Scholar]
- Sperandei, S. Understanding logistic regression analysis. Biochem. Medica 2014, 24, 12–18. [Google Scholar] [CrossRef]
- Agresti, A. An Introduction to Categorical Data Analysis, 1st ed.; Wiley Series in Probability and Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Subbarao, M.V.; Samundiswary, P. Automatic modulation recognition in cognitive radio receivers using multi-order cumulants and decision trees. Int. J. Rec. Technol. Eng. 2018, 7, 61–69. [Google Scholar]
- Mokhtar, S.; Yusof, Z.; Sapiri, H. Confidence Intervals by Bootstrapping Approach: A Significance Review. Malays. J. Fundam. Appl. Sci. 2023, 19, 30–42. [Google Scholar] [CrossRef]
- Gitto, S.; Annovazzi, A.; Nulle, K.; Interlenghi, M.; Salvatore, C.; Anelli, V.; Baldi, J.; Messina, C.; Albano, D.; Di Luca, F.; et al. X-rays radiomics-based machine learning classification of atypical cartilaginous tumour and high-grade chondrosarcoma of long bones. eBioMedicine 2024, 101, 105018. [Google Scholar] [CrossRef] [PubMed]
- Foody, G.M. Thematic Map Comparison. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Yan, L. Confidence interval estimation of the common mean of several gamma populations. PLoS ONE 2022, 17, e0269971. [Google Scholar] [CrossRef]
- Sathish, D.; Kamath, S. Detection of breast thermograms using ensemble classifiers. J. Telecommun. Electron. Comput. Eng. 2018, 10, 35–39. [Google Scholar]
- Lennox, N.; Haskins, B. Contrasting classifiers for the detection of breast cancer using thermographic images. In Proceedings of the 2nd International Conference on Intelligent and Innovative Computing Applications, New York, NY, USA, 24–25 September 2020. ICONIC ’20. [Google Scholar] [CrossRef]
- Aggarwal, A.K.; Alpana; Pandey, M. Machine Learning Approach for Breast Cancer Detection using Thermal Imaging. In Proceedings of the 2022 Second International Conference on Next Generation Intelligent Systems (ICNGIS), Kottayam, India, 29–31 July 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Gupta, K.K.; Vijay, R.; Pahadiya, P.; Saxena, S.; Gupta, M. Novel feature selection using machine learning algorithm for breast cancer screening of thermography images. Wirel. Pers. Commun. 2023, 131, 1929–1956. [Google Scholar] [CrossRef]
- Mirasbekov, Y.; Aidossov, N.; Mashekova, A.; Zarikas, V.; Zhao, Y.; Ng, E.Y.K.; Midlenko, A. Fully interpretable deep learning model using IR thermal images for possible breast cancer cases. Biomimetics 2024, 9, 609. [Google Scholar] [CrossRef]
- Loukil, Z.; Mirza, Q.K.A.; Sayers, W.; Awan, I. A deep learning based scalable and adaptive feature extraction framework for medical images. Inf. Syst. Front. 2024, 26, 1279–1305. [Google Scholar] [CrossRef]
- Karthiga, R.; Narasimhan, K.; Thanikaiselvan, V.; Hemalatha, M.; Amirtharajan, R. Review of AI & XAI-based breast cancer diagnosis methods using various imaging modalities. Multimed. Tools Appl. 2024, 84, 2209–2260. [Google Scholar] [CrossRef]
- Kabir, M.H.; Akhtar, N.I.; Tasnim, N.; Miah, A.S.M.; Lee, H.S.; Jang, S.W.; Shin, J. Exploring Feature Selection and Classification Techniques to Improve the Performance of an Electroencephalography-Based Motor Imagery Brain–Computer Interface System. Sensors 2024, 24, 4989. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Naqvi, S.R.; Akram, T.; Peng, L.; Almarshad, F. A Hybrid Deep Learning-ViT Model and A Meta-Heuristic Feature Selection Algorithm for Efficient Remote Sensing Image Classification. Int. J. Comput. Intell. Syst. 2025, 18, 122. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, Y.; Jin, Q. Radiomics and its feature selection: A review. Symmetry 2023, 15, 1834. [Google Scholar] [CrossRef]
Feature | p-Value |
---|---|
Homogeneity | 0.0295 |
Contrast | 0.0000 |
Correlation | 0.0009 |
E | |
0.0000 | |
0.4762 | |
0.9625 | |
0.3051 | |
k | 0.3477 |
H | 0.0018 |
Min | 0.0018 |
Max | 0.0000 |
0.4189 |
Metrics | L-SVM | Q-SVM | LR | CT |
---|---|---|---|---|
Accuracy | 84.93 0.023 | 90.990.019 | 84.930.020 | 91.970.015 |
Precision | 83.430.029 | 88.410.011 | 85.040.019 | 90.790.025 |
Recall | 87.320.042 | 94.370.042 | 84.790.034 | 93.520.027 |
F1-score | 85.270.024 | 91.2560.020 | 84.890.022 | 92.090.014 |
Metrics | L-SVM | Q-SVM | LR | CT |
---|---|---|---|---|
Accuracy | 84.92 [82.25–87.46] | 90.95 [88.87–93.10] | 84.96 [82.39–87.61] | 91.97 [90.00–93.94] |
Precision | 83.28 [80.15–86.38] | 88.41 [85.53–91.20] | 85.10 [82.07–88.12] | 90.74 [88.14–93.34] |
Recall | 87.31 [83.94–90.70] | 94.36 [91.83–96.62] | 84.85 [81.13–88.45] | 93.50 [90.70–95.77] |
Specificity | 82.60 [78.59–86.48] | 87.62 [84.23–90.99] | 85.12 [81.41–88.73] | 90.43 [87.04–93.52] |
F1-score | 85.28 [82.58–87.74] | 91.30 [89.18–93.19] | 84.91 [82.16–87.61] | 92.08 [90.16–93.98] |
Pair | Difference | 95% CI | p-Value |
---|---|---|---|
L-SVM vs. Q-SVM | −0.10 | 1.00 | |
L-SVM vs. LR | 0.60 | 1.00 | |
L-SVM vs. CT | 0.07 | 1.00 | |
Q-SVM vs. LR | 0.33 | 1.00 | |
Q-SVM vs. CT | 0.25 | 1.00 | |
LR vs. CT | −0.16 | 1.00 |
Name | Label | Mean | Entropy | Min | Max | Homogeneity | Contrast | Correlation |
---|---|---|---|---|---|---|---|---|
Figure 5a-L | NA | 27.5098 | 0.6969 | 23.46 | 31.86 | 0.6286 | 4.0095 | 0.9922 |
Figure 5a-R | NA | 27.6746 | 0.7346 | 21.84 | 32.59 | 0.6433 | 3.9272 | 0.9912 |
Figure 5d-L | A | 31.5911 | 0.7130 | 23.13 | 33.57 | 0.6639 | 4.4011 | 0.9896 |
Figure 5d-R | NA | 29.1874 | 0.7506 | 22.75 | 33.63 | 0.7048 | 3.4418 | 0.9950 |
Work | Classification Model | Samples | Features | Balanced Classes | Accuracy |
---|---|---|---|---|---|
Sathish et al. [41] (2018) | BT Ensemble BT | - | 33 | - | 87.00% 71.00% |
Lennox et al. [42] (2021) | Random Forest ANN SVM RBF | 60 | 19 | Yes | 90.00% 88.33% 88.33% |
Kumar et al. [43] (2022) | DT KNN LDA | 200 | 20 | Yes | 92.70% 91.00% 84.80% |
Gupta et al. [44] (2023) | ANN | 278 | 6 | - | 88.57% |
Mirasbekov et al. [45] (2024) | CNN Transfer Learning | 364 | - | Yes | 90.93% |
Proposed | CT | 141 | 7 | Yes | 91.97% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Carmona, A.P.; Rangel-Magdaleno, J.J.; Renero-Carrillo, F.J.; Ramirez-Cortes, J.M.; Peregrina-Barreto, H. Lightweight Statistical and Texture Feature Approach for Breast Thermogram Analysis. J. Imaging 2025, 11, 358. https://doi.org/10.3390/jimaging11100358
Romero-Carmona AP, Rangel-Magdaleno JJ, Renero-Carrillo FJ, Ramirez-Cortes JM, Peregrina-Barreto H. Lightweight Statistical and Texture Feature Approach for Breast Thermogram Analysis. Journal of Imaging. 2025; 11(10):358. https://doi.org/10.3390/jimaging11100358
Chicago/Turabian StyleRomero-Carmona, Ana P., Jose J. Rangel-Magdaleno, Francisco J. Renero-Carrillo, Juan M. Ramirez-Cortes, and Hayde Peregrina-Barreto. 2025. "Lightweight Statistical and Texture Feature Approach for Breast Thermogram Analysis" Journal of Imaging 11, no. 10: 358. https://doi.org/10.3390/jimaging11100358
APA StyleRomero-Carmona, A. P., Rangel-Magdaleno, J. J., Renero-Carrillo, F. J., Ramirez-Cortes, J. M., & Peregrina-Barreto, H. (2025). Lightweight Statistical and Texture Feature Approach for Breast Thermogram Analysis. Journal of Imaging, 11(10), 358. https://doi.org/10.3390/jimaging11100358