Weakly Supervised SVM-Enhanced SAM Pipeline for Stone-by-Stone Segmentation of the Masonry of the Loire Valley Castles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Segment Anything Model (SAM)
- Although 3 to 4 seconds may seem short, we are processing a small image of 256 × 256 px, and the total processing time would be considerably longer if applied to a large orthophoto of 41,864 × 3828 px.
2.3. Customizable SAM Parameters
2.4. Proposed Pipeline
2.4.1. SVM-Enhanced SAM for Mask Filtering
2.4.2. Missing Segmented Stones Test
2.4.3. Iterations of SAM with Bounding Boxes as Inputs
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- De Stefano, A.; Clemente, P. Structural health monitoring of historical structures. In Structural Health Monitoring of Civil Infrastructure Systems; Karbhari, V.M., Ansari, F., Eds.; Woodhead Publishing: Sawston, UK, 2009; pp. 412–434. [Google Scholar] [CrossRef]
- Pallarés, F.J.; Betti, M.; Bartoli, G.; Pallarés, L. Structural health monitoring (SHM) and Nondestructive testing (NDT) of slender masonry structures: A practical review. Constr. Build. Mater. 2021, 297, 123768. [Google Scholar] [CrossRef]
- Bassoli, E.; Vincenzi, L.; Bovo, M.; Mazzotti, C. Dynamic identification of an ancient masonry bell tower using a MEMS-based acquisition system. In Proceedings of the 2015 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS) Proceedings, Trento, Italy, 9–10 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 226–231. [Google Scholar] [CrossRef]
- Stefani, C.; Brunetaud, X.; Janvier-Badosa, S.; Beck, K.; De Luca, L.; Al-Mukhtar, M. Developing a toolkit for mapping and displaying stone alteration on a web-based documentation platform. J. Cult. Herit. 2014, 15, 1–9. [Google Scholar] [CrossRef]
- Janvier-Badosa, S.; Brunetaud, X.; Beck, K.; Al-Mukhtar, M. Kinetics of Stone Degradation of the Castle of Chambord in France. Int. J. Archit. Herit. 2016, 10, 96–105. [Google Scholar] [CrossRef]
- Fioretti, G.; Acquafredda, P.; Calò, S.; Cinelli, M.; Germanò, G.; Laera, A.; Moccia, A. Study and Conservation of the St. Nicola’s Basilica Mosaics (Bari, Italy) by Photogrammetric Survey: Mapping of Polychrome Marbles, Decorative Patterns and Past Restorations. Stud. Conserv. 2020, 65, 160–171. [Google Scholar] [CrossRef]
- Pérez-Sinticala, C.; Janvier, R.; Brunetaud, X.; Treuillet, S.; Aguilar, R.; Castañeda, B. Evaluation of Primitive Extraction Methods from Point Clouds of Cultural Heritage Buildings. In Structural Analysis of Historical Constructions; Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 2332–2341. [Google Scholar]
- Janvier-Badosa, S.; Beck, K.; Brunetaud, X.; Guirimand-Dufour, A.; Al-Mukhtar, M. Gypsum and spalling decay mechanism of tuffeau limestone. Environ. Earth Sci. 2015, 74, 2209–2221. [Google Scholar] [CrossRef]
- Janvier-Badosa, S.; Beck, K.; Brunetaud, X.; Al-Mukhtar, M. The SACRE Project: A Diagnosis Tool of Built Heritage. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection; Ioannides, M., Fink, E., Moropoulou, A., Hagedorn-Saupe, M., Fresa, A., Liestøl, G., Rajcic, V., Grussenmeyer, P., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 681–690. [Google Scholar]
- Mishra, M. Machine learning techniques for structural health monitoring of heritage buildings: A state-of-the-art review and case studies. J. Cult. Herit. 2021, 47, 227–245. [Google Scholar] [CrossRef]
- Idjaton, K.; Desquesnes, X.; Treuillet, S.; Brunetaud, X. Stone-by-Stone Segmentation for Monitoring Large Historical Monuments Using Deep Neural Networks. In Pattern Recognition. ICPR International Workshops and Challenges; Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J., Vezzani, R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 235–248. [Google Scholar] [CrossRef]
- Kajatin, R.; Nalpantidis, L. Image Segmentation of Bricks in Masonry Wall Using a Fusion of Machine Learning Algorithms. In Pattern Recognition. ICPR International Workshops and Challenges; Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J., Vezzani, R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 446–461. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Nagy, B.; Benedek, C. CNN-Based Watershed Marker Extraction for Brick Segmentation in Masonry Walls. In Image Analysis and Recognition; Karray, F., Campilho, A., Yu, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 332–344. [Google Scholar] [CrossRef]
- Loverdos, D.; Sarhosis, V. Automation in Documentation of Ageing Masonry Infrastructure Through Image-Based Techniques and Machine Learning. In European Workshop on Structural Health Monitoring; Rizzo, P., Milazzo, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 727–735. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y.; et al. Segment Anything. arXiv 2023. [Google Scholar] [CrossRef]
- Reby, K.; Guilhelm, A.; Luca, L.D. Semantic Segmentation using Foundation Models for Cultural Heritage: An Experimental Study on Notre-Dame de Paris. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Paris, France, 4–6 October 2023; IEEE Computer Society: Los Alamitos, CA, USA, 2023; pp. 1681–1689. [Google Scholar] [CrossRef]
- Kutlu, H.; Brucker, F.; Kallendrusch, B.; Santos, P.; Fellner, D.W. AI Based Image Segmentation of Cultural Heritage Objects used for Multi-View Stereo 3D Reconstructions. In Eurographics Workshop on Graphics and Cultural Heritage; Bucciero, A., Fanini, B., Graf, H., Pescarin, S., Rizvic, S., Eds.; The Eurographics Association: Eindhoven, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Meta Platforms, Inc. Automatic Mask Generation for Python. Available online: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py (accessed on 25 February 2024).
- Meta Platforms, Inc. Segment Anything Demo. Available online: https://segment-anything.com/demo (accessed on 25 March 2024).
- Bennett, K.P.; Campbell, C. Support vector machines: Hype or hallelujah? SIGKDD Explor. Newsl. 2000, 2, 1–13. [Google Scholar] [CrossRef]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. In Advances in Neural Information Processing Systems; Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Vaughan, J.W., Eds.; Curran Associates, Inc.: New York, NY, USA, 2021; pp. 12077–12090. [Google Scholar]
# | Class | Number of Masks |
---|---|---|
1 | Stones | 257 |
2 | Half-lines | 33 |
3 | Full lines | 18 |
4 | Perpendicular lines | 16 |
5 | Holes | 92 |
Total | 416 |
Accuracy | Dice | IoU | Recall | Precision | Avg. Inference Time | |
---|---|---|---|---|---|---|
SegNet | 0.9580 | 0.8374 | 0.7236 | 0.8909 | 0.7947 | 0.11 s |
DeepLab V3+ | 0.9764 | 0.9114 | 0.8421 | 0.9227 | 0.9043 | 0.16 s |
SegFormerB5 | 0.9800 | 0.9239 | 0.8633 | 0.9418 | 0.9106 | 1.45 s |
Default SAM | 0.9252 | 0.6721 | 0.5457 | 0.8741 | 0.5915 | 3.04 s |
SAM + SVM | 0.9644 | 0.8589 | 0.7637 | 0.9025 | 0.8342 | 1.81 s |
Quantity | Max | Min | Avg | Median | Std | |
---|---|---|---|---|---|---|
All test set | 257 | 3.17 | 0.94 | 1.81 | 1.50 | 0.54 |
Images through SAM Iteration 1 | 152 | 1.70 | 0.94 | 1.38 | 1.37 | 0.12 |
Images through SAM Iterations 1 and 2 | 101 | 3.17 | 1.91 | 2.39 | 2.37 | 0.20 |
Images through SAM Iterations 1, 2, and 3 | 4 | 3.01 | 2.89 | 2.96 | 2.97 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucho, S.; Treuillet, S.; Desquesnes, X.; Leconge, R.; Brunetaud, X. Weakly Supervised SVM-Enhanced SAM Pipeline for Stone-by-Stone Segmentation of the Masonry of the Loire Valley Castles. J. Imaging 2024, 10, 148. https://doi.org/10.3390/jimaging10060148
Lucho S, Treuillet S, Desquesnes X, Leconge R, Brunetaud X. Weakly Supervised SVM-Enhanced SAM Pipeline for Stone-by-Stone Segmentation of the Masonry of the Loire Valley Castles. Journal of Imaging. 2024; 10(6):148. https://doi.org/10.3390/jimaging10060148
Chicago/Turabian StyleLucho, Stuardo, Sylvie Treuillet, Xavier Desquesnes, Remy Leconge, and Xavier Brunetaud. 2024. "Weakly Supervised SVM-Enhanced SAM Pipeline for Stone-by-Stone Segmentation of the Masonry of the Loire Valley Castles" Journal of Imaging 10, no. 6: 148. https://doi.org/10.3390/jimaging10060148
APA StyleLucho, S., Treuillet, S., Desquesnes, X., Leconge, R., & Brunetaud, X. (2024). Weakly Supervised SVM-Enhanced SAM Pipeline for Stone-by-Stone Segmentation of the Masonry of the Loire Valley Castles. Journal of Imaging, 10(6), 148. https://doi.org/10.3390/jimaging10060148