Elevating Chest X-ray Image Super-Resolution with Residual Network Enhancement
Abstract
:1. Introduction
- We harness the power of residual learning in medical CXR image SR, offering significant advancements in diagnostic precision and image quality.
- We adopted the RIR structure with dense feature fusion and highly parallel residual blocks comprising different kernel sizes, which enhances the diagnostic potential of CXR images. Our architecture incorporates four meticulously designed residual groups and blocks to extract and amplify spatial details. This facilitates the synthesis of HR CXR images, thereby advancing diagnostic imaging quality.
- Comprehensive experiments show that our proposed model yields superior SR results to the SOTA approaches.
- We conduct experiments involving salt-and-pepper noise, further demonstrating the robustness and effectiveness of our proposed approach in challenging imaging conditions.
2. Related Work
2.1. Model-Based Super-Resolution Approaches
2.2. Deep Learning-Based Super-Resolution Approaches
3. Methodology
Network Overview
4. Experiment
4.1. Datasets
4.2. Implementation Details
4.3. Training Settings
4.4. Evaluation Metrics
5. Results and Discussion
5.1. Comparisons with SOTA Methods
5.2. Comparisons with SOTA Methods on Noisy Images
5.3. Ablation Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rukundo, O.; Cao, H. Nearest neighbor value interpolation. arXiv 2012, arXiv:1211.1768. [Google Scholar]
- Gao, S.; Gruev, V. Bilinear and bicubic interpolation methods for division of focal plane polarimeters. Opt. Express 2011, 19, 26161–26173. [Google Scholar] [CrossRef] [PubMed]
- Wildenschild, D.; Sheppard, A.P. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 2013, 51, 217–246. [Google Scholar] [CrossRef]
- World Health Organization. Lung Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/lung-cancer (accessed on 5 September 2023).
- Xu, L.; Zeng, X.; Huang, Z.; Li, W.; Zhang, H. Low-dose chest X-ray image super-resolution using generative adversarial nets with spectral normalization. Biomed. Signal Process. Control 2020, 55, 101600. [Google Scholar] [CrossRef]
- Lyu, Q.; Shan, H.; Steber, C.; Helis, C.; Whitlow, C.; Chan, M.; Wang, G. Multi-contrast super-resolution MRI through a progressive network. IEEE Trans. Med. Imaging 2020, 39, 2738–2749. [Google Scholar] [CrossRef] [PubMed]
- Ebner, M.; Wang, G.; Li, W.; Aertsen, M.; Patel, P.A.; Aughwane, R.; Melbourne, A.; Doel, T.; Dymarkowski, S.; De Coppi, P. An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage 2020, 206, 116324. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Sert, E.; Özyurt, F.; Doğantekin, A. A new approach for brain tumor diagnosis system: Single image super resolution based maximum fuzzy entropy segmentation and convolutional neural network. Med. Hypotheses 2019, 133, 109413. [Google Scholar] [CrossRef]
- Shakeel, P.M.; Burhanuddin, M.A.; Desa, M.I. Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks. Measurement 2019, 145, 702–712. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, C.; Bai, X.; Yang, X. Deepcadx: Automated prostate cancer detection and diagnosis in mp-mri based on multimodal convolutional neural networks. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1229–1230. [Google Scholar]
- Feng, C.-M.; Fu, H.; Yuan, S.; Xu, Y. Multi-contrast mri super-resolution via a multi-stage integration network. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, 27 September–1 October 2021; Proceedings, Part VI 24. 2021; pp. 140–149. [Google Scholar]
- Yang, C.-Y.; Ma, C.; Yang, M.-H. Single-image super-resolution: A benchmark. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part IV 13. 2014; pp. 372–386. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1646–1654. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 295–307. [Google Scholar] [CrossRef]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2472–2481. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Wen, D.; Jia, P.; Lian, Q.; Zhou, Y.; Lu, C. Review of sparse representation-based classification methods on EEG signal processing for epilepsy detection, brain-computer interface and cognitive impairment. Front. Aging Neurosci. 2016, 8, 172. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wu, Z.; Peng, K.-C.; Ernst, J.; Fu, Y. Tell me where to look: Guided attention inference network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9215–9223. [Google Scholar]
- Zhao, C.-Y.; Jia, R.-S.; Liu, Q.-M.; Liu, X.-Y.; Sun, H.-M.; Zhang, X.-L. Chest X-ray images super-resolution reconstruction via recursive neural network. Multimed. Tools Appl. 2021, 80, 263–277. [Google Scholar] [CrossRef]
- Sparacino, G.; Tombolato, C.; Cobelli, C. Maximum-likelihood versus maximum a posteriori parameter estimation of physiological system models: The C-peptide impulse response case study. IEEE Trans. Biomed. Eng. 2000, 47, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Yamanaka, J.; Kuwashima, S.; Kurita, T. Fast and accurate image super resolution by deep CNN with skip connection and network in network. In Proceedings of the Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, 14–18 November 2017; Proceedings, Part II 24. 2017; pp. 217–225. [Google Scholar]
- Yin, J.; Liu, Z.; Jin, Z.; Yang, W. Kernel sparse representation based classification. Neurocomputing 2012, 77, 120–128. [Google Scholar] [CrossRef]
- Levitan, E.; Herman, G.T. A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography. IEEE Trans. Med. Imaging 1987, 6, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Lam, B.S.; Gao, Y.; Liew, A.W.-C. General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans. Med. Imaging 2010, 29, 1369–1381. [Google Scholar] [CrossRef] [PubMed]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. Chestx-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2097–2106. [Google Scholar]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131.e1129. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference for Learning Representations (ICLR’15), San Diego, CA, USA, 7–9 May 2015; Volume 500. [Google Scholar]
- Salem, A.; Ibrahem, H.; Kang, H.-S. Light Field Reconstruction Using Residual Networks on Raw Images. Sensors 2022, 22, 1956. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Sara, U.; Akter, M.; Uddin, M.S. Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study. J. Comput. Commun. 2019, 7, 8–18. [Google Scholar] [CrossRef]
- Chan, R.H.; Ho, C.-W.; Nikolova, M. Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 2005, 14, 1479–1485. [Google Scholar] [CrossRef] [PubMed]
Scale | CXR1 [29] | CXR2 [30] | CXR3 [30] | |||
---|---|---|---|---|---|---|
Test | Train | Test | Train | Test | Train | |
×2 | 32 | 250 | 87 | 550 | 185 | 880 |
×4 | 32 | 250 | 87 | 550 | 185 | 880 |
×8 | 32 | 250 | 87 | 550 | 185 | 880 |
Scale | Methods | CXR1 [29] | CXR2 [30] | CXR3 [30] |
---|---|---|---|---|
PSNR/SSIM/MSIM | PSNR/SSIM/MSIM | PSNR/SSIM/MSIM | ||
X2 | BICUBIC [24] | 34.82 dB/0.787/0.86 | 32.42 dB/0.824/0.873 | 29.96 dB/0.797/0.875 |
SRCNN [18] | 35.52 dB/0.717/0.891 | 32.28 dB/0.829/0.929 | 30.17 dB/0.812/0.891 | |
VDSR [14] | 35.62 dB/0.837/0.950 | 33.85 dB/0.871/0.936 | 33.83 dB/0.862/0.923 | |
EDSR [16] | 35.80 dB/0.896/0.977 | 34.35 dB/0.873/0.935 | 33.92 dB/0.892/0.949 | |
RDN [17] | 36.72 dB/0.915/0.962 | 34.65 dB/0.892/0.948 | 35.12 dB/0.902/0.961 | |
RCAN [8] | 36.95 dB/0.926/0.972 | 35.02 dB/0.901/0.953 | 36.77 dB/0.908/0.963 | |
PROPOSED | 37.11 dB/0.936/0.9825 | 36.15 dB/0.912/0.968 | 37.89 dB/0.918/0.979 | |
X4 | BICUBIC [24] | 37.35 dB/0.907/0.940 | 34.51 dB/0.901/0.910 | 33.35 dB/0.907/0.910 |
SRCNN [18] | 38.32 dB/0.9392/0.941 | 35.28 dB/0.921/0.929 | 35.62 dB/0.912/0.932 | |
VDSR [14] | 38.42 dB/0.938/0.940 | 35.69 dB/0.917/0.936 | 35.93 dB/0.92/0.938 | |
EDSR [16] | 38.60 dB/0.944/0.967 | 36.02 dB/0.925/0.945 | 36.82 dB/0.932/0.959 | |
RDN [17] | 38.52 dB/0.939/0.972 | 35.85 dB/0.912/0.968 | 36.22 dB/0.925/0.958 | |
RCAN [8] | 39.55 dB/0.947/0.982 | 36.92 dB/0.927/0.972 | 37.77 dB/0.921/0.953 | |
PROPOSED | 39.76 dB/0.944/0.991 | 37.38 dB/0.932/0.989 | 37.82 dB/0.937/0.982 | |
X8 | BICUBIC [24] | 29.18 dB/0.773/0.820 | 28.21 dB/0.751/0.810 | 28.55 dB/0.767/0.820 |
SRCNN [18] | 29.32 dB/0.792/0.841 | 29.08 dB/0.781/0.839 | 29.62 dB/0.792/0.832 | |
VDSR [14] | 30.62 dB/0.838/0.890 | 31.69 dB/0.841/0.896 | 30.13 dB/0.882/0.898 | |
EDSR [16] | 30.91 dB/0.844/0.907 | 31.02 dB/0.849/0.902 | 30.62 dB/0.892/0.939 | |
RDN [17] | 32.12 dB/0.849/0.912 | 32.85 dB/0.871/0.928 | 31.95 dB/0.872/0.928 | |
RCAN [8] | 32.87 dB/0.859/0.932 | 32.92 dB/0.897/0.952 | 33.87 dB/0.881/0.9453 | |
PROPOSED | 33.17 dB/0.865/0.942 | 33.48 dB/0.912/0.968 | 34.40 dB/0.901/0.9625 |
Methods | CXR 1 [29] | CXR2 [30] | CXR3 [30] |
---|---|---|---|
PSNR/SSIM/ MSIM | PSNR/SSIM/ MSIM | PSNR/SSIM/ MSIM | |
RCAN [8] | 39.55 dB/0.947/0.982 | 36.92 dB/0.927/0.960 | 37.77 dB/0.931/0.953 |
SNSRGAN [5] | 35.99 dB/0.924/0.983 | 35.87 dB/0.910/0.979 | 36.28 dB/0.915/0.943 |
PROPOSED | 39.76 dB/0.944/0.991 | 37.38 dB/0.932/0.989 | 37.82 dB/0.937/0.982 |
Scale | Methods | CXR1 | CXR2 | CXR3 |
---|---|---|---|---|
Noise | PSNR/SSIM/MSIM | PSNR/SSIM/MSIM | PSNR/SSIM/MSIM | |
X4 S&P 0.005 | BICUBIC [24] | 20.60 dB/0.606/0.628 | 19.23 dB/0.574/0.609 | 19.20 dB/0.552/0.687 |
SRCNN [18] | 21.90 dB/0.670/0.723 | 22.35 dB/0.652/0.701 | 21.90 dB/0.572/0.680 | |
VDSR [14] | 23.12 dB/0.691/0.741 | 26.52 dB/0.684/0.719 | 23.12 dB/0.590/0.740 | |
EDSR [16] | 31.43 dB/0.708/0.791 | 31.86 dB/0.701/0.881 | 31.47 dB/0.797/0.807 | |
RDN [17] | 32.39 dB/0.797/0.890 | 32.45 dB/0.827/0.894 | 32.39 dB/0.806/0.893 | |
RCAN [8] | 32.21 dB/0.798/0.842 | 32.42 dB/0.801/0.870 | 32.21 dB/0.798/0.842 | |
SNSRGAN [5] | 31.67 dB/0.7944/0.890 | 29.33 dB/0.802/0.8903 | 31.67 dB/0.794/0.890 | |
PROPOSED | 32.43 dB/0.806/0.893 | 32.57 dB/0.818/0.892 | 32.43 dB/0.8008/0.8916 | |
X4 S&P 0.01 | BICUBIC [24] SRCNN [18] | 7.23 dB/0.013/0.011 | 7.18 dB/0.011/0.012 | 7.13 dB/0.010/0.011 |
10.80 dB/0.026/0.034 | 9.08 dB/0.013/0.022 | 10.03 dB/0.042/0.023 | ||
VDSR [14] | 11.75 dB/0.045/0.047 | 12.28 dB/0.035/0.033 | 14.23 dB/0.045/0.054 | |
EDSR [16] | 19.43 dB/0.22/0.15 | 17.28 dB/0.19/0.13 | 18.39 dB/0.170/0.14 | |
RDN [17] | 20.47 dB/0.17/0.230 | 19.27 dB/0.21/0.17 | 19.23 dB/0.193/0.191 | |
RCAN [8] | 20.04 dB/0.28/0.207 | 18.12 dB/0.19/0.16 | 18.17 dB/0.174/0.148 | |
SNSRGAN [5] | 15.18 dB/0.160/0.19 | 16.22 dB/0.12/0.19 | 16.22 dB/0.154/0.172 | |
PROPOSED | 21.07 dB/0.305/0.2055 | 20.13 dB0.221/0.197 | 20.04 dB/0.217/0.195 | |
X4 S&P 0.02 | BICUBIC [24] SRCNN [18] | 6.98 dB/0.011/0.010 | 6.83 dB/0.0092/0.011 | 6.62 dB/0.010/0.0091 |
10.45 dB/0.02/0.028 | 7.3 dB/0.011/0.019 | 8.7 dB/0.021/0.019 | ||
VDSR [14] | 11.80 dB/0.036/0.044 | 10.27 dB/0.028/0.056 | 10.43 dB/0.039/0.047 | |
EDSR [16] | 19.33 dB/0.263/0.1804 | 16.95 dB/0.168/0.140 | 18.02 dB/0.151/0.137 | |
RDN [17] | 20.06 dB/0.27/0.20 | 19.15 dB/0.192/0.197 | 18.97 dB/0.173/0.17 | |
RCAN [8] | 19.65 dB/0.24/0.18 | 17.23 dB/0.171/0.12 | 17.15 dB/0.161/0.132 | |
SNSRGAN [5] | 14.20 dB/0.13/0.15 | 7.3 dB/0.011/0.019 | 15.83 dB/0.142/0.157 | |
PROPOSED | 22.04 dB/0.260/0.178 | 15.23 dB/0.175/0.12 | 19.04 dB/0.198/0.175 |
Our Network | RB | CXR 1 [29] | CXR 2 [30] | CXR 3 [30] | |||
---|---|---|---|---|---|---|---|
RG = 4, RB = 4 f = 64 | CA | Concatenation | Skip Connection | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | |
1 | ✓ | ✓ | ✓ | 39.69 dB/0.94 | 37.52 dB/0.9102 | 37.57 dB/0.93 | |
2 | ✗ | ✓ | ✓ | 39.76 dB/0.944 | 37.79 dB/0.916 | 37.83 dB/0.93 | |
3 | ✗ | ✗ | ✓ | 39.18 dB/0.948 | 37.83 dB/0.917 | 37.43 dB/0.937 | |
4 | ✓ | ✗ | ✓ | 38.98 dB/0.942 | 37.41 dB/0.902 | 37.14 dB/0.935 | |
RCAN [8] | RB | CXR 1 | CXR 2 | CXR 3 | |||
RG = 4, RB = 4 f = 64 | CA | Concatenation | Skip connection | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | |
5 | ✓ | ✗ | ✓ | 39.55 dB/0.947 | 36.92 dB/0.927 | 37.77 dB/0.931 | |
6 | ✗ | ✗ | ✓ | 39.67 dB/0.94 | 37.7 dB/0.93 | 37.59 dB/0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khishigdelger, A.; Salem, A.; Kang, H.-S. Elevating Chest X-ray Image Super-Resolution with Residual Network Enhancement. J. Imaging 2024, 10, 64. https://doi.org/10.3390/jimaging10030064
Khishigdelger A, Salem A, Kang H-S. Elevating Chest X-ray Image Super-Resolution with Residual Network Enhancement. Journal of Imaging. 2024; 10(3):64. https://doi.org/10.3390/jimaging10030064
Chicago/Turabian StyleKhishigdelger, Anudari, Ahmed Salem, and Hyun-Soo Kang. 2024. "Elevating Chest X-ray Image Super-Resolution with Residual Network Enhancement" Journal of Imaging 10, no. 3: 64. https://doi.org/10.3390/jimaging10030064
APA StyleKhishigdelger, A., Salem, A., & Kang, H. -S. (2024). Elevating Chest X-ray Image Super-Resolution with Residual Network Enhancement. Journal of Imaging, 10(3), 64. https://doi.org/10.3390/jimaging10030064