A Mobile App for Detecting Potato Crop Diseases
Abstract
:1. Introduction
- We carried out an experimental study to find the best DL model for classifying potato diseases, based on leaf images, which represents a good compromise between computational lightness and performance;
- We have implemented the free PCD (Potato Crop Diseases) app, to help farmers detect potato crop diseases early, if equipped with a basic mobile phone.
2. Materials and Methods
2.1. The PlantVillage Dataset
2.2. Experimental Setting
- Number of epochs: 10, 50;
- Activation function for the output layer: softmax;
- Optimizer: Adam;
- Loss function: sparse categorical cross–entropy;
- Batch size: 32, 50;
- Metrics: Accuracy.
- Step 1: Firstly, the models were trained for ten epochs;
- Step 2: Then, three new layers were added: (i) a dropout layer with a rate of 0.3 to avoid overfitting, (ii) a dense layer with ReLU activation functions and (iii) a softmax activation function in the output layer;
- Step 3: Finally, the new incorporated layers were kept (with a dropout rate of 0.5) and the number of epochs was increased to 50.
3. Results
4. Discussion
5. Deployment of the PCD Mobile App
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, F.; Xiu, X.; Li, Y. A Survey on Deep Transfer Learning and Beyond. Mathematics 2022, 10, 3619. [Google Scholar] [CrossRef]
- Agarwal, M.; Sinha, A.; Gupta, S.K.; Mishra, D.; Mishra, R. Potato Crop Disease Classification Using Convolutional Neural Network. In Smart Systems and IoT: Innovations in Computing; Smart Innovation, Systems and Technologies Series; Springer: Singapore, 2020; Volume 141, pp. 391–400. [Google Scholar] [CrossRef]
- Hasi, J.M.; Rahman, M.O. Potato Disease Detection Using Convolutional Neural Network: A Web Based Solution. In Machine Intelligence and Emerging Technologies: Proceedings of the First International Conference (MIET 2022), Noakhali, Bangladesh, 23–25 September 2022; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering Series; Springer: Cham, Switzerland, 2023; Volume 490, pp. 35–48. [Google Scholar] [CrossRef]
- Kang, F.; Li, J.; Wang, C.; Wang, F. A Lightweight Neural Network–Based Method for Identifying Early–Blight and Late–Blight Leaves of Potato. Appl. Sci. 2023, 13, 1487. [Google Scholar] [CrossRef]
- Krishnakumar, B.; Kousalya, K.; Indhu Prakash, K.V.; Jhansi Ida, S.; Ravichandra, B.; Rajeshkumar, G. Comparative Analysis of Various Models for Potato Leaf Disease Classification using Deep Learning. In Proceedings of the 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 2–4 March 2023; pp. 1186–1193. [Google Scholar] [CrossRef]
- Kumar, Y.; Singh, R.; Moudgil, M.R.; Kamini, G. A Systematic Review of Different Categories of Plant Disease Detection Using Deep Learning–Based Approaches. Arch. Comput. Methods Eng. 2023, 30, 4757–4779. [Google Scholar] [CrossRef]
- Sharma, R.; Singh, A.; Attri, K.; Jhanjhi, N.Z.; Masud, M.; Jaha, E.S.; Sk, S. Plant Disease Diagnosis and Image Classification Using Deep Learning. Comput. Mater. Contin. 2021, 71, 2125–2140. [Google Scholar] [CrossRef]
- Mahum, R.; Munir, H.; Mughal, Z.-U.-N.; Awais, M.; Khan, F.S.; Saqlain, M.; Mahamad, S.; Tlili, I. A novel framework for potato leaf disease detection using an efficient deep learning model. Hum. Ecol. Risk Assess. Int. J. 2023, 29, 303–326. [Google Scholar] [CrossRef]
- Oppenheim, D.; Shani, G. Potato Disease Classification Using Convolution Neural Networks. Adv. Anim. Biosci. 2017, 8, 244–249. [Google Scholar] [CrossRef]
- Islam, F.; Hoq, M.N.; Rahman, C.M. Application of Transfer Learning to Detect Potato Disease from Leaf Image. In Proceedings of the 2019 IEEE International Conference on Robotics, Automation, Artificial Intelligence and Internet-of-Things (RAAICON), Dhaka, Bangladesh, 29 November–1 December 2019; pp. 127–130. [Google Scholar] [CrossRef]
- Arshad, F.; Mateen, M.; Hayat, S.; Wardah, M.; Al-Huda, Z.; Gu, H.Y.; Al-Antari, M.A. PLDPNet: End-to-end hybrid deep learning framework for potato leaf disease prediction. Alex. Eng. J. 2023, 78, 406–418. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Yu, J.-Y.; Chang, Y.-C.; Yang, J.-M. Health detection for potato leaf with convolutional neural network. In Proceedings of the 2020 Indo–Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo–Taiwan ICAN), Rajpura, India, 7–15 February 2020; pp. 289–293. [Google Scholar] [CrossRef]
- Chen, W.; Chen, J.; Zeb, A.; Yang, S.; Zhang, D. Mobile convolution neural network for the recognition of potato leaf disease images. Multimed. Tools Appl. 2022, 81, 20797–20816. [Google Scholar] [CrossRef]
- Chen, J.-W.; Lin, W.-J.; Cheng, H.-J.; Hung, C.-L.; Lin, C.-Y.; Chen, S.-P. A Smartphone-Based Application for Scale Pest Detection Using Multiple-Object Detection Methods. Electronics 2021, 10, 372. [Google Scholar] [CrossRef]
- Karar, M.E.; Alsunaydi, F.; Albusaymi, S.; Alotaibi, S. A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alex. Eng. J. 2021, 60, 4423–4432. [Google Scholar] [CrossRef]
- Wang, F.; Wang, R.; Xie, C.; Zhang, J.; Li, R.; Liu, L. Convolutional neural network based automatic pest monitoring system using hand-held mobile image analysis towards non-site-specific wild enviroment. Comput. Electron. Agric. 2021, 187, 10268. [Google Scholar] [CrossRef]
- Ruedeeniraman, N.; Ikeda, M.; Barolli, L. Performance Evaluation of VegeCare Tool for Potato Disease Classification. In Advances in Networked-Based Information Systems—NBiS 2020, Advances in Intelligent Systems and Computing 1264; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Altalak, M.; Ammad Uddin, M.; Alajmi, A.; Rizg, A. Smart Agriculture Applications Using Deep Learning Technologies: A Survey. Appl. Sci. 2022, 12, 5919. [Google Scholar] [CrossRef]
- Dong, S.-M.; Zhou, S.-Q. Potato late blight caused by Phytophthora infestans: From molecular interactions to integrated management strategies. J. Integr. Agric. 2022, 21, 3456–3466. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef]
- Liu, S.; Deng, W. Very deep convolutional neural network based image classification using small training sample size. In Proceedings of the 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 3–6 November 2015; pp. 730–734. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large–Scale Image Recognition. arXiv 2014, arXiv:1409.1556v6. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef]
- Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710. [Google Scholar] [CrossRef]
- He, K.; Zhang, H.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Guo, T. Cloud-based or on-device: An empirical study of mobile deep inference. In Proceedings of the 2018 IEEE International Conference on Cloud Engineering (IC2E), Orlando, FL, USA, 17–20 April 2018; pp. 184–190. [Google Scholar] [CrossRef]
- Qasaimeh, M.; Denolf, K.; Khodamoradi, A.; Blott, M.; Lo, J.; Halder, L.; Vissers, K.; Zambreno, J.; Jones, P.H. Benchmarking vision kernels and neural network inference accelerators on embedded platforms. J. Syst. Archit. 2021, 113, 101896. [Google Scholar] [CrossRef]
CNN Type | Step 1 | # Trained Param. | # Frozen Param. | # Epochs | Accuracy | Loss | Model Size |
---|---|---|---|---|---|---|---|
MobileNetv2 | 3 | 81,984 | 2,257,984 | 50 | 0.987 | 0.0623 | 3.89 MB |
VGG16 | 2 | 1539 | 14,714,688 | 10 | 0.94 | 0.38 | 14.2 MB |
VGG19 | 1 | 1539 | 20,024,384 | 10 | 0.9844 | 0.0415 | 19.2 MB |
Inceptionv3 | 1 | 153,603 | 21,802,784 | 10 | 0.91 | 5.7269 | 21.4 MB |
Xception | 3 | 6147 | 20,861,480 | 50 | 0.9467 | 0.1394 | 21.1 MB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pineda Medina, D.; Miranda Cabrera, I.; de la Cruz, R.A.; Guerra Arzuaga, L.; Cuello Portal, S.; Bianchini, M. A Mobile App for Detecting Potato Crop Diseases. J. Imaging 2024, 10, 47. https://doi.org/10.3390/jimaging10020047
Pineda Medina D, Miranda Cabrera I, de la Cruz RA, Guerra Arzuaga L, Cuello Portal S, Bianchini M. A Mobile App for Detecting Potato Crop Diseases. Journal of Imaging. 2024; 10(2):47. https://doi.org/10.3390/jimaging10020047
Chicago/Turabian StylePineda Medina, Dunia, Ileana Miranda Cabrera, Rolisbel Alfonso de la Cruz, Lizandra Guerra Arzuaga, Sandra Cuello Portal, and Monica Bianchini. 2024. "A Mobile App for Detecting Potato Crop Diseases" Journal of Imaging 10, no. 2: 47. https://doi.org/10.3390/jimaging10020047