Real-Time Emotion Recognition for Improving the Teaching–Learning Process: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scope and Research Questions
2.2. Eligibility Criteria
2.3. Sources and Search Strategy
2.4. Selection of Studies
3. Results
3.1. Parts of a Real-Time ER
3.2. Experiences of Real-Time ER
3.3. Ethical and Privacy Issues
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, Y.; Li, X.; Li, J. Emotion Recognition Using Different Sensors, Emotion Models, Methods and Datasets: A Comprehensive Review. Sensors 2023, 23, 2455. [Google Scholar] [CrossRef] [PubMed]
- Fakhar, S.; Baber, J.; Bazai, S.U.; Marjan, S.; Jasinski, M.; Jasinska, E.; Chaudhry, M.U.; Leonowicz, Z.; Hussain, S. Smart Classroom Monitoring Using Novel Real-Time Facial Expression Recognition System. Appl. Sci. 2022, 12, 12134. [Google Scholar] [CrossRef]
- Dzedzickis, A.; Kaklauskas, A.; Bucinskas, V. Human Emotion Recognition: Review of Sensors and Methods. Sensors 2020, 20, 592. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, M.; Sakowicz, M.; Ledwosinski, K.; Rzepkowski, J.; Czapla, P.; Zaporowski, S. Bimodal Emotion Recognition Based on Vocal and Facial Features. Procedia Comput. Sci. 2023, 225, 2556–2566. [Google Scholar] [CrossRef]
- Khare, S.; Blanes-Vidal, V.; Nadimi, E.; Acharya, U. Emotion recognition and artificial intelligence: A systematic review (2014–2023) and research recommendations. Inf. Fusion 2023, 102, 102019. [Google Scholar] [CrossRef]
- Shit, S.; Rana, A.; Das, D.K.; Ray, D.N. Real-time emotion recognition using end-to-end attention-based fusion network. J. Electron. Imaging 2023, 32, 013050. [Google Scholar] [CrossRef]
- Harem, A. Human-computer interaction: Enhancing user experience in interactive systems. Kufa J. Eng. 2023, 14, 23–41. [Google Scholar] [CrossRef]
- Rokhsaritalemi, S.; Sadeghi, A.; Choi, S.-M. Exploring Emotion Analysis Using Artificial Intelligence, Geospatial Information Systems, and Extended Reality for Urban Services. IEEE Access 2023, 11, 92478–92495. [Google Scholar] [CrossRef]
- Ballesteros, J.; Ramirez, G.; Moreira, F.; Solano, A.; Pelaez, C. Facial emotion recognition through artificial intelligence. Front. Comput. Sci. 2024, 6, 1359471. [Google Scholar] [CrossRef]
- Tanabe, H.; Shiraishi, T.; Sato, H.; Nihei, M.; Inoue, T.; Kuwabara, C. A concept for emotion recognition systems for children with profound intellectual and multiple disabilities based on artificial intelligence using physiological and motion signals. Disability and Rehabilitation. Assist. Technol. 2023, 19, 1319–1326. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Park, W.H. Diagnosis of Depressive Disorder Model on Facial Expression Based on Fast R-CNN. Diagnostics 2022, 12, 317. [Google Scholar] [CrossRef] [PubMed]
- Taype-Huarca, L.A.; Zavalaga-del Carpio, A.L.; Fernández-González, S.V. Usefulness of the Perezhivanie Construct in Affectivity and Learning: A Systematic Review. In Affectivity and Learning: Bridging the Gap Between Neurosciences, Cultural and Cognitive Psychology; Springer Nature: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Cristóvão, A.M.; Valente, S.; Rebelo, H.; Ruivo, A.F. Emotional education for sustainable development: A curriculum analysis of teacher training in Portugal and Spain. Front. Educ. 2023, 8, 1165319. [Google Scholar] [CrossRef]
- Minsky, M. The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind; Simon & Schuster: New York, NY, USA, 2007. [Google Scholar]
- Bower, G.H.; Forgas, J.P. Mood and social memory. In Handbook of Affect and Social Cognition; Forgas, J.P., Ed.; Psychology Press: New York, NY, USA, 2000; pp. 95–120. [Google Scholar] [CrossRef]
- Li, J.; Shi, D.; Tumnark, P.; Xu, H. A system for real-time intervention in negative emotional contagion in a smart classroom deployed under edge computing service infrastructure. Peer-to-Peer Netw. Appl. 2020, 13, 1706–1719. [Google Scholar] [CrossRef]
- Abásolo, M.J.; Castro Lozano, C.; Olmedo Cifuentes, G.F. Applications and Usability of Interactive TV: 11th Iberoamerican Conference, jAUTI 2022; Springer Nature: Córdoba, Spain, 2022. [Google Scholar]
- Paredes, N.; Caicedo Bravo, E.; Bacca, B. Real-Time Emotion Recognition Through Video Conference and Streaming. In Communications in Computer and Information Science (CCIS); Springer Nature: Cham, Switzerland, 2022; Volume 1597. [Google Scholar] [CrossRef]
- Mega, C.; Ronconi, L.; De Beni, R. What Makes a Good Student? How Emotions, Self-Regulated Learning, and Motivation Contribute to Academic Achievement. J. Educ. Psychol. 2013, 106, 121. [Google Scholar] [CrossRef]
- Goleman, D. Emotional Intelligence; Bantam Books: New York, NY, USA, 1995. [Google Scholar]
- Jarrell, A.; Lajoie, S.P. The regulation of achievements emotions: Implications for research and practice. Can Psychol/Psychol. Can. 2017, 58, 276–287. [Google Scholar] [CrossRef]
- Gross, J.J.; Thompson, R.A. Emotion regulation: Conceptual foundations. In Handbook of Emotion Regulation; Guilford Publications: New York, NY, USA, 2007; pp. 3–24. [Google Scholar]
- Pekrun, R. The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educ. Psychol. Rev. 2006, 18, 315–341. [Google Scholar] [CrossRef]
- Ahn, B.; Maurice-Ventouris, M.; Bilgic, E.; Yang, A.; Lau, C.; Peters, H.; Li, K.; Chang-Ou, D.; Harley, J.M. A scoping review of emotions and related constructs in simulation-based education research articles. Adv. Simul. 2023, 8, 22. [Google Scholar] [CrossRef]
- Maturana, H. Emociones y Lenguaje en Educación y Política; Dolmen: Palma, Spain, 1990. [Google Scholar]
- Maturana, H. El Sentido de lo Humano; Hachette: Paris, France, 1992. [Google Scholar]
- Darwin, C.R. The Expression of the Emotions in Man and Animals, 1st ed.; John Murray: London, UK, 1872. [Google Scholar]
- James, W. The Principles of Psychology; Henry Holt and Co.: New York, NY, USA, 1890; Volume II. [Google Scholar]
- Lange, C. The Emotions; William and Wilkins: Baltimore, MD, USA, 1885. [Google Scholar]
- Freud, S. A Project for a Scientific Psychology, Standard Edition; Hogarth: London, UK, 1895; Volume 1, pp. 283–397. [Google Scholar]
- Lazarus, R.S. Thoughts on the relations between emotion and cognition. Am. Psychol. 1982, 37, 1019–1024. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. Measuring facial movement. Environ. Psychol. Nonverbal Behav. 1976, 1, 56–75. [Google Scholar] [CrossRef]
- Ekman, P.; O’Sullivan, M.; Friesen, W.V.; Scherer, K.R. Invited article: Face, voice, and body in detecting deceit. J. Nonverbal Behav. 1991, 15, 125–135. [Google Scholar] [CrossRef]
- Gotarane, V.; Vedhas, V.; Rajeev, S.; Manasi, B. Emotion Recognition Using Real Time Face Recognition. Int. J. Creat. Res. Thoughts 2018, 6, 2320–2882. [Google Scholar] [CrossRef]
- Linnenbrink-Garcia, L.; Patall, E.A.; Pekrun, R. Adaptive Motivation and Emotion in Education: Research and Principles for Instructional Design. Policy Insights Behav. Brain Sci. 2016, 3, 228–236. [Google Scholar] [CrossRef]
- Calado, J.; Luís-Ferreira, F.; Sarraipa, J.; Jardim-Gonçalves, R. A framework to bridge teachers, student’s affective state, and improve academic performance. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Tampa, FL, USA, 3–9 November 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Kopalidis, T.; Solachidis, V.; Vretos, N.; Daras, P. Advances in Facial Expression Recognition: A Survey of Methods, Benchmarks, Models, and Datasets. Information 2024, 15, 135. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Reichelt, J.; Henning, V.; Foeckler, P. Mendeley [Software]; Elsevier: Amsterdam, The Netherlands, 2024; Available online: https://www.mendeley.com/ (accessed on 19 July 2024).
- Fida, A.; Umer, M.; Saidani, O.; Hamdi, M.; Alnowaiser, K.; Bisogni, C.; Abate, A.F.; Ashraf, I. Real time emotions recognition through facial expressions. Multimed. Tools Appl. 2023, 82, 1–28. [Google Scholar] [CrossRef]
- Trabelsi, Z.; Alnajjar, F.; Parambil, M.M.A.; Gochoo, M.; Ali, L. Real-Time Attention Monitoring System for Classroom: A Deep Learning Approach for Student’s Behavior Recognition. Big Data Cogn. Comput. 2023, 7, 48. [Google Scholar] [CrossRef]
- Li, L.; Chen, C.P.; Wang, L.; Liang, K.; Bao, W. Exploring Artificial Intelligence in Smart Education: Real-Time Classroom Behavior Analysis with Embedded Devices. Sustainability 2023, 15, 7940. [Google Scholar] [CrossRef]
- Boonroungrut, C.; Oo, T.T.; One, K. Exploring classroom emotion with cloud-based facial recognizer in the Chinese beginning class: A preliminary study. Int. J. Instr. 2019, 12, 947–958. [Google Scholar] [CrossRef]
- Sassi, A.; Jaafar, W.; Cherif, S.; Abderrazak, J.B.; Yanikomeroglu, H. Video Traffic Analysis for Real-Time Emotion Recognition and Visualization in Online Learning. IEEE Access 2023, 11, 99376–99386. [Google Scholar] [CrossRef]
- Ruiz-Garcia, A.; Elshaw, M.; Altahhan, A.; Palade, V. A hybrid deep learning neural approach for emotion recognition from facial expressions for socially assistive robots. Neural Comput. Appl. 2018, 29, 359–373. [Google Scholar] [CrossRef]
- Sukumaran, A.; Manoharan, A. Multimodal Engagement Recognition From Image Traits Using Deep Learning Techniques. IEEE Access 2024, 12, 25228–25244. [Google Scholar] [CrossRef]
- Luo, Z.; Zheng, C.; Gong, J.; Chen, S.; Luo, Y.; Yi, Y. 3DLIM: Intelligent analysis of students’ learning interest by using multimodal fusion technology. Educ. Inf. Technol. 2023, 28, 7975–7995. [Google Scholar] [CrossRef]
- Ashwin, D.V.; Kumar, A.; Manikandan, J. Design of a real-time human emotion recognition system. In Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST 2018; Springer Nature: Cham, Switzerland, 2018; Volume 218. [Google Scholar] [CrossRef]
- Putra, W.B.; Arifin, F. Real-Time Emotion Recognition System to Monitor Student’s Mood in a Classroom. J. Phys. Conf. Ser. 2019, 1413, 012021. [Google Scholar] [CrossRef]
- Zhu, Z.; Zheng, X.Q.; Ke, T.P.; Chai, G.F. Emotion recognition in learning scenes supported by smart classroom and its application. Trait. Signal 2023, 40, 751–758. [Google Scholar] [CrossRef]
- Chen, S.; Dai, J.; Yan, Y. Classroom Teaching Feedback System Based on Emotion Detection. In Proceedings of the 2019 9th International Conference on Education and Social Science (ICESS 2019), Shenyang, China, 29–31 March 2019; pp. 940–946. [Google Scholar] [CrossRef]
- Dukić, D.; Krzic, A.S. Real-Time Facial Expression Recognition Using Deep Learning with Application in the Active Classroom Environment. Electronics 2022, 11, 1240. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, W.X. Research on Learning State Based on Students’ Attitude and Emotion in Class Learning. Sci. Program. 2021, 2021, 9944176. [Google Scholar] [CrossRef]
- Jha, T.; Kavya, R.; Christopher, J.; Arunachalam, V. Machine learning techniques for speech emotion recognition using paralinguistic acoustic features. Int. J. Speech Technol. 2022, 25, 707–725. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, S.; Zhao, R. Machine Learning-Based Student Emotion Recognition for Business English Class. Int. J. Emerg. Technol. Learn. 2021, 16, 94–107. [Google Scholar] [CrossRef]
- Monisha, G.S.; Yogashree, G.S.; Baghyalaksmi, R.; Haritha, P. Enhanced Automatic Recognition of Human Emotions Using Machine Learning Techniques. Procedia Comput. Sci. 2022, 218, 375–382. [Google Scholar] [CrossRef]
- Mamieva, D.; Abdusalomov, A.B.; Kutlimuratov, A.; Muminov, B.; Whangbo, T.K. Multimodal Emotion Detection via Attention-Based Fusion of Extracted Facial and Speech Features. Sensors 2023, 23, 5475. [Google Scholar] [CrossRef]
- Zhu, H.; Pengyun, H.; Tang, X.; Xia, D.; Huang, H. NAGNet: A novel framework for real-time students’ sentiment analysis in the wisdom classroom. Concurr. Comput. Pract. Exp. 2023, 35, e7727. [Google Scholar] [CrossRef]
- Li, L.; Yao, D. Emotion Recognition in Complex Classroom Scenes Based on Improved Convolutional Block Attention Module Algorithm. IEEE Access 2023, 11, 143050–143059. [Google Scholar] [CrossRef]
- Chang, B. Student privacy issues in online learning environments. Distance Educ. 2021, 42, 55–69. [Google Scholar] [CrossRef]
- Drachsler, H.; Hoel, T.; Scheffel, M.; Kismihok, G.; Berg, A.; Ferguson, R.; Chen, W.; Cooper, A.; Manderveld, J. Ethical and privacy issues in the application of learning analytics. In Proceedings of the Fifth International Conference on Learning Analytics and Knowledge. Association for Computing Machinery, Poughkeepsie, NY, USA, 16–20 March 2015; pp. 390–391. [Google Scholar]
- Anwar, M.; Greer, J. Facilitating trust in privacy-preserving E-learning environments. IEEE Trans. Learn. Technol. 2012, 5, 62–73. [Google Scholar] [CrossRef]
- McMillion, T.; King, C.S.T. Communication and security issues in online education: Student self-disclosure in course introductions. J. Interact. Online Learn. 2017, 15, 1–25. Available online: https://www.ncolr.org/jiol/issues/pdf/15.1.1.pdf (accessed on 31 October 2024).
- European Comission. Shaping Europe’s Digital Future. Available online: https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai (accessed on 14 October 2024).
- World Medical Association, WMA Declaration of Helsinki, Ethical Principles for Medical Research Involving Human Subjects. 2024. Available online: https://www.wma.net/ (accessed on 2 October 2024).
- Li, J.; Deng, L.; Haeb-Umbach, R.; Gong, Y. Robust Automatic Speech Recognition: A Bridge to Practical Applications; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Müller, M.; Dupuis, A.; Zeulner, T.; Vazquez, I.; Hagerer, J.; Gloor, P.A. Predicting Team Well-Being through Face Video Analysis with AI. Appl. Sci. 2024, 14, 1284. [Google Scholar] [CrossRef]
- Guo, R.; Guo, H.; Wang, L.; Chen, M.; Yang, D.; Li, B. Development and application of emotion recognition technology-a systematic literature review. BMC Psychol. 2024, 12, 95. [Google Scholar] [CrossRef]
- Unciti, O.; Palau, R. Teacher decision making tool: Development of a prototype to facilitate teacher decision making in the classroom. J. Technol. Sci. Educ. 2023, 13, 740–760. [Google Scholar] [CrossRef]
- Joksimović, S.; Kovanović, V.; Dawson, S. The Journey of Learning Analytics. HERDSA Rev. High. Educ. 2019, 6, 37–63. [Google Scholar]
- Bouhlal, M.; Arika, K.; Abdelouahid, R.; Filali, S.; Benlahmar, E. Emotions recognition as innovative tool for improving students’ performance and learning approaches. Procedia Comput. Sci. 2020, 175, 597–602. [Google Scholar] [CrossRef]
- Unciti, O.; Ballesté, A.; Palau, R. Real-Time Emotion Recognition and its Effects in a Learning Environment. Interact. Des. Archit. 2024, 60, 85–102. [Google Scholar] [CrossRef]
- Pritchard, M.; Wilson, G. Using Emotional and Social Factors to Predict Student Success. J. Coll. Stud. Dev. 2003, 44, 18–28. [Google Scholar] [CrossRef]
RQ | |
---|---|
1 | Which patterns of ER are used? |
2 | Which technology is used for real-time ER in classrooms? |
3 | How is the technological design in which teachers obtain information? |
Inclusion Criteria | Exclusion Criteria |
---|---|
Real-time ER | Non real-time ER |
Educational purposes | Non-educational purposes |
Face-to-face lessons | E-learning/virtual lessons |
Empirical studies | Systematic review |
Published after 2018 | Published before 2018 |
Published articles in full-text form | Unpublished articles |
English articles | Non-English articles |
Parts of an ER System | Definition |
---|---|
Face detection | Algorithm capable of accurately detecting the detection of the presence and facial position in video or images sequences in real time |
Pre-processing | Normalizes images, eliminates noise, and enhances contrast to increase the accuracy of feature extraction in real time |
Data processing | Can handle the video or image stream and process the extracted features and the results of the classification in real time |
Feature extraction | Algorithm which can extract relevant facial features in real time (facial landmarks’ shape or position, facial textures, facial muscle movement) |
Training data | Train the classification model through a wide and rich dataset of facial expression annotations |
Classification model | ML model such as a deep neural network or vector machine suppor that can learn from the extracted features to categorize various facial expressions in real time |
Output and feedback | Real-time system that displays the results and provides the user with information |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llurba, C.; Palau, R. Real-Time Emotion Recognition for Improving the Teaching–Learning Process: A Scoping Review. J. Imaging 2024, 10, 313. https://doi.org/10.3390/jimaging10120313
Llurba C, Palau R. Real-Time Emotion Recognition for Improving the Teaching–Learning Process: A Scoping Review. Journal of Imaging. 2024; 10(12):313. https://doi.org/10.3390/jimaging10120313
Chicago/Turabian StyleLlurba, Cèlia, and Ramon Palau. 2024. "Real-Time Emotion Recognition for Improving the Teaching–Learning Process: A Scoping Review" Journal of Imaging 10, no. 12: 313. https://doi.org/10.3390/jimaging10120313
APA StyleLlurba, C., & Palau, R. (2024). Real-Time Emotion Recognition for Improving the Teaching–Learning Process: A Scoping Review. Journal of Imaging, 10(12), 313. https://doi.org/10.3390/jimaging10120313