Valorization of Spent Mushroom Substrate: Establishing the Foundation for Waste-Free Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Spent Shiitake Mushroom Substrate
2.2. Reuse as a Component in Substrates’ Production Cycle
2.3. Additive to the Soil for Blueberry Cultivation
- -
- DSTU 7882:2015 “Peat and its processing products for agriculture. Methods of determining metabolic and active acidity” [29] for determination of the level of acidity;
- -
- DSTU EN 12048:2005 “Solid fertilizers and liming materials. Determination of moisture content by gravimetric method. Drying at a temperature of (105 ± 2) °C” (EN 12048:1996, IDT) [30] to determine moisture content;
- -
- DSTU 7942:2015 “Soil quality. Determination of ash content of peat and peat soil” [31] to quantify the level of ash;
- -
- DSTU 8454:2015. “Organic fertilizers. Methods of determination of organic matter” [32] to obtain the content of organic matter in terms of carbon;
- -
- DSTU 7911:2015 “Organic and organo-mineral fertilizers. Methods of determining the total mass fraction of nitrogen and the mass fraction of ammonium nitrogen” [33] for determination of the mass fraction of total and ammonium nitrogen;
- -
- DSTU 7949:2015 “Organic fertilizers. Method for determining the mass fraction of total potassium” [34] for determination of total potassium;
- -
- DSTU EN 15956:2015 “Fertilizers. Method for extracting phosphorus soluble in mineral acids” (EN 15956:2011, IDT) [35] to obtain total phosphorus;
- -
- DSTU 7670:2014 method. “Raw materials and food products. Preparation of samples. Mineralization to determine the content of toxic elements” [36] for calcium, magnesium, and sodium content quantification.
- -
- Coefficient of mineralization (Cmin) calculated by the ratio of the number of microorganisms immobilizing the mineral forms of nitrogen (NSAA) to the number of organotrophs (NMIA) as follows:
- -
- Coefficient of oligotrophity (Col) calculated by the ratio of the number of microorganisms, which are able to absorb nutrients from very rarefied solutions (NPA), to the total number of eutrophic microorganisms (NSAA + NMIA) as follows:
- -
- Coefficient of pedotrophity (Cped) calculated as the ratio of the number of pedotrophic microorganisms (NSA) to the number of microorganisms using organic nitrogen (organotrophs) as follows:
2.4. Alternative Solid Fuel
- -
- DSTU EN 14774-1 “Solid biofuel. Determination of moisture content. Method of drying in a drying cabinet” [40] for determination of sample moisture content, drying of samples to a constant weight at a temperature of 105 °C;
- -
- Ash content was determined by a combined method. First, dried samples were burned according to the EN 15403 method “Solid recovered fuels—Determination of ash content” at a temperature of 550 °C [41], and then, the ash was additionally calcined under the conditions corresponding to the ISO 1171 method “Solid mineral fuels—Determination of ash” at a temperature of 815° WITH [42];
- -
- Carbon and sulfur content determinations were carried out on a Leco CS 230 analyzer according to its instructions, which correspond to the methods of DSTU EN 15104:2013 “Solid biofuel. Methods for determining the content of total carbon, hydrogen and nitrogen” [43] and DSTU EN 15289:2013 “Solid biofuel. Methods for determining the total content of sulfur and chlorine” [44];
- -
- DSTU EN 15148:2012 “Solid biofuel. Method for determining the content of volatile substances” by mass loss during the rapid heating of the sample to 900 °C without air access for 7 min [45] for volatile substance determination;
- -
- Determination of the caloric parameters of the sample was performed on the IKA C2000 calorimeter according to its instructions, which meet the requirements of DSTU ISO 1928 [46].
2.5. Statistical Analyses
3. Results and Discussion
3.1. Reuse as a Component in New Substrates’ Production Cycle
3.2. Additive to the Soil for Blueberry Cultivation
3.3. Alternative Solid Fuel
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations Statistics Database. 2024. Available online: http://www.fao.org/faostat/en/#data (accessed on 5 May 2024).
- El-Ramady, H.; Abdalla, N.; Badgar, K.; Llanaj, X.; Törős, G.; Hajdú, P.; Eid, Y.; Prokisch, J. Edible Mushrooms for Sustainable and Healthy Human Food: Nutritional and Medicinal Attributes. Sustainability 2022, 14, 4941. [Google Scholar] [CrossRef]
- Finney, K.N.; Ryu, C.; Sharifi, V.N.; Swithenbank, J. The Reuse of Spent Mushroom Compost and Coal Tailings for Energy Recovery: Comparison of Thermal Treatment Technologies. Bioresour. Technol. 2009, 100, 310–315. [Google Scholar] [CrossRef]
- Kaushal, L.A.; Prashar, A. Agricultural Crop Residue Burning and Its Environmental Impacts and Potential Causes–Case of Northwest India. J. Environ. Plan. Manag. 2020, 64, 464–484. [Google Scholar] [CrossRef]
- Leong, Y.K.; Ma, T.W.; Chang, J.S.; Yang, F.C. Recent Advances and Future Directions on the Valorization of Spent Mushroom Substrate (SMS): A Review. Bioresour. Technol. 2022, 344, 126157. [Google Scholar] [CrossRef]
- Kousar, A.; Khan, H.A.; Farid, S.; Zhao, Q.; Zeb, I. Recent Advances on Environmentally Sustainable Valorization of Spent Mushroom Substrate: A Review. Biofuels. Bioprod. Biorefining 2024, 18, 639–651. [Google Scholar] [CrossRef]
- Mohd Hanafi, F.H.; Rezania, S.; Mat Taib, S.; Md Din, M.F.; Yamauchi, M.; Sakamoto, M.; Hara, H.; Park, J.; Ebrahimi, S.S. Environmentally Sustainable Applications of Agro-Based Spent Mushroom Substrate (SMS): An Overview. J. Mater. Cycles Waste Manag. 2018, 20, 1383–1396. [Google Scholar] [CrossRef]
- Martín, C.; Zervakis, G.I.; Xiong, S.; Koutrotsios, G.; Strætkvern, K.O. Spent Substrate from Mushroom Cultivation: Exploitation Potential toward Various Applications and Value-Added Products. Bioengineered 2023, 14, 2252138. [Google Scholar] [CrossRef]
- Huang, Z.; Guan, H.; Zheng, H.; Wang, M.; Xu, P.; Dong, S.; Yang, Y.; Xiao, J. Novel Liquid Organic Fertilizer: A Potential Way to Effectively Recycle Spent Mushroom Substrate. J. Clean Prod. 2022, 376, 134368. [Google Scholar] [CrossRef]
- Alves, L.D.S.; Caitano, C.E.C.; Ferrari, S.; Vieira Júnior, W.G.; Heinrichs, R.; de Almeida Moreira, B.R.; Pardo-Giménez, A.; Zied, D.C. Application of Spent Sun Mushroom Substrate in Substitution of Synthetic Fertilizers at Maize Topdressing. Agronomy 2022, 12, 2884. [Google Scholar] [CrossRef]
- Zhang, W.R.; Liu, S.R.; Zhao, Z.X.; Kuang, Y.B.; Dong, X.F.; Ruan, J.F. Effects of Extracts of Spent Mushroom Substrates on Growth of Edible Fungi. Int. J. Agric. Biol. 2018, 20, 2133–2139. [Google Scholar] [CrossRef]
- Antón-Herrero, R.; García-Delgado, C.; Baena, N.; Mayans, B.; Delgado-Moreno, L.; Eymar, E. Assessment of Different Spent Mushroom Substrates to Bioremediate Soils Contaminated with Petroleum Hydrocarbons. Appl. Sci. 2022, 12, 7720. [Google Scholar] [CrossRef]
- Wei, Y.; Jin, Z.; Zhang, M.; Li, Y.; Huang, S.; Liu, X.; Jin, Y.; Wang, H.; Qu, J. Impact of Spent Mushroom Substrate on Cd Immobilization and Soil Property. Environ. Sci. Pollut. Res. 2020, 27, 3007–3022. [Google Scholar] [CrossRef] [PubMed]
- Eliescu, A.; Georgescu, A.A.; Nicolescu, C.M.; Bumbac, M.; Cioateră, N.; Mureșeanu, M.; Buruleanu, L.C. Biosorption of Pb(II) from Aqueous Solution Using Mushroom (Pleurotus ostreatus) Biomass and Spent Mushroom Substrate. Anal. Lett. 2020, 53, 2292–2319. [Google Scholar] [CrossRef]
- Leong, Y.K.; Varjani, S.; Lee, D.J.; Chang, J.S. Valorization of Spent Mushroom Substrate for Low-Carbon Biofuel Production: Recent Advances and Developments. Bioresour. Technol. 2022, 363, 128012. [Google Scholar] [CrossRef]
- Koido, K.; Ogura, T.; Matsumoto, R.; Endo, K.; Sato, M. Spent Mushroom Substrate Performance for Pyrolysis, Steam Co-Gasification, and Ash Melting. Biomass Bioenergy 2021, 145, 105954. [Google Scholar] [CrossRef]
- Zhao, Z.; Ibrahim, M.M.; Wang, X.; Xing, S.; Heiling, M.; Hood-Nowotny, R.; Tong, C.; Mao, Y. Properties of Biochar Derived from Spent Mushroom Substrates. Bioresources 2019, 14, 5254–5277. [Google Scholar] [CrossRef]
- Sethumadhavan, P.; Arul Mozhi Selvan, V. Effect of Spent Mushroom Substrate and Waste Paper Briquette on Methane Production from Anaerobic Digestion. J. Environ. Biol. 2018, 39, 269–276. [Google Scholar] [CrossRef]
- Medina, E.; Paredes, C.; Pérez-Murcia, M.D.; Bustamante, M.A.; Moral, R. Spent Mushroom Substrates as Component of Growing Media for Germination and Growth of Horticultural Plants. Bioresour. Technol. 2009, 100, 4227–4232. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, V.; Nicoletto, C.; Zanin, G.; Sambo, P. Specific Humus Systems from Mushrooms Culture. Appl. Soil Ecol. 2018, 123, 709–713. [Google Scholar] [CrossRef]
- Gao, W.; Liang, J.; Pizzul, L.; Feng, X.M.; Zhang, K.; Castillo, M.d.P. Evaluation of Spent Mushroom Substrate as Substitute of Peat InChinese Biobeds. Int. Biodeterior Biodegrad. 2015, 98, 107–112. [Google Scholar] [CrossRef]
- Paula, F.S.; Tatti, E.; Abram, F.; Wilson, J.; O’Flaherty, V. Stabilisation of Spent Mushroom Substrate for Application as a Plant Growth-Promoting Organic Amendment. J. Environ. Manag. 2017, 196, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Dai, J.; Zhang, Y.; Wang, X.; Zhu, W.; Yuan, X.; Yuan, H.; Cui, Z. Composted Biogas Residue and Spent Mushroom Substrate as a Growth Medium for Tomato and Pepper Seedlings. J. Environ. Manag. 2018, 216, 62–69. [Google Scholar] [CrossRef]
- Wang, H.W.; Xu, M.; Cai, X.Y.; Feng, T.; Xu, W.L. Application of Spent Mushroom Substrate Suppresses Fusarium Wilt in Cucumber and Alters the Composition of the Microbial Community of the Cucumber Rhizosphere. Eur. J. Soil Biol. 2020, 101, 103245. [Google Scholar] [CrossRef]
- Pérez-Chávez, A.M.; Mayer, L.; Albertó, E. Mushroom Cultivation and Biogas Production: A Sustainable Reuse of Organic Resources. Energy Sustain. Dev. 2019, 50, 50–60. [Google Scholar] [CrossRef]
- Xiao, Z.; Lin, M.; Fan, J.; Chen, Y.; Zhao, C.; Liu, B. Anaerobic Digestion of Spent Mushroom Substrate under Thermophilic Conditions: Performance and Microbial Community Analysis. Appl. Microbiol. Biotechnol. 2018, 102, 499–507. [Google Scholar] [CrossRef]
- Ravlikovsky, A.; Symochko, L. Agroecological Aspects of Cultivation Shiitake Mushroom in Ukraine. In Proceedings of the International Council on Technologies of Environmental Protection (ICTEP), Starý Smokovec, Slovakia, 23–25 October 2019. [Google Scholar] [CrossRef]
- Ravlikovsky, A.; Symochko, L. Potential Use of spent mushroom substrate of Lentinula Edodes as a biofertilizer. Int. J. Ecosyst. Ecol. Sci. 2020, 10, 527–534. [Google Scholar] [CrossRef]
- DSTU 7882:2015; Peat and Its Processing Products for Agriculture. Methods of Determining Metabolic and Active Acidity. SE “UkrNDNC”: Kyiv, Ukraine, 2015.
- DSTU EN 12048:2005 (EN 12048:1996, IDT); Solid Fertilizers and Liming Materials. Determination of Moisture Content by Gravimetric Method. Drying at a Temperature of (105 ± 2) °C. SE “UkrNDNC”: Kyiv, Ukraine, 2005.
- DSTU 7942:2015; Soil Quality. Determination of Ash Content of Peat and Peat Soil. SE “UkrNDNC”: Kyiv, Ukraine, 2015.
- DSTU 8454:2015; Organic Fertilizers. Methods of Determination of Organic Matter. SE “UkrNDNC”: Kyiv, Ukraine, 2015.
- DSTU 7911:2015; Organic and Organo-Mineral Fertilizers. Methods of Determining the Total Mass Fraction of Nitrogen and the Mass Fraction of Ammonium Nitrogen. SE “UkrNDNC”: Kyiv, Ukraine, 2015.
- DSTU 7949:2015; Organic Fertilizers. Method for Determining the Mass Fraction of Total Potassium. SE “UkrNDNC”: Kyiv, Ukraine, 2015.
- DSTU EN 15956:2015; Fertilizers. Method for Extracting Phosphorus Soluble in Mineral Acids. SE “UkrNDNC”: Kyiv, Ukraine, 2015.
- DSTU 7670:2014; Raw Materials and Food Products. Preparation of Samples. Mineralization to Determine the Content of Toxic Elements. SE “UkrNDNC”: Kyiv, Ukraine, 2014.
- Alef, K.; Nannipieri, P. Methods in Applied Soil Microbiology and Biochemistry; Elsevier Ltd.: Amsterdam, The Netherlands, 1995; ISBN 9780125138406. [Google Scholar]
- Demyanyuk, O.; Symochko, L.; Shatsman, D. Structure and dynamics of soil microbial communities of natural and transformed ecosystems. Environ. Res. Eng. Manag. 2020, 76, 97–105. [Google Scholar] [CrossRef]
- Comparative Characteristics of Some Types of Fuel. Available online: https://bioopt.com.ua/ua/a240346-sravnitelnaya-harakteristika-nekotoryh.html (accessed on 20 January 2024).
- DSTU EN 14774-1:2013; Solid Biofuels. Determination of Moisture Content. Drying Oven Method. Part 1. General Moisture. Standard Method (EN 14774-1:2009, IDT). SE “UkrNDNC”: Kyiv, Ukraine, 2013.
- EN 15403:2011; Solid Recovered Fuels—Determination of Ash Content. SE “UkrNDNC”: Kyiv, Ukraine, 2011.
- ISO 1171:2010; Solid Mineral Fuels—Determination of Ash. ISO: Geneva, Switzerland, 2010.
- DSTU EN 15104:2013; Solid Biofuels. Methods for Determination of Total Carbon, Hydrogen and Nitrogen Content (EN 15104:2011, IDT). SE “UkrNDNC”: Kyiv, Ukraine, 2013.
- DSTU EN 15289:2013; Solid Biofuel. Methods for Determining Total Sulfur and Chlorine Content (EN 15289:2011, IDT). SE “UkrNDNC”: Kyiv, Ukraine, 2013.
- DSTU EN 15148:2012; Solid Biofuel. Method for Determining the Content of Volatile Substances (EN 15148:2009, IDT). SE “UkrNDNC”: Kyiv, Ukraine, 2012.
- DSTU ISO 1928:2006; Solid Mineral Fuels. Determination of the Highest Heat of Combustion by the Calorimetric Bomb Combustion Method and Calculation of the Lowest Heat of Combustion (ISO 1928:1995, IDT). SE “UkrNDNC”: Kyiv, Ukraine, 2006.
- Symochko, L.; Pereira, P. Agricultural Soil Management Impacts on Soil Microbial Communities. In Frontier Studies in Soil Science; Núñez-Delgado, A., Ed.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Litvinova, O.; Tonkha, O.; Havryliuk, O.; Litvinov, D.; Symochko, L.; Dehodiuk, S.; Zhyla, R. Fertilizers and pesticides impact on surface-active substances accumulation in the dark gray podzolic soils. J. Ecol. Eng. 2023, 24, 119–127. [Google Scholar] [CrossRef]
- Symochko, L.; Demyanyuk, O.; Crisan, V.; Dinca, L. Microbial transformation of soil organic matter under varying agricultural management systems. Front. Microbiol. 2023, 14, 1287701. [Google Scholar] [CrossRef] [PubMed]
- Lipiec, J.; Usowicz, B.; Kłopotek, J.; Turski, M.; Frąc, M. Effects of Application of Recycled Chicken Manure and Spent Mushroom Substrate on Organic Matter, Acidity, and Hydraulic Properties of Sandy Soils. Materials 2021, 14, 4036. [Google Scholar] [CrossRef]
- Joniec, J.; Kwiatkowska, E.; Kwiatkowski, C.A. Assessment of the Effects of Soil Fertilization with Spent Mushroom Substrate in the Context of Microbial Nitrogen Transformations and the Potential Risk of Exacerbating the Greenhouse Effect. Agriculture 2022, 12, 1190. [Google Scholar] [CrossRef]
- Custódio, V.; Gonin, M.; Stabl, G.; Bakhoum, N.; Oliveira, M.M.; Gutjahr, C.; Castrillo, G. Sculpting the Soil Microbiota. Plant J. 2022, 109, 508–522. [Google Scholar] [CrossRef] [PubMed]
- Symochko, L. Soil microbiome: Diversity, activity, functional and structural successions. Int. J. Ecosyst. Ecol. Sci. 2020, 10, 277–284. [Google Scholar] [CrossRef]
- Symochko, L.; Demyanyuk, O.; Symochko, V.; Grulova, D.; Fejer, J.; Mariychuk, R. The spreading of antibiotic-resistant bacteria in terrestrial ecosystems and the formation of soil resistome. Land 2023, 12, 769. [Google Scholar] [CrossRef]
- Patyka, V.; Symochko, L. Soil microbiological monitoring of natural and transformed ecosystems in the trans-Carpathian region of Ukraine. Mikrobiol. Z. 2013, 75, 21–31. (In Ukrainian) [Google Scholar] [PubMed]
- Trivedi, P.; Delgado-Baquerizo, M.; Anderson, I.C.; Singh, B.K. Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Front. Plant Sci. 2016, 7, 990. [Google Scholar] [CrossRef] [PubMed]
- Vincze, É.-B.; Becze, A.; Laslo, É.; Mara, G. Beneficial Soil Microbiomes and Their Potential Role in Plant Growth and Soil Fertility. Agriculture 2024, 14, 152. [Google Scholar] [CrossRef]
- Geller, A.M.; Levy, A. “What I cannot create, I do not understand”: Elucidating microbe-microbe interactions to facilitate plant microbiome engineering. Curr. Opin. Microbiol. 2023, 72, 102283. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kumar, A.; Song, Z.; Gao, Q.; Kuzyakov, Y.; Tian, J.; Zhang, F. Altered Organic Matter Chemical Functional Groups and Bacterial Community Composition Promote Crop Yield under Integrated Soil–Crop Management System. Agriculture 2023, 13, 134. [Google Scholar] [CrossRef]
- Meng, F.; Yang, H.; Fan, X.; Gao, X.; Tai, J.; Sa, R.; Ge, X.; Yang, X.; Liu, Q. A Microbial Ecosystem Enhanced by Regulating Soil Carbon and Nitrogen Balance Using Biochar and Nitrogen Fertiliser Five Years after Application. Sci. Rep. 2023, 13, 22233. [Google Scholar] [CrossRef]
- Yang, R.; Yang, Z.; Yang, S.; Chen, L.; Xin, J.; Xu, L.; Zhang, X.; Zhai, B.; Wang, Z.; Zheng, W.; et al. Nitrogen Inhibitors Improve Soil Ecosystem Multifunctionality by Enhancing Soil Quality and Alleviating Microbial Nitrogen Limitation. Sci. Total Environ. 2023, 880, 163238. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Lv, Q.; Zhang, L.; Fan, J.; Wang, T.; Meng, Y.; Xia, H.; Ren, X.; Hu, S. Converted Paddy to Upland in Saline-Sodic Land Could Improve Soil Ecosystem Multifunctionality by Enhancing Soil Quality and Alleviating Microbial Metabolism Limitation. Sci. Total Environ. 2024, 924, 171707. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shi, F.; Yi, S.; Feng, T.; Wang, C.; Li, Z.; Zheng, W.; Zhai, B. Soil Multifunctionality Predicted by Bacterial Network Complexity Explains Differences in Wheat Productivity Induced by Fertilization Management. Eur. J. Agron. 2024, 153, 127058. [Google Scholar] [CrossRef]
- Antón-Herrero, R.; Chicca, I.; García-Delgado, C.; Crognale, S.; Lelli, D.; Gargarello, R.M.; Herrero, J.; Fischer, A.; Thannberger, L.; Eymar, E.; et al. Main Factors Determining the Scale-Up Effectiveness of Mycoremediation for the Decontamination of Aliphatic Hydrocarbons in Soil. J. Fungi 2023, 9, 1205. [Google Scholar] [CrossRef] [PubMed]
- Grimm, A.; dos Reis, G.S.; Khokarale, S.G.; Ekman, S.; Lima, E.C.; Xiong, S.; Hultberg, M. Shiitake Spent Mushroom Substrate as a Sustainable Feedstock for Developing Highly Efficient Nitrogen-Doped Biochars for Treatment of Dye-Contaminated Water. J. Water Process Eng. 2023, 56, 104435. [Google Scholar] [CrossRef]
- Ravlikovsky, A.; Symochko, L.; Coelho Pinheiro, M.N. Valorization of spent shiitake mushroom substrate—A potential alternative to peat. In Proceedings of the WASTES: Solutions, Treatments and Opportunities IV—Selected papers from the 6th International Conference Wastes, Coimbra, Portugal, 6–8 September 2023. [Google Scholar] [CrossRef]
- Xiong, S.; Martín, C.; Eilertsen, L.; Wei, M.; Myronycheva, O.; Larsson, S.H.; Lestander, T.A.; Atterhem, L.; Jönsson, L.J. Energy-Efficient Substrate Pasteurisation for Combined Production of Shiitake Mushroom (Lentinula edodes) and Bioethanol. Bioresour. Technol. 2019, 274, 65–72. [Google Scholar] [CrossRef]
- Schimpf, U.; Schulz, R. Industrial By-Products from White-Rot Fungi Production. Part I: Generation of Enzyme Preparations and Chemical, Protein Biochemical and Molecular Biological Characterization. Process Biochem. 2016, 51, 2034–2046. [Google Scholar] [CrossRef]
Indicators | SMS | Peat |
---|---|---|
relative humidity, % | 58.04 | 59.32 |
acidity, pH | 3.70 | 4.50 |
organic matter in the calculation of carbon, % | 48.44 | 44.95 |
mass fraction of total nitrogen, % | 1.04 | 1.99 |
ratio C:N | 44.7:1 | 45.2:1 |
total potassium, % | 0.43 | 0.07 |
total phosphorous, % | 0.37 | 0.31 |
calcium content, % | 0.42 | 0.50 |
magnesium content, % | 0.17 | 0.10 |
Substrate | Yield after 14th Week (%) | Yield after 16th Week (%) | Yield after 18th Week (%) | Average Yield (%) |
---|---|---|---|---|
CS | 20.83 | 21.91 | 22.50 | 21.75 |
EX 1 | 24.80 | 26.41 | 26.2 | 25.80 |
EX 2 | 16.73 | 20.63 | 23.91 | 20.42 |
EX 3 | 10.71 | 17.98 | 18.20 | 15.63 |
Indicators | Soil Added with SMS | Soil Added with Peat |
---|---|---|
acidity, pH | 5.16 | 5.60 |
hydrolytic acidity, mmol-eq/100 g | 44.46 | 34.65 |
electrical conductivity mS m−1 | 56.83 | 34.73 |
relative humidity, % | 49.39 | 51.90 |
organic matter, % | 49.00 | 34.31 |
nitrate nitrogen, mg/100 g | 103.7 | 31.19 |
ammonium nitrogen, mg/100 g | 2.47 | 5.20 |
mobile compounds of potassium, mg/100 g | 78.73 | 73.17 |
mobile compounds of phosphorous, mg/100 g | 75.75 | 74.75 |
water-soluble calcium, mg kg−1 | 435.00 | 264.50 |
water-soluble magnesium, mg kg−1 | 118.50 | 69.92 |
Indicators | Soil Added with SMS | Soil Added with Peat |
---|---|---|
Micromycetes (×10−3 CFU g−1) | 8.19 ± 1.69 | 1.99 ± 0.17 |
Bacteria which use organic nitrogen (×10−3 CFU g−1) | 11.61 ± 2.12 | 1.34 ± 0.22 |
Bacteria which use mineral nitrogen (×10−3 CFU g−1) | 15.6 ± 1.1 | 4.3 ± 0.28 |
Oligotrophs (×10−3 CFU g−1) | 1.32 ± 0.13 | 0.54 ± 0.06 |
Streptomyces (×10−3 CFU g−1) | 7.82 ± 0.23 | 2.68 ± 0.14 |
Pedotrophs (×10−3 CFU g−1) | 11.53 ± 0.89 | 1.88 ± 0.14 |
Total microbial biomass (μg) | 157.1 ± 1.82 | 143.18 ± 1.71 |
Samples | Coefficient of Mineralization (Cmin) | Coefficient of Oligotrophity (Col) | Coefficient of Pedotrophity (Cped) |
---|---|---|---|
Soil added with SMS | 1.46 | 0.27 | 0.99 |
Soil added with peat | 3.60 | 0.43 | 1.40 |
Samples | Relative Humidity % | Heat of Combustion | ||
---|---|---|---|---|
kcal kg−1 | MJ kg−1 | kW h kg−1 | ||
SMS (naturally dried) | 34 | 2568 | 10.76 | 2.99 |
SMS (artificially dried) | 18 | 4042 | 16.94 | 4.71 |
Firewood (one year under the canopy) | 30 | 2875 | 12.05 | 3.35 |
Firewood (dried) | 20 | 3381 | 14.17 | 3.94 |
Wood pallets | ≤10 | 4100 | 17.17 | 4.7 |
Sawdust | 20–30 | 2000 | 8.37 | 2.3 |
Woodchips | 20–30 | 2610 | 10.93 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravlikovsky, A.; Pinheiro, M.N.C.; Dinca, L.; Crisan, V.; Symochko, L. Valorization of Spent Mushroom Substrate: Establishing the Foundation for Waste-Free Production. Recycling 2024, 9, 44. https://doi.org/10.3390/recycling9030044
Ravlikovsky A, Pinheiro MNC, Dinca L, Crisan V, Symochko L. Valorization of Spent Mushroom Substrate: Establishing the Foundation for Waste-Free Production. Recycling. 2024; 9(3):44. https://doi.org/10.3390/recycling9030044
Chicago/Turabian StyleRavlikovsky, Andrew, Maria Nazaré Coelho Pinheiro, Lucian Dinca, Vlad Crisan, and Lyudmyla Symochko. 2024. "Valorization of Spent Mushroom Substrate: Establishing the Foundation for Waste-Free Production" Recycling 9, no. 3: 44. https://doi.org/10.3390/recycling9030044
APA StyleRavlikovsky, A., Pinheiro, M. N. C., Dinca, L., Crisan, V., & Symochko, L. (2024). Valorization of Spent Mushroom Substrate: Establishing the Foundation for Waste-Free Production. Recycling, 9(3), 44. https://doi.org/10.3390/recycling9030044