Recent Advancements in Material Waste Recycling: Conventional, Direct Conversion, and Additive Manufacturing Techniques
Abstract
:1. Introduction
2. Research and Development in Recycling Materials
2.1. Cleaning Chips
2.2. Conventional Methods
2.2.1. Electric Arc Furnace (EAF)
2.2.2. Electroslag Remelting (ESR)
2.2.3. Vacuum Arc Remelting (VAR)
2.2.4. Electron Beam Melting (EBM)
2.2.5. Plasma Arc Melting (PAM)
2.2.6. Vacuum Induction Melting (VIM)
2.2.7. Gas Atomization (GA)
2.3. Direct Conversion Methods
2.3.1. Severe Plastic Deformation (SPD)
Friction Stir Extrusion (FSE)
Cyclic Extrusion Compression (CEC)
High Pressure Torsion (HPT)
Equal Channel Angular Pressing (ECAP)
KOBO Extrusion Process (KEP)
2.3.2. Hot Extrusion
2.4. Powder Metallurgy (PM)
2.5. Billet Compaction
3. Summary and Future Prospects for Recycling of Chips Made of Different Metals and Alloys
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garrison, W.M. Ultrahigh-strength steels for aerospace applications. JOM 1990, 42, 20–24. [Google Scholar] [CrossRef]
- Rambabu, P.; Prasad, N.; Kutumbarao, V.; Wanhill, R. Aluminium Alloys for Aerospace Applications. In Aerospace Materials and Material Technologies; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Setiawan, J.; Pribadi, S.; Jamaludin, A.; Sungkono, S.; Al Hasa, M.H. Structural analysis of Al alloys for nuclear fuel cladding. AIP Conf. Proc. 2020, 2262, 050002. [Google Scholar] [CrossRef]
- Wahid, M.A.; Siddiquee, A.N.; Khan, Z.A. Aluminum alloys in marine construction: Characteristics, application, and problems from a fabrication viewpoint. Mar. Syst. Ocean. Technol. 2019, 15, 1–11. [Google Scholar] [CrossRef]
- Inagaki, I.; Takechi, T.; Shirai, Y.; Ariyasu, N. Application and Features of Titanium for the Aerospace Industry. Nippon. Steel Sumitomo Met. Tech. Rep. 2014, 106, 22–27. [Google Scholar]
- Wang, L.; Jiang, X.; Huang, L. Research on Collision Response of Titanium Alloy Cylindrical Pressure Shell. World J. Eng. Technol. 2020, 8, 658–664. [Google Scholar] [CrossRef]
- The Soviet Titanium Industry And its Role in Military Buildup, Sanitized Copy Approved for Release 2011/02/07: CIA-RDP86T00591R000200170005-0, March 1985. Available online: https://www.cia.gov/readingroom/docs/CIA-RDP86T00591R000200170005-0.pdf (accessed on 7 May 2024).
- Morton, A.G.S.; Lane, I.R. Titanium Castings for Marine Propellers. In Titanium Science and Technology; Jaffee, R.I., Burte, H.M., Eds.; Springer: Boston, MA, USA, 1973. [Google Scholar]
- Zhang, Q.; Huang, Y.; Blackwood, D.J.; Zhang, B.; Lu, D.; Yang, D.; Xu, Y. On the long term estimation of hydrogen embrittlement risks of titanium for the fabrication of nuclear waste container in bentonite buffer of nuclear waste repository. J. Nucl. Mater. 2020, 533, 152092. [Google Scholar] [CrossRef]
- Sirin, M. The effect of titanium (Ti) additive on radiation shielding efficiency of Al25Zn alloy. Prog. Nucl. Energy 2020, 128, 103470. [Google Scholar] [CrossRef]
- Jones, R.H.; Leonard Jr, B.R.; Johnson, A.B., Jr. Assessment of Titanium Alloys for Fusion Reactor First-Wall and Blanket Applications; Final Report; Battelle Pacific Northwest Labs.: Richland, WA, USA, 1980. [Google Scholar]
- Furrer, D.; Fecht, H. Ni-based superalloys for turbine discs. JOM 1999, 51, 14–17. [Google Scholar] [CrossRef]
- Yang, X.; Yu, C.; Yang, X.; Yan, K.; Qian, G.; Wang, B.; Yan, W.; Shi, X. Microstructure and Mechanical Properties of an Austenitic Heat-Resistant Steel after Service at 570 °C and 25.4 MPa for 18 Years. J. Mater. Eng. Perform. 2021, 30, 1030–1038. [Google Scholar] [CrossRef]
- Young, A.M.; Kral, M.V.; Bishop, C.M. Effects of aging and nitridation on microstructure and mechanical properties of austenitic stainless steel. J. Mater. Sci. 2023, 58, 10716–10735. [Google Scholar] [CrossRef]
- Byrnes, M.L.G.; Grujicic, M.; Owen, W.S. Nitrogen strengthening of a stable austenitic stainless steel. Acta Metall. 1987, 35, 1853–1862. [Google Scholar] [CrossRef]
- Bohnenkamp, U.; Sandström, R. Evaluation of the elastic modulus of steels. Steel Res. 2000, 71, 94–99. [Google Scholar] [CrossRef]
- Mathew, M.D.; Laha, K.; Ganesan, V. Improving creep strength of 316L stainless steel by alloying with nitrogen. Mater. Sci. Eng. A 2012, 535, 76–83. [Google Scholar] [CrossRef]
- Simmons, J.W. Mechanical properties of isothermally aged high-nitrogen stainless steel. Metall. Mater. Trans. A 1995, 26, 2579–2595. [Google Scholar] [CrossRef]
- Jiang, Z.-H.; Zhang, Z.-R.; Li, H.-B.; Li, Z.; Qi-Feng, M. Microstructural evolution and mechanical properties of aging high nitrogen austenitic stainless steels. Int. J. Miner. Metall. Mater. 2010, 17, 729–736. [Google Scholar] [CrossRef]
- Öksüz, K.E.; Bağirov, H.; Şimşir, M.; Karpuzoğlu, C.; Özbölük, A.; Demirhan, Y.Z.; Bilgin, H.U. Investigation of Mechanical Properties and Microstructure of AA2024 and AA7075. Appl. Mech. Mater. 2013, 390, 547–551. [Google Scholar] [CrossRef]
- Maisonnette, D.; Suery, M.; Nelias, D.; Chaudet, P.; Epicier, T. Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy. Mater. Sci. Eng. A 2011, 528, 2718–2724. [Google Scholar] [CrossRef]
- Terada, D.; Kaneda, Y.; Horita, Z.; Matsuda, K.; Hirosawa, S.; Tsuji, N. Mechanical properties and microstructure of 6061 aluminum alloy severely deformed by ARB process and subsequently aged at low temperatures. IOP Conf. Ser. Mater. Sci. Eng. 2014, 63, 012088. [Google Scholar] [CrossRef]
- Tsuji, N.; Saito, Y.; Lee, S.; Minamino, Y. ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials. Adv. Eng. Mater. 2003, 5, 338–344. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Zehetbauer, M.J.; Estrin, Y.; Höppel, H.W.; Ivanisenko, Y.; Hahn, H.; Wilde, G.; Roven, H.J.; Sauvage, X.; Langdon, T.G. The Innovation Potential of Bulk Nanostructured Materials. Adv. Eng. Mater. 2007, 9, 527–533. [Google Scholar] [CrossRef]
- Azushima, A.; Kopp, R.; Korhonen, A.; Yang, D.Y.; Micari, F.; Lahoti, G.D.; Groche, P.; Yanagimoto, J.; Tsuji, N.; Rosochowski, A.; et al. Severe plastic deformation (SPD) processes for metals. CIRP Ann. 2008, 57, 716–735. [Google Scholar] [CrossRef]
- Estrin, Y.; Vinogradov, A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013, 61, 782–817. [Google Scholar] [CrossRef]
- Zhao, Y.; Xin, S.; Zeng, W. Effect of major alloying elements on microstructure and mechanical properties of a highly β stabilized titanium alloy. J. Alloys Compd. 2009, 481, 190–194. [Google Scholar] [CrossRef]
- Lee, Y.-R.; Han, M.-K.; Kim, M.-K.; Moon, W.-J.; Song, H.-J.; Park, Y.-J. Effect of gold addition on the microstructure, mechanical properties and corrosion behavior of Ti alloys. Gold Bull. 2014, 47, 153–160. [Google Scholar] [CrossRef]
- Rosalbino, F.; Delsante, S.; Borzone, G.; Scavino, G. Influence of noble metals alloying additions on the corrosion behaviour of titanium in a fluoride-containing environment. J. Mater. Sci. Mater. Med. 2012, 23, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Kikuchi, M.; Okuno, O. Mechanical properties and grindability of experimental Ti-Au alloys. Dent. Mater. J. 2004, 23, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Sieniawski, J.; Ziaja, W.; Kubiak, K.; Motyk, M. Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys. In Titanium Alloys—Advances in Properties Control; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; He, Q.; Wei, W.; Guo, F.; Su, W.; Huang, C. A strong and ductile pure titanium. Mater. Sci. Eng. A 2022, 833, 142534. [Google Scholar] [CrossRef]
- Shan, D.B.; Zong, Y.Y.; Lv, Y.; Guo, B. The effect of hydrogen on the strengthening and softening of Ti-6Al-4V alloy. Scr. Mater. 2008, 58, 449–452. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, W.; Hou, H. Strengthening of Ti-6Al-4V alloys by thermohydrogen processing. Int. J. Hydrogen Energy 2009, 34, 1971–1976. [Google Scholar] [CrossRef]
- Zong, Y.; Wu, K. Thermo hydrogen treatment for microstructure refinement and mechanical properties improvement of Ti-6Al-4V alloy. Mater. Sci. Eng. A 2017, 703, 430–437. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, B. Effects of hydrogen as a solid solution element on the deformation behavior of a near-alpha titanium alloy. Mater. Sci. Eng. A 2021, 815, 141269. [Google Scholar] [CrossRef]
- Gaddam, R.; Hörnqvist, M.; Antti, M.-L.; Pederson, R. Influence of high-pressure gaseous hydrogen on the low-cycle fatigue and fatigue crack growth properties of a cast titanium alloy. Mater. Sci. Eng. A 2014, 612, 354–362. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Z.; Xiao, S.; Chen, Y. Effect of hydrogenation on microstructure evolution, mechanical and electrochemical properties of pure titanium. J. Alloys Compd. 2019, 781, 1139–1149. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, X. Improvement of mechanical properties and microstructural refining of cast titanium alloys by coupling of electropulsing and temporary alloying element hydrogen. Mater. Sci. Eng. A 2022, 858, 144176. [Google Scholar] [CrossRef]
- Yadav, P.; Saxena, K.K. Effect of heat-treatment on microstructure and mechanical properties of Ti alloys: An overview. Mater. Today: Proc. 2020, 26 Pt 2, 2546–2557. [Google Scholar] [CrossRef]
- Lütjering, G.; Williams, J.C.; Gysler, A. Microstructure and mechanical properties of titanium alloys. Microstruct. Prop. Mater. 2000, 2, 1–77. [Google Scholar] [CrossRef]
- Lu, H.; Yang, M.; Zhou, L.; Ma, Z.; Cui, B.; Yin, F.; Li, D. Effects of Heat Treatment on the Microstructure and Properties of a Cast Nickel-Based High-Cr Superalloy. Metals 2022, 12, 2176. [Google Scholar] [CrossRef]
- Bi, L.; Yan, H.; Zhang, P.; Shi, H.; Li, Z.; Li, R. Influence of rare earth oxides on microstructure and mechanical properties of nickel-based superalloys fabricated by high energy beam processing: A review. J. Rare Earths 2023, in press. [CrossRef]
- Min, K.S.; Nam, S.W. Correlation Between Characteristics of Grain Boundary Carbides and Creep–Fatigue Properties in AISI, 321 Stainless Steel. J. Nucl. Mater. 2003, 322, 91–97. [Google Scholar] [CrossRef]
- Pardo, A.; Merino, M.; Coy, A.; Viejo, F.; Carboneras, M.; Arrabal, R. Influence of Ti, C and N Concentration on the Intergranular Corrosion Behaviour of AISI, 316Ti and 321 Stainless Steels. Acta Mater. 2007, 55, 2239–2251. [Google Scholar] [CrossRef]
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent Developments in Stainless Steels. Mater. Sci. Eng. R. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Min, K.S.; Kim, K.J.; Nam, S.W. Investigation of the Effect of the Types and Densities of Grain Boundary Carbides on Grain Boundary Cavitation Resistance of AISI, 321 Stainless Steel Under Creep– Fatigue Interaction. J. Alloys Compd. 2004, 370, 223–229. [Google Scholar] [CrossRef]
- Ohkubo, N.; Miyakusu, K.; Uematsu, Y.; Kimura, H. Effect of Alloying Elements on the Mechanical Properties of the Stable Austenitic Stainless Steel. ISIJ Int. 1994, 34, 764–772. [Google Scholar] [CrossRef]
- Yiran, W.; Ruian, W.; Yimin, G. Effect of Co content on microstructure and mechanical properties of maraging steel. J. Mater. Res. Technol. 2023, 27, 3887–3899. [Google Scholar] [CrossRef]
- Wang, H.; Wang, A.; Li, C.; Yu, X.; Xie, J.; Liang, T.; Liu, C. Effects of rare earth metals on microstructure, mechanical properties, and pitting corrosion of 27% Cr hyper duplex stainless steel. Rev. Adv. Mater. Sci. 2022, 61, 873–887. [Google Scholar] [CrossRef]
- Meng, Q.; La, P.; Yao, L.; Zhang, P.; Wei, Y.; Guo, X. Effect of Al on Microstructure and Properties of Hot-Rolled 2205 Dual Stainless Steel. Adv. Mater. Sci. Eng. 2016, 2016, 7518067. [Google Scholar] [CrossRef]
- Srinivasan, D.; Meignanamoorthy, M.; Ravichandran, M.; Mohanavel, V.; Alagarsamy, S.V.; Chanakyan, C.; Sakthivelu, S.; Karthick, A.; Prabhu, T.R.; Rajkumar, S. 3D Printing Manufacturing Techniques, Materials, and Applications: An Overview. Adv. Mater. Sci. Eng. 2021, 2021, 5756563. [Google Scholar] [CrossRef]
- Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Haq, M.I.U. 3D printing—A review of processes, materials and applications in industry 4.0. Sustain. Oper. Comput. 2022, 3, 33–42. [Google Scholar] [CrossRef]
- Duda, T.; Raghavan, L.V. 3D Metal Printing Technology. IFAC-Pap. 2016, 49, 103–110. [Google Scholar] [CrossRef]
- Skoratko, A.; Katzer, J. Harnessing 3D Printing of Plastics in Construction-Opportunities and Limitations. Materials 2021, 14, 4547. [Google Scholar] [CrossRef]
- Mikula, K.; Skrzypczak, D.; Izydorczyk, G.; Warchoł, J.; Moustakas, K.; Chojnacka, K.; Witek-Krowiak, A. 3D printing filament as a second life of waste plastics—A review. Environ. Sci. Pollut. Res. 2021, 28, 12321–12333. [Google Scholar] [CrossRef]
- Ahmed, G.H. A review of “3D concrete printing”: Materials and process characterization, economic considerations and environmental sustainability. J. Build. Eng. 2023, 66, 105863. [Google Scholar] [CrossRef]
- Jo, J.H.; Jo, B.W.; Cho, W.; Kim, J.-H. Development of a 3D Printer for Concrete Structures: Laboratory Testing of Cementitious Materials. Int. J. Concr. Struct. Mater. 2020, 14, 13. [Google Scholar] [CrossRef]
- Blanco, I. The Use of Composite Materials in 3D Printing. J. Compos. Sci. 2020, 4, 42. [Google Scholar] [CrossRef]
- Tian, X.; Todoroki, A.; Liu, T.; Wu, L.; Hou, Z.; Ueda, M.; Hirano, Y.; Matsuzaki, R.; Mizukami, K.; Iizuka, K.; et al. 3D Printing of Continuous Fiber Reinforced Polymer Composites: Development, Application, and Prospective. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100016. [Google Scholar] [CrossRef]
- Herzberger, J.; Sirrine, J.M.; Williams, C.B.; Long, T.E. Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing. Prog. Polym. Sci. 2019, 97, 101144. [Google Scholar] [CrossRef]
- Zhou, L.Y.; Gao, Q.; Fu, J.Z.; Chen, Q.Y.; Zhu, J.P.; Sun, Y.; He, Y. Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers. ACS Appl. Mater. Interfaces 2019, 11, 23573–23583. [Google Scholar] [CrossRef] [PubMed]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef]
- Yuk, H.; Lu, B.; Lin, S.; Qu, K.; Xu, J.; Luo, J.; Zhao, X. 3D printing of conducting polymers. Nat. Commun. 2020, 11, 1604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fan, W.; Liu, T. Fused deposition modeling 3D printing of polyamide-based composites and its applications. Compos. Commun. 2020, 21, 100413. [Google Scholar] [CrossRef]
- Hojjatzadeh, S.M.H.; Parab, N.D.; Yan, W.; Guo, Q.; Xiong, L.; Zhao, C.; Qu, M.; Escano, L.I.; Xiao, X.; Fezzaa, K.; et al. Pore elimination mechanisms during 3D printing of metals. Nat. Commun. 2019, 10, 3088. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.H.; Yahata, B.D.; Hundley, J.M.; Mayer, J.A.; Schaedler, T.A.; Pollock, T.M. 3D printing of high-strength aluminium alloys. Nature 2017, 549, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Qu, M.; Chuang, C.A.; Xiong, L.; Nabaa, A.; Young, Z.A.; Ren, Y.; Kenesei, P.; Zhang, F.; Chen, L. Phase transformation dynamics guided alloy development for additive manufacturing. Addit. Manuf. 2022, 59 Pt A, 103068. [Google Scholar] [CrossRef]
- Gutmann, B.; Köckinger, M.; Glotz, G.; Ciaglia, T.; Slama, E.; Zadravec, M.; Pfanner, S.; Maier, M.C.; Gruber-Wölfler, H.; Kappe, C.O. Design and 3D printing of a stainless steel reactor for continuous difluoromethylations using fluoroform. React. Chem. Eng. 2017, 2, 919–927. [Google Scholar] [CrossRef]
- Masek, P.; Fornusek, T.; Zeman, P.; Bucko, M.; Smolik, J.; Heinrich, P. Machinability The Aisi 316 Stainless Steel after Processing by Various Methods of 3D Printing. MM Sci. J. 2019, 2019, 3338–3346. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, J.; Zhang, H.; Kent, N.J.; Diamond, D.; Gilchrist, M.D. 3D Printing of Metallic Microstructured Mould Using Selective Laser Melting for Injection Moulding of Plastic Microfluidic Devices. Micromachines 2019, 10, 595. [Google Scholar] [CrossRef] [PubMed]
- Aboulkhair, N.T.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C.; Hague, R. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Prog. Mater. Sci. 2019, 106, 100578. [Google Scholar] [CrossRef]
- Bahar, A.; Belhabib, S.; Guessasma, S.; Benmahiddine, F.; Hamami, A.E.A.; Belarbi, R. Mechanical and Thermal Properties of 3D Printed Polycarbonate. Energies 2022, 15, 3686. [Google Scholar] [CrossRef]
- Wang, G.; Wang, S.; Dong, X.; Zhang, Y.; Shen, W. Recent progress in additive manufacturing of ceramic dental restorations. J. Mater. Res. Technol. 2023, 26, 1028–1049. [Google Scholar] [CrossRef]
- Martinho, P.G. Chapter 9—Rapid manufacturing and tooling, In Plastics Design Library, Design and Manufacturing of Plastics Products; Pouzada, A.S., Ed.; William Andrew Publishing: Norwich, NY, USA, 2021; pp. 381–456. [Google Scholar]
- Gong, X.; Anderson, T.; Chou, K. Review on powder-based electron beam additive manufacturing technology. Manuf. Rev. 2014, 1, 2. [Google Scholar] [CrossRef]
- Gokuldoss, P.K.; Kolla, S.; Eckert, J. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines. Materials 2017, 10, 672. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Singh, Y.P. Chapter 7—Additive manufacturing techniques used for preparation of scaffolds in bone repair and regeneration. In Additive Manufacturing Materials and Technologies, Advances in Additive Manufacturing; Kumar, A., Mittal, R.K., Haleem, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 103–127. [Google Scholar]
- Gao, B.; Zhao, H.; Peng, L.; Sun, Z. A Review of Research Progress in Selective Laser Melting (SLM). Micromachines 2023, 14, 57. [Google Scholar] [CrossRef] [PubMed]
- Spears, T.G.; Gold, S.A. In-process sensing in selective laser melting (SLM) additive manufacturing. Integr. Mater. Manuf. Innov. 2016, 5, 16–40. [Google Scholar] [CrossRef]
- Maurya, H.S.; Kollo, L.; Tarraste, M.; Juhani, K.; Sergejev, F.; Prashanth, K.G. Effect of the Laser Processing Parameters on the Selective Laser Melting of TiC–Fe-Based Cermets. J. Manuf. Mater. Process. 2022, 6, 35. [Google Scholar] [CrossRef]
- Tonelli, L. Revealing the Hierarchical Microstructure of Innovative Additively Manufactured Metal Parts with Conventional Light Microscopy. Metallogr. Microstruct. Anal. 2021, 10, 278–282. [Google Scholar] [CrossRef]
- Yan, C.; Hao, L.; Hussein, A.; Young, P.; Huang, J.; Zhu, W. Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering. Mater. Sci. Eng. A. 2015, 628, 238–246. [Google Scholar] [CrossRef]
- Costello, S.C.; Cunningham, C.R.; Xu, F.; Shokrani, A.; Dhokia, V.; Newman, S. The state-of-the-art of wire arc directed energy deposition (WA-DED) as an additive manufacturing process for large metallic component manufacture. Int. J. Comput. Integr. Manuf. 2023, 36, 1–44. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Dash, A.; Squires, L.; Roberts, E.; Avila, J.D.; Doude, H.R.; Stokes, R.; Champagne, V.K., Jr.; Bose, S. Wire-arc directed energy deposition of monolithic and bimetallic structures of maraging 250 steel. Virtual Phys. Prototyp. 2024, 19, e2296127. [Google Scholar] [CrossRef]
- Aversa, A.; Saboori, A.; Librera, E.; de Chirico, M.; Biamino, S.; Lombardi, M.; Fino, P. The role of Directed Energy Deposition atmosphere mode on the microstructure and mechanical properties of 316L samples. Addit. Manuf. 2020, 34, 101274. [Google Scholar] [CrossRef]
- Graf, B.; Marko, A.; Petrat, T.; Gumenyuk, A.; Rethmeier, M. 3D laser metal deposition: Process steps for additive manufacturing. Weld World 2018, 62, 877–883. [Google Scholar] [CrossRef]
- Zhong, C.; Liu, J.; Zhao, T.; Schopphoven, T.; Fu, J.; Gasser, A.; Schleifenbaum, J.H. Laser Metal Deposition of Ti6Al4V—A Brief Review. Appl. Sci. 2020, 10, 764. [Google Scholar] [CrossRef]
- Shao, J.; Samaei, A.; Xue, T.; Xie, X.; Guo, S.; Cao, J.; MacDonald, E.; Gan, Z. Additive friction stir deposition of metallic materials: Process, structure and properties. Mater. Des. 2023, 234, 112356. [Google Scholar] [CrossRef]
- Yu, H.Z.; Mishra, R.S. Additive friction stir deposition: A deformation processing route to metal additive manufacturing. Mater. Res. Lett. 2021, 9, 71–83. [Google Scholar] [CrossRef]
- Phillips, B.J.; Avery, D.Z.; Liu, T.; Rodriguez, O.L.; Mason, C.J.T.; Jordon, J.B.; Brewer, L.N.; Allison, P.G. Microstructure-deformation relationship of additive friction stir-deposition Al–Mg–Si. Materialia 2019, 7, 100387. [Google Scholar] [CrossRef]
- Sharifi, A.; Khodabakhshi, F.; Kashani-bozorg, S.F.; Gerlich, A.P. Microstructure and mechanical properties in additive manufacturing by friction surfacing of AA6061 alloy. Mater. Sci. Eng. A 2023, 884, 145520. [Google Scholar] [CrossRef]
- Chaudhary, B.; Jain, N.K.; Murugesan, J.; Patel, V. Friction stir powder additive manufacturing of Al 6061 alloy: Enhancing microstructure and mechanical properties by reducing thermal gradient. J. Mater. Res. Technol. 2023, 26, 1168–1184. [Google Scholar] [CrossRef]
- Sisco, K.; Plotkowski, A.; Yang, Y.; Leonard, D.; Stump, B.; Nandwana, P.; Dehoff, R.R.; Babu, S.S. Microstructure and properties of additively manufactured Al-Ce-Mg alloys. Sci Rep. 2021, 11, 6953. [Google Scholar] [CrossRef]
- Gong, J.; Wei, K.; Liu, M.; Song, W.; Li, X.; Zeng, X. Microstructure and mechanical properties of AlSi10Mg alloy built by laser powder bed fusion/direct energy deposition hybrid laser additive manufacturing. Addit. Manuf. 2022, 59 Pt A, 103160. [Google Scholar] [CrossRef]
- Liu, M.; Ma, G.; Liu, D.; Yu, J.; Niu, F.; Wu, D. Microstructure and mechanical properties of aluminum alloy prepared by laser-arc hybrid additive manufacturing. J. Laser Appl. 2020, 32, 022052. [Google Scholar] [CrossRef]
- Yang, W.; Jung, Y.-G.; Kwak, T.; Kim, S.K.; Lim, H.; Kim, D.-H. Microstructure and Mechanical Properties of an Al–Mg–Si–Zr Alloy Processed by L-PBF and Subsequent Heat Treatments. Materials 2022, 15, 5089. [Google Scholar] [CrossRef]
- Zhong, H.; Qi, B.; Cong, B.; Qi, Z.; Sun, H. Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured 2050 Al–Li Alloy Wall Deposits. Chin. J. Mech. Eng. 2019, 32, 92. [Google Scholar] [CrossRef]
- Chen, H.; Fu, L.; Liang, P.; Liu, F. Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al-Li alloy thin sheets. Mater. Charact. 2017, 125, 160–173. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, P.; Pang, C.; Liu, Q.; Li, S.; Li, J. Microstructure and Mechanical Properties of a High-Ductility Al-Zn-Mg-Cu Aluminum Alloy Fabricated by Wire and Arc Additive Manufacturing. J. Mater. Eng. Perform. 2022, 31, 6459–6472. [Google Scholar] [CrossRef]
- Shyam, A.; Plotkowski, A.; Bahl, S.; Sisco, K.; Allard, L.; Yang, Y.; Haynes, J.; Dehoff, R. An additively manufactured AlCuMnZr alloy microstructure and tensile mechanical properties. Materialia 2020, 12, 100758. [Google Scholar] [CrossRef]
- Dixit, S.; Liu, S. Laser Additive Manufacturing of High-Strength Aluminum Alloys: Challenges and Strategies. J. Manuf. Mater. Process. 2022, 6, 156. [Google Scholar] [CrossRef]
- Coşkun, M.; Dizdar, K.C.; Tarakçi, G.; Özer, G.; Dispinar, D. Recycling of additive manufactured AlSi10Mg and its effect on mechanical properties. Mater. Chem. Phys. 2022, 289, 126411. [Google Scholar] [CrossRef]
- Zheng, Q.; Chen, H.S.; Zhou, J.; Wang, W.; Xi, S.X.; Yuan, Y. Effect of boron element on microstructure and mechanical properties of 316L stainless steel manufactured by selective laser melting. J. Mater. Res. Technol. 2023, 26, 3744–3755. [Google Scholar] [CrossRef]
- Bin Han, S.; Lee, Y.S.; Park, S.H.; Song, H. Ti-containing 316L stainless steels with excellent tensile properties fabricated by directed energy deposition additive manufacturing. Mater. Sci. Eng. A 2022, 862, 144414. [Google Scholar] [CrossRef]
- Jandaghi, M.R.; Pouraliakbar, H.; Shim, S.H.; Fallah, V.; Hong, S.I.; Pavese, M. In-situ alloying of stainless steel 316L by co-inoculation of Ti and Mn using LPBF additive manufacturing: Microstructural evolution and mechanical properties. Mater. Sci. Eng. A 2022, 857, 144114. [Google Scholar] [CrossRef]
- Vukkum, V.B.; Christudasjustus, J.; Darwish, A.A.; Storck, S.M.; Gupta, R.K. Enhanced corrosion resistance of additively manufactured stainless steel by modification of feedstock. npj Mater. Degrad. 2022, 6, 2. [Google Scholar] [CrossRef]
- Waqas, M.; He, D.; Liu, Y.; Riaz, S.; Afzal, F. Effect of Heat Treatment on Microstructure and Mechanical Properties of Ti6Al4V Alloy Fabricated by Selective Laser Melting. J. Mater. Eng. Perform. 2023, 32, 680–694. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Zou, Z.; Shi, Y.; Zang, Y. The microstructure and tensile properties of additively manufactured Ti–6Al–2Zr–1Mo–1V with a trimodal microstructure obtained by multiple annealing heat treatment. Mater. Sci. Eng. A 2021, 831, 142241. [Google Scholar] [CrossRef]
- Ganor, Y.I.; Tiferet, E.; Vogel, S.C.; Brown, D.W.; Chonin, M.; Pesach, A.; Hajaj, A.; Garkun, A.; Samuha, S.; Shneck, R.Z.; et al. Tailoring Microstructure and Mechanical Properties of Additively-Manufactured Ti6Al4V Using Post Processing. Materials 2021, 14, 658. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, C.; Feng, T.; Zhang, Y.; Ren, B.; Zhao, X. Improvement of microstructure and mechanical properties of TC4 titanium alloy GTAW based wire arc additive manufacturing by using interpass milling. J. Mater. Res. Technol. 2023, 27, 1428–1445. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Liu, H.-Y.; Yao, Q.; Liu, S.-B.; Shi, K.; Zhang, Z.-Y.; Li, C.-Y. Microstructure and mechanical properties of laser additive manufactured novel titanium alloy after heat treatment. China Foundry 2021, 18, 574–580. [Google Scholar] [CrossRef]
- Ojo, S.A.; Shrestha, S.; El Rassi, J.; Panakarajupally, R.P.; Manigandan, K.; Morscher, G.N.; Gyekenyesi, A.L.; Scott-Emuakpor, O.E. The use of compact specimens to determine fracture toughness anisotropy of Ti–6Al–4V additively manufactured for repair. Mater. Sci. Eng. A 2021, 823, 141779. [Google Scholar] [CrossRef]
- Ojo, S.A.; Bowser, B.; Manigandan, K.; Morscher, G.N.; Dong, Y.; Gyekenyesi, A.L.; Scott-Emuakpor, O.E. Improving fatigue life of additively repaired Ti-6Al-4V subjected to laser-assisted ultrasonic nanocrystal surface modification. Int. J. Fatigue 2023, 173, 107663. [Google Scholar] [CrossRef]
- Ojo, S.A.; Shrestha, S.; Manigandan, K.; Morscher, G.N.; Gyekenyesi, A.L.; Scott-Emuakpor, O.E. Application of small geometry specimens to determine the fatigue crack growth anisotropy of Ti–6Al–4V additively manufactured for repair. Results Mater. 2022, 15, 100309. [Google Scholar] [CrossRef]
- Ojo, S.A.; Manigandan, K.; Morscher, G.N.; Gyekenyesi, A.L. Enhancement of the Microstructure and Fatigue Crack Growth Performance of Additive Manufactured Titanium Alloy Parts by Laser-Assisted Ultrasonic Vibration Processing. J. Mater. Eng. Perform. 2024, 1–15. [Google Scholar] [CrossRef]
- Kong, D.-C.; Dong, C.-F.; Ni, X.-Q.; Zhang, L.; Li, R.-X.; He, X.; Man, C.; Li, X.-G. Microstructure and mechanical properties of nickel-based superalloy fabricated by laser powder-bed fusion using recycled powders. Int. J. Miner. Metall. Mater. 2021, 28, 266–278. [Google Scholar] [CrossRef]
- Xu, M.; Chen, Y.; Zhang, T.; Xie, J.; Wei, K.; Wang, S.; Yin, L. Effect of post-heat treatment on microstructure and mechanical properties of nickel-based superalloy fabricated by ultrasonic-assisted wire arc additive manufacturing. Mater. Sci. Eng. A 2023, 863, 144548. [Google Scholar] [CrossRef]
- Xie, M. Effect of C content on the microstructures and mechanical properties of laser additive manufactured Ni-base superalloys. Heliyon 2023, 9, e16111. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Zhao, Y.; Guan, J.; Yang, Y.; Fu, Y. Influence of Carbon Additions on Microstructures and Mechanical Properties in Additive Manufactured Superalloys. Mater. Adv. 2023, 4, 4897–4911. [Google Scholar] [CrossRef]
- Mostafaei, A.; Zhao, C.; He, Y.; Ghiaasiaan, S.R.; Shi, B.; Shao, S.; Shamsaei, N.; Wu, Z.; Kouraytem, N.; Sun, T.; et al. Defects and anomalies in powder bed fusion metal additive manufacturing. Curr. Opin. Solid State Mater. Sci. 2022, 26, 100974. [Google Scholar]
- Brennan, M.C.; Keist, J.S.; Palmer, T.A. Defects in Metal Additive Manufacturing Processes. J. Mater. Eng. Perform. 2021, 30, 4808–4818. [Google Scholar] [CrossRef]
- Kim, F.H.; Moylan, S.P. Literature Review of Metal Additive Manufacturing Defects; Advanced Manufacturing Series (NIST AMS); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. [Google Scholar]
- Martin, J.H.; Barnes, J.E.; Rogers, K.A.; Hundley, J.; LaPlant, D.L.; Ghanbari, S.; Tsai, J.T.; Bahr, D.F. Additive manufacturing of a high-performance aluminum alloy from cold mechanically derived non-spherical powder. Commun. Mater. 2023, 4, 39. [Google Scholar] [CrossRef]
- Smythe, S.A.; Thomas, B.M.; Jackson, M. Recycling of Titanium Alloy Powders and Swarf through Continuous Extrusion (ConformTM) into Affordable Wire for Additive Manufacturing. Metals 2020, 10, 843. [Google Scholar] [CrossRef]
- Jordon, J.; Allison, P.; Phillips, B.; Avery, D.; Kinser, R.; Brewer, L.; Cox, C.; Doherty, K. Direct recycling of machine chips through a novel solid-state additive manufacturing process. Mater. Des. 2020, 193, 108850. [Google Scholar] [CrossRef]
- Batista, C.D.; Fernandes, A.A.M.D.N.P.; Vieira, M.T.F.; Emadinia, O. From Machining Chips to Raw Material for Powder Metallurgy-A Review. Materials 2021, 14, 5432. [Google Scholar] [CrossRef]
- Shamsudin, S.; Lajis, M.; Zhong, Z. Evolutionary in Solid State Recycling Techniques of Aluminium: A review. Procedia CIRP 2016, 40, 256–261. [Google Scholar] [CrossRef]
- Wan, B.; Chen, W.; Lu, T.; Liu, F.; Jiang, Z.; Mao, M. Review of solid state recycling of aluminum chips. Resour. Conserv. Recycl. 2017, 125, 37–47. [Google Scholar] [CrossRef]
- Boin, U.M.J.; Bertram, M. Melting standardized aluminum scrap: A mass balance model for europe. JOM 2005, 57, 26–33. [Google Scholar] [CrossRef]
- Palimaka, P. Thermal Cleaning and Melting of Fine Aluminium Alloy Chips. Arch. Foundry Eng. 2021, 20, 91–96. [Google Scholar] [CrossRef]
- Samuel, M. A new technique for recycling aluminium scrap. J. Mater. Process. Technol. 2003, 135, 117–124. [Google Scholar] [CrossRef]
- Kurdyukov, V.A.; Sergeev, A.A.; Reznyakov, A.A. Efficient methods of processing metal chips. Metallurgist 1997, 41, 331–335. [Google Scholar] [CrossRef]
- Bongardt, J. Technical Note: Reduction of waste from fabrication processes. J. S. Afr. Inst. Min. Metall. 1997, 97, 63–67. [Google Scholar]
- Wang, Z.; Bao, Y.; Wang, M. The effect of different cleaning methods for titanium chips on the carbon content of ferrotitanium after remelting. J. Mater. Res. Technol. 2022, 18, 2208–2216. [Google Scholar] [CrossRef]
- Teke, E.; Sütçü, M.; Baskurt, Y.; Seydibeyoglu, Ö. Recovery of Pressed Titanium Alloy Machining Chip via Vacuum Induction Melting. Sci. Res. Commun. 2022, 2, 1–13. [Google Scholar] [CrossRef]
- Dhiman, S.; Joshi, R.S.; Singh, S.; Gill, S.S.; Singh, H.; Kumar, R.; Kumar, V. Recycling of Ti6Al4V machining swarf into additive manufacturing feedstock powder to realise sustainable recycling goals. J. Clean. Prod. 2022, 348, 131342. [Google Scholar] [CrossRef]
- Wang, R.; Wang, M.; Gao, S.; Wang, Z.; Xin, T.; Liu, M.; Bao, Y. Compound purification of nickel base superalloy cutting waste through special cleaning agent attached to ultrasonic stirring. J. Clean. Prod. 2022, 378, 134548. [Google Scholar] [CrossRef]
- Dziewinska, K.; Lussiez, G.; Munger, D. A process for Treating Uranium Chips and Turnings; LANL: Los Alamos, NM, USA.
- Denkena, B.; Krödel, A.; Pyzcak, F.; Rackel, M.W.; Kettelmann, S.; Matthies, J. Recycled Titanium Chips as Initial Product for the Atomisation Process of Powders for Additive Manufacturing to Increase Resource Efficiency. In Proceedings of the Machining Innovations Conference for Aerospace Industry (MIC), Garbsen, Germany, 23–24 November 2021. [Google Scholar]
- Yang, Q.-X.; Xu, A.-J.; Xue, P.; He, D.-F.; Li, J.-L.; Björkman, B. Briquette Smelting in Electric Arc Furnace to Recycle Wastes from Stainless Steel Production. J. Iron Steel Res. Int. 2015, 22 (Suppl. S1), 10–16. [Google Scholar] [CrossRef]
- Hay, T.; Visuri, V.-V.; Aula, M.; Echterhof, T. A Review of Mathematical Process Models for the Electric Arc Furnace Process. Steel Res. Int. 2021, 92, 2000395. [Google Scholar] [CrossRef]
- Wang, Y. Numerical Modeling of the Metal Melting Utilizing a Dc Electric Arc Plasma for Electric Arc Furnace. Master’s Thesis, Purdue University Graduate School, Lafayette, IN, USA, 2019. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Environmental Studies and Toxicology. Committee on Electric Arc Furnace Slag: Understanding Human Health Risks from Unencapsulated Uses. In Health Risk Considerations for the Use of Unencapsulated Steel Slag; Electric Arc Furnace Steelmaking and Slag Formation, Composition, and Distribution; National Academies Press: Washington, DC, USA, 2023; p. 2. [Google Scholar]
- Teo, P.T.; Zakaria, S.K.; Salleh, S.Z.; Taib, M.A.A.; Mohd Sharif, N.; Abu Seman, A.; Mohamed, J.J.; Yusoff, M.; Yusoff, A.H.; Mohamad, M.; et al. Assessment of Electric Arc Furnace (EAF) Steel Slag Waste’s Recycling Options into Value Added Green Products: A Review. Metals 2020, 10, 1347. [Google Scholar] [CrossRef]
- Mahmoodi, H.; Abbasi, M.; Hosseinipour, S.J. The effect of renewed melting process under electrical slag on the fatigue life of the precipitation hardened stainless steel Custom-450. J. Mater. Res. Technol. 2023, 23, 1680–1695. [Google Scholar] [CrossRef]
- Ali, M.; Porter, D.; Kömi, J.; Eissa, M.; El Faramawy, H.; Mattar, T. The Effect of Electroslag Remelting on the Microstructure and Mechanical Properties of CrNiMoWMnV Ultrahigh-Strength Steels. Metals 2020, 10, 262. [Google Scholar] [CrossRef]
- Ali, M.; Eissa, M.; El Faramawy, H.; Porter, D.; Kömi, J.; El-Shahat, M.F.; Mattar, T. Electroslag Refining of CrNiMoWMnV Ultrahigh-Strength Steel. J. Miner. Mater. Charact. Eng. 2017, 5, 385–407. [Google Scholar] [CrossRef]
- Satyaprasad, V.V.; Sambasivarao, A.; Prakash, U.; Rao, V.R.; Rao, P.K.; Gupta, K.M. Recycling of superalloy scrap through electro slag remelting. ISIJ Int. 1996, 36, 1459–1464. [Google Scholar]
- Prasad, V.; Rao, A.; Prakash, U.; Rao, V.; Rao, P.; Gupt, K.M. Recycling of valuable scrap through electroslag processing. Trans. -Indian Inst. Met. 2002, 55, 9–14. [Google Scholar]
- Prasad, V.V.S.; Rao, A.S. Electroslag Melting for Recycling Scrap of Valuable Metals and Alloys. In Recycling of Metals and Engineered Materials; Stewart, D.L., Daley, J.C., Stephens, R.L., Eds.; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Zanner, F.J. Vacuum Melting. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1–6. ISBN 9780080431529. [Google Scholar]
- Lekatou, A.; Sfikas, A.K.; Petsa, C.; Karantzalis, A.E. Al-Co Alloys Prepared by Vacuum Arc Melting: Correlating Microstructure Evolution and Aqueous Corrosion Behavior with Co Content. Metals 2016, 6, 46. [Google Scholar] [CrossRef]
- Campbell, J. A Future for Vacuum Arc Remelting and Electroslag Remelting—A Critical Perspective. Metals 2023, 13, 1634. [Google Scholar] [CrossRef]
- Karimi-Sibaki, E.; Kharicha, A.; Wu, M.; Ludwig, A.; Bohacek, J. A Parametric Study of the Vacuum Arc Remelting (VAR) Process: Effects of Arc Radius, Side-Arcing, and Gas Cooling. Metall. Mater. Trans. B 2020, 51, 222–235. [Google Scholar] [CrossRef]
- Reis, L.A.M. Recycling and melting process of the zirconium alloy chips. Braz. J. Radiat. Sci. 2019, 7. [Google Scholar] [CrossRef]
- Pereira, L.A.T.; Martinez, L.G.; Mucsi, C.S.; dos Reis, L.A.M.; Rossi, J.L. On the melting of zirconium alloys from scraps using electron beam and induction furnaces—Recycling process viability. J. Mater. Res. Technol. 2020, 9, 4867–4875. [Google Scholar] [CrossRef]
- Reitz, J.; Lochbichler, C.; Friedrich, B. Recycling of gamma titanium aluminide scrap from investment casting operations. Intermetallics 2011, 19, 762–768. [Google Scholar] [CrossRef]
- Friedrich, B.; Morscheiser, J.; Hecht, J.; Lochbichler, C. Recycling of Titanium-Aluminide Scrap. Intermetallics 2009, 6, 762–768. [Google Scholar]
- Vutova, K.; Donchev, V. Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization. Materials 2013, 6, 4626–4640. [Google Scholar] [CrossRef] [PubMed]
- Vassileva, V.; Vutova, K. Electron Beam Melting and Refining—Another Possibility for Recycling of Metal Scrap. Int. Sci. J. Mach. Technol. Mater. 2016, 10, 58–61. [Google Scholar]
- Vutova, K.; Vassileva, V.; Koleva, E.; Georgieva, E.; Mladenov, G.; Mollov, D.; Kardjiev, M. Investigation of electron beam melting and refining of titanium and tantalum scrap. J. Mater. Process. Technol. 2010, 210, 1089–1094. [Google Scholar] [CrossRef]
- Vutova, K.; Vassileva, V.; Koleva, E.; Munirathnam, N.; Amalnerkar, D.P.; Tanaka, T. Investigation of Tantalum Recycling by Electron Beam Melting. Metals 2016, 6, 287. [Google Scholar] [CrossRef]
- Mladenov, G.; Koleva, E.; Vutova, K.; Vassileva, V. Experimental and theoretical studies of electron beam melting and refining. In Practical Aspects and Applications of Electron Beam Irradiation; Transworld Research Network: Trivandrum, India, 2011. [Google Scholar]
- Knight, R.; Smith, R.W.; Apelian, D. Application of plasma arc melting technology to processing of reactive metals. Int. Mater. Rev. 1991, 36, 221–252. [Google Scholar] [CrossRef]
- Dunn, P.S.; Korzekwa, D.R.; Garcia, F.G.; Michaluk, C.A. Chemistry Modification of High Oxygen-Carbon Powder by Plasma Melting; LANL: Los Alamos, NM, USA, 1996. [Google Scholar]
- Blackburn, M.; Malley, D. Plasma arc melting of titanium alloys. Mater. Des. 1993, 14, 19–27. [Google Scholar] [CrossRef]
- Modrzyński, A.; Greześkowiak, K.; Namyślak, R. Recycling of titanium alloys in plasma furnace. Czech. J. Phys. 2004, 54 (Suppl. S3), C1016. [Google Scholar] [CrossRef]
- Luis, M.; Luiz, P.; Jesualdo, R.; Hidetoshi, T. Recycling of Zircaloy Machining Chips Using Powder Metallurgy and Remelting in an Electric Arc Furnace. Mater. Sci. Eng. 2017, 1. Available online: https://www.opastpublishers.com/open-access-articles/recycling-of-zircaloy-machining-chips-using-powder-metallurgy-and-remelting-in-an-electric-arc-furnace.pdf (accessed on 7 May 2024).
- Latash, Y.V.; Yakovenko, V.A.; Butskii, E.V.; Yarulin, V.N.; Bogdanov, S.V.; Kubikov, V.P. Electroslag Remelting Waste of Creep-Resisting Alloys using Cooled Nonconsumable Electrodes. Adv. Spec. Electrometall. 1990, 6, 109. [Google Scholar]
- Fedika, A.A. Electro Slag Remelting. In Proceedings of the 2nd All Union Conference on Electro Slag Remelting, Metallurgiya, Moscow, Russia; 1969; p. 126. [Google Scholar]
- Pereira, L.A.T.; Rossi, J.L. The recycling through melting Zircaloy machining chips, preliminary results. Braz. J. Radiat. Sci. 2018, 6. [Google Scholar] [CrossRef]
- Hekimoğlu, A.P.; Çaliş, M. Effect of arc re-melting on microstructure, mechanical and tribological properties of commercial 390A alloy. Trans. Nonferrous Met. Soc. China 2021, 31, 2264–2276. [Google Scholar] [CrossRef]
- Seo, Y.-D.; Park, J.-S.; Lee, D.-J.; Lee, H.-S.; Sohn, H.-S. Recycling Technology of Titanium Scrap by ESR Process, Ti-2007 Science and Technology; Ninomi, M., Akiyama, S., Ikeda, M., Hagiwara, M., Eds.; The Japan Institute of Metals: Maruyama, Japan, 2007; Available online: https://cdn.ymaws.com/titanium.org/resource/resmgr/ZZ-WCTP2007-VOL2/2007_Vol_2_Pres_42.pdf (accessed on 7 May 2024).
- Wang, F.; Baleta, J.; Wang, Q.; Li, B. Investigation on the effect of electrode tip on formation of metal droplets and temperature profile in a vibrating electrode electroslag remelting process. Open Phys. 2019, 17, 743–751. [Google Scholar] [CrossRef]
- Greenfield, P. Zirconium in Nuclear Technology IN M&B Monograph ME/12 Mills & Boon Limited; OSTI.gov: London, UK, 1972. [Google Scholar]
- Kramer, K.-H.; Hillse, K.; Detemple, E.; Krupp-Kleckner, S.; Bergreen, J. Recycling of Titanium Chips. Available online: https://cdn.ymaws.com/titanium.org/resource/resmgr/ZZ-WCTP1984-VOL1/1984_Vol.1-2-A-Recycling_of_.pdf (accessed on 7 May 2024).
- Berggreen, J. Requirements for Recycling of Valuable Chips from and for Aircraft Manufacturing; Messerschmitt-Bolkow-Blohm GmbH: Augsburg, Germany, 1985. [Google Scholar]
- McKoon, R.H. Scrap Uranium Recycling via Electron Beam Melting; Lawrence Livermore National Lab.: Livermore, CA, USA, 1993. [Google Scholar]
- Takeda, O.; Ouchi, T.; Okabe, T.H. Recent Progress in Titanium Extraction and Recycling. Metall. Mater. Trans. B 2020, 51, 1315–1328. [Google Scholar] [CrossRef]
- Vutova, K.; Vassileva, V. Electron-Beam Melting and Reuse of Metallic Materials. Met. Sci. Heat Treat. 2020, 62, 345–348. [Google Scholar] [CrossRef]
- Vutova, K.; Stefanova, V.; Markov, M.; Vassileva, V. Study of the Possibility of Recycling of Technogenic Hafnium during Electron Beam Refining. Materials 2022, 15, 8518. [Google Scholar] [CrossRef]
- McKoon, R.H. Progress toward Uranium Scrap Recycling via Electron Beam Cold Hearth Refining; LLNL: Livermore, CA, USA, 1994. [Google Scholar]
- Dunn, P.; Patterson, R.A.; Haun, R. Plasma Arc Melting of Titanium-Tantalum Alloys; LANL: Los Alamos, NM, USA, 1995. [Google Scholar]
- Bhat, G.K. Potential, problems and innovations of plasma heat applications in the metallurgical industry. Pure Appl. Chem. 1984, 56, 209–214. [Google Scholar] [CrossRef]
- Torkar, M.; Lamut, M.; Millaku, A. Recycling of steel chips. Mater. Technol. 2010, 44, 289–292. [Google Scholar]
- Cacace, S.; Furlan, V.; Sorci, R.; Semeraro, Q.; Boccadoro, M. Using recycled material to produce gas-atomized metal powders for additive manufacturing processes. J. Clean. Prod. 2020, 268, 122218. [Google Scholar] [CrossRef]
- Lagutkin, S.; Achelis, L.; Sheikhaliev, S.; Uhlenwinkel, V.; Srivastava, V. Atomization process for metal powder. Mater. Sci. Eng. A 2004, 383, 1–6. [Google Scholar] [CrossRef]
- White, E.M.H.; Heidloff, A.; Byrd, D.; Anderson, R.; Anderson, I. Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments. Powder Metall. 2016, 59, 181–187. [Google Scholar] [CrossRef]
- Heidloff, A.; Rieken, J.; Anderson, I.; Byrd, D. Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization; Ames Lab.: Ames, IA, USA, 2011. [Google Scholar]
- Zheng, B.; Lin, Y.; Zhou, Y.; Lavernia, E.J. Gas Atomization of Amorphous Aluminum Powder: Part II. Experimental Investigation. Metall. Mater. Trans. B 2009, 40, 995–1004. [Google Scholar] [CrossRef]
- Hizume, S.; Natsu, W. Mechanism clarification and realization of scanning electrochemical machining of titanium alloys. J. Adv. Mech. Des. Syst. Manuf. 2021, 15, JAMDSM0055. [Google Scholar] [CrossRef]
- Xing, L.; Guo, J.; Li, X.; Zhang, Z.; Wang, M.; Bao, Y.; Zeng, F.; Chen, B. Control of tin precipitation behavior in titanium-containing micro-alloyed steel. Mater. Today Commun. 2020, 25, 101292. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, J.; Chen, C.; Weng, F. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. J. Alloys Compd. 2016, 685, 784–798. [Google Scholar] [CrossRef]
- Choi, J.-H.; Chang, H.; Ryu, T.; Nam, C.-W.; Kim, B.-S. Investigating the aluminothermic process for producing ferrotitanium alloy from ilmenite concentrate. Metals 2020, 10, 1493. [Google Scholar] [CrossRef]
- Chumarev, V.M.; Dubrovskii, A.Y.; Pazdnikov, I.P.; Shurygin, Y.Y.; Sel’menskikh, N.I. Technological possibilities of manufacturing high-grade ferrotitanium from crude ore. Russ. Metall. 2008, 6, 459–463. [Google Scholar] [CrossRef]
- Pourabdoli, M.; Raygan, S.; Abdizadeh, H.; Hanaei, K. A new process for the production of ferrotitanium from titania slag. Can. Metall. Q. 2007, 46, 17–23. [Google Scholar] [CrossRef]
- Gao, Z.; Cheng, G.; Yang, H.; Xue, X.; Ri, J. Preparation of ferrotitanium using ilmenite with different reduction degrees. Metals 2019, 9, 962. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.; Dong, X.; Xue, Q. A literature review of titanium slag metallurgical processes. Metal. Int. 2012, 17, 49–56. [Google Scholar]
- Takeda, O.; Okabe, T.H. Current status of titanium recycling and related technologies. JOM 2019, 71, 1981–1990. [Google Scholar] [CrossRef]
- Pramanik, A. Problems and solutions in machining of titanium alloys. Int. J. Adv. Manuf. Technol. 2014, 70, 919–928. [Google Scholar] [CrossRef]
- Jiao, H.; Song, W.-L.; Chen, H.; Wang, M.; Jiao, S.; Fang, D. Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis. J. Clean. Prod. 2020, 261, 121314. [Google Scholar] [CrossRef]
- Gronostajski, J.; Marciniak, H.; Matuszak, A. New methods of aluminium and aluminium-alloy chips recycling. J. Mater. Process. Technol. 2000, 106, 34–39. [Google Scholar] [CrossRef]
- Kollová, A.; Pauerová, K. Superalloys—Characterization, Usage and Recycling. Manuf. Technol. 2022, 22, 550–557. [Google Scholar] [CrossRef]
- Kim, M.-S.; Lee, J.-C.; Park, H.-S.; Jun, M.-J.; Kim, B.-S. A multistep leaching of nickel-based superalloy scrap for selective dissolution of its constituent metals in hydrochloric acid solutions. Hydrometallurgy 2018, 176, 235–242. [Google Scholar] [CrossRef]
- Cui, F.; Wang, G.; Yu, D.; Gan, X.; Tian, Q.; Guo, X. Towards “zero waste” extraction of nickel from scrap nickel-based superalloy using magnesium. J. Clean. Prod. 2020, 262, 121275. [Google Scholar] [CrossRef]
- Debarbadillo, J.J. Nickel-base superalloys; physical metallurgy of recycling. Metall. Trans. A 1983, 14, 329–341. [Google Scholar] [CrossRef]
- Yagi, R.; Okabe, T.H. Recovery of Nickel from Nickel-Based Superalloy Scraps by Utilizing Molten Zinc. Metall. Mater. Trans. B 2017, 48, 335–345. [Google Scholar] [CrossRef]
- Tian, Q.; Gan, X.; Cui, F.; Yu, D.; Guo, X. Selective Extraction of Ni from Superalloy Scraps by Molten Mg-Zn. Metals 2021, 11, 993. [Google Scholar] [CrossRef]
- Jerzy, G.; Matuszak, A. The recycling of metals by plastic deformation: An example of recycling of aluminium and its alloys chips. J. Mater. Process. Technol. 1999, 92, 35–41. [Google Scholar]
- Gronostajski, J.; Kaczmar, J.; Marciniak, H.; Matuszak, A. Recycling of aluminium alloys by diffusion bonding process. In Proceedings of the II International Conference on “The Recycling of Metals”, Amsterdam, The Netherlands, 19–21 October 1994; pp. 287–294. [Google Scholar]
- Gronostajski, J.; Kaczmar, J.; Marciniak, H.; Matuszak, A. Direct recycling of aluminium chips into extruded products. In Proceedings of the 14th International Conference on Advanced Materials and Technologies, AMT’95, Zakopane, Poland, 17–21 May 1995; pp. 133–140. [Google Scholar]
- El Mehtedi, M.; Forcellese, A.; Mancia, T.; Simoncini, M.; Spigarelli, S. A new sustainable direct solid state recycling of AA1090 aluminum alloy chips by means of friction stir back extrusion process. Procedia CIRP 2019, 79, 638–643. [Google Scholar] [CrossRef]
- Petryk, H.; Stupkiewicz, S. Grain refinement in AlMgSi alloy during cyclic extrusion-compression: Experiment and modelling. Arch. Metall. Mater. 2007, 52, 49. [Google Scholar]
- El Aal, M.I.A. Recycling of Al chips and Al chips composites using high-pressure torsion. Mater. Res. Express 2021, 8, 56514. [Google Scholar] [CrossRef]
- Mohammed, R.H.; Shahab, A.F.; Rezaei, A.F. Effect of ECAP process on mechanical properties and microstructure of AA-6061 recycled chips. Eng. Technol. J. 2023, 41, 1–16. [Google Scholar] [CrossRef]
- Topolski, K.; Bochniak, W.; Łagoda, M.; Ostachowski, P.; Garbacz, H. Structure and properties of titanium produced by a new method of chip recycling. J. Mater. Process. Technol. 2017, 248, 80–91. [Google Scholar] [CrossRef]
- Noga, P.; Tuz, L.; Żaba, K.; Zwoliński, A. Analysis of Microstructure and Mechanical Properties of AlSi11 after Chip Recycling, Co-Extrusion, and Arc Welding. Materials 2021, 14, 3124. [Google Scholar] [CrossRef] [PubMed]
- Laurent-Brocq, M.; Lilensten, L.; Pinot, C.; Schulze, A.; Duchaussoy, A.; Bourgon, J.; Leroy, E.; Tekkaya, A.E. Solid state recycling of aluminium chips: Multi-technique characterization and analysis of oxidation. Materialia 2023, 31, 101864. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk Nanostructured Materials from Severe Plastic Deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- Valiev, R.; Korznikov, A.; Mulyukov, R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A 1993, 168, 141–148. [Google Scholar] [CrossRef]
- Feng, Z.; David, S.A.; Manchiraju, V.K.; Frederick, D.A.; Thomas, W. Friction Extrusion: Solid-State Metal Synthesis and Recycling in Sustainable Manufacturing. JOM 2023, 75, 2962–2973. [Google Scholar] [CrossRef]
- Baffari, D.; Reynolds, A.P.; Masnata, A.; Fratini, L.; Ingarao, G. Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization. J. Manuf. Process. 2019, 43, 63–69. [Google Scholar] [CrossRef]
- Buffa, G.; Micari, F.; Campanella, D.; Fratini, L.; Muhuammed, A. Process mechanics in continuous friction stir extrusion process of aluminum alloy. Mater. Res. Proc. 2023, 26, 719–724. [Google Scholar]
- Hasan, N.; Gradinarov, D. Defining parameters for control of extruding wire by friction process. MATEC Web Conf. 2019, 287, 06003. [Google Scholar] [CrossRef]
- Rabby, R.E.; Li, X.; Grant, G.; Mathaudhu, S.; Reynolds, A. Process parameters and system responses in friction extrusion. J. Manuf. Process. 2023, 85, 21–30. [Google Scholar] [CrossRef]
- Asadi, P.; Akbari, M.; Armani, A.; Aliha, M.R.M.; Peyghami, M.; Sadowski, T. Recycling of brass chips by sustainable friction stir extrusion. J. Clean. Prod. 2023, 418, 138132. [Google Scholar] [CrossRef]
- Buffa, G.; Campanella, D.; Fratini, L.; Micari, F. AZ31 magnesium alloy recycling through friction stir extrusion process. Int. J. Mater. Form. 2015, 9, 613–618. [Google Scholar] [CrossRef]
- Buffa, G.; Campanella, D.; Adnan, M.; La Commare, U.; Ingarao, G.; Fratini, L. Improving the Industrial Efficiency of Recycling Aluminum Alloy Chips Using Friction Stir Extrusion: Thin Wires Production Process. Int. J. of Precis. Eng. and Manuf.-Green Tech. 2024. [Google Scholar] [CrossRef]
- Baffari, D.; Buffa, G.; Campanella, D.; Fratini, L. Design of continuous Friction Stir Extrusion machines for metal chip recycling: Issues and difficulties. Procedia Manuf. 2018, 15, 280–286. [Google Scholar] [CrossRef]
- Shahrom, M.S.; Yusoff, A.R. Cyclic extrusion compression back pressure technique for hot forging process in direct recycling of aluminium 6061 machining chip. J. Manuf. Process. 2017, 29, 1–9. [Google Scholar] [CrossRef]
- Peng, T.; Wang, Q.D.; Lin, J.B. Microstructure and mechanical properties of Mg-10Gd-2Y-0.5Zr alloy recycled by cyclic extrusion compression. Mater. Sci. Eng. A 2009, 516, 23–30. [Google Scholar] [CrossRef]
- Edalati, K.; Matsuda, J.; Yanagida, A.; Akiba, E.; Horita, Z. Activation of TiFe for hydrogen storage by plastic deformation using groove rolling and high-pressure torsion: Similarities and differences. Int J Hydrogen Energy. 2014, 39, 15589–15594. [Google Scholar] [CrossRef]
- Mohd Yusuf, S.; Chen, Y.; Yang, S.; Gao, N. Micromechanical Response of Additively Manufactured 316L Stainless Steel Processed by High-Pressure Torsion. Adv. Eng. Mater. 2020, 22, 2000052. [Google Scholar] [CrossRef]
- Pandey, A.K.; Prajapati, N.; Nayak, K.C.; Date, P.P. Sustainable manufacturing process for recycling of aluminum alloy waste into direct product by high pressure torsion process. Mater. Today Proc. 2019, 18 Pt 7, 3099–3108. [Google Scholar] [CrossRef]
- Khajouei-Nezhad, M.; Paydar, M.H.; Mokarizadeh Haghighi Shirazi, M.; Gubicza, J. Microstructure and Tensile Behavior of Al7075/Al Composites Consolidated from Machining Chips Using HPT: A Way of Solid-State Recycling. Met. Mater. Int. 2019, 26, 1881–1898. [Google Scholar] [CrossRef]
- Castro, M.M.; Montoro, L.A.; Isaac, A.; Kawasaki, M.; Figueiredo, R.B. Mechanical mixing of Mg and Zn using high-pressure torsion. J. Alloys Compd. 2021, 869, 159302. [Google Scholar] [CrossRef]
- Guo, Y.; Genelot, P.; Singh, A.P.; Bolzoni, L.; Qu, Y.; Kou, H.; Lin, J.; Yang, F. High-Strength Near-Beta Titanium Alloy Fabricated by Direct Hot Pressing of the Machining Swarf. J. Mater. Eng. Perform. 2022, 31, 8619–8629. [Google Scholar] [CrossRef]
- Shaeri, M.H.; Shaeri, M.; Ebrahimi, M.; Salehi, M.T.; Seyyedein, S.H. Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg-Cu alloy. Prog. Nat. Sci. Mater. Int. 2016, 26, 182–191. [Google Scholar] [CrossRef]
- Afifi, M.A.; Pereira, P.H.R.; Wang, Y.C.; Wang, Y.; Li, S.; Langdon, T.G. Effect of ECAP processing on microstructure evolution and dynamic compressive behavior at different temperatures in an Al-Zn-Mg alloy. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 2017, 684, 617–625. [Google Scholar] [CrossRef]
- Rezaei, M.; Shabestari, S.; Razavi, S. Effect of ECAP consolidation temperature on the microstructure and mechanical properties of Al-Cu-Ti metallic glass reinforced aluminum matrix composite. J. Mater. Sci. Technol. 2017, 33, 1031–1038. [Google Scholar] [CrossRef]
- Ding, R.; Chung, C.; Chiu, Y.; Lyon, P. Effect of ECAP on microstructure and mechanical properties of ZE41 magnesium alloy. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 2010, 527, 3777–3784. [Google Scholar] [CrossRef]
- Cardoso, K.R.; Muñoz-Morris, M.A.; Lieblich, M.; Morris, D. Effect of equal channel angular pressing (ECAP) on microstructure and properties of Al-FeAlCr intermetallic phase composites. Mater. Res. Ibero Am. J. Mater. 2014, 17, 775–780. [Google Scholar] [CrossRef]
- Shaeri, M.; Salehi, M.; Seyyedein, S.; Abutalebi, M.; Park, J. Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment. Mater. Des. 2014, 57, 250–257. [Google Scholar] [CrossRef]
- Gonzalez, G.; Braham, C.; Lebrun, J.L.; Chastel, Y.; Seiler, W.; Figueroa, I.A. Microstructure and texture of Al-2Si-xSn (x = 0, 4, 8 mass%) alloys processed by equal channel angular pressing. Mater. Trans. 2012, 53, 1234–1239. [Google Scholar] [CrossRef]
- Khoubrou, I.; Nami, B.; Miresmaeili, S.M. Investigation on the creep behavior of AZ91 magnesium alloy processed by severe plastic deformation. Met. Mater. Int. 2020, 26, 196–204. [Google Scholar] [CrossRef]
- Luo, P.; Xie, H.; Paladugu, M.; Palanisamy, S.; Dargusch, M.S.; Xia, K. Recycling of titanium machining chips by severe plastic deformation consolidation. J. Mater. Sci. 2010, 45, 4606–4612. [Google Scholar] [CrossRef]
- Abbas, A.T.; Taha, M.A.; Ragab, A.E.; El-Danaf, E.A.; El Aal, M.I.A. Effect of Equal Channel Angular Pressing on the Surface Roughness of Solid State Recycled Aluminum Alloy 6061 Chips. Adv. Mater. Sci. Eng. 2017, 2017, 5131403. [Google Scholar] [CrossRef]
- Shi, Q.; Tse, Y.Y.; Higginson, R.L. Effects of processing parameters on relative density, microhardness and microstructure of recycled Ti–6Al–4V from machining chips produced by equal channel angular pressing. Mater. Sci. Eng. A 2016, 651, 248–258. [Google Scholar] [CrossRef]
- Al-Maharbi, M.; Al-Namani, A. Consolidation of AZ31 magnesium chips using equal channel angular pressing. Mater. Res. Proc. 2023, 32, 213–219. [Google Scholar]
- Matsuki, K.; Aida, T.; Takeuchi, T.; Kusui, J.; Yokoe, K. Microstructural characteristics and superplastic-like behavior in aluminum powder alloy consolidated by equal-channel angular pressing. Acta Mater. 2000, 48, 2625–2632. [Google Scholar] [CrossRef]
- Luo, P.; McDonald, D.; Zhu, S.; Palanisamy, S.; Dargusch, M.; Xia, K. Analysis of microstructure and strengthening in pure titanium recycled from machining chips by equal channel angular pressing using electron backscatter diffraction. Mater. Sci. Eng. A 2012, 538, 252–258. [Google Scholar] [CrossRef]
- Al-Alimi, S.; Lajis, M.A.; Shamsudin, S.; Yusuf, N.K.; Chan, B.L.; Didane, D.H.; Rady, M.H.; Sabbar, H.M.; Msebawi, M.S. Development of Hot Equal Channel Angular Processing (ECAP) Consolidation Technique in the Production of Boron Carbide(B4C)-Reinforced Aluminium Chip (AA6061)-Based Composite. Int. J. Renew. Energy Dev. 2021, 10, 607–621. [Google Scholar] [CrossRef]
- Krolo, J.; Gudić, S.; Vrsalović, L.; Lela, B.; Dadić, Z. Fatigue and Corrosion Behavior of Solid-State Recycled Aluminum Alloy EN AW 6082. J. Mater. Eng. Perform. 2020, 29, 4310–4321. [Google Scholar] [CrossRef]
- McDonald, D.T.; Lui, E.W.; Palanisamy, S.; Dargusch, M.S.; Xia, K. Achieving Superior Strength and Ductility in Ti-6Al-4V Recycled from Machining Chips by Equal Channel Angular Pressing. Metall. Mater. Trans. A 2014, 45, 4089–4102. [Google Scholar] [CrossRef]
- Hyodo, A.; Bolfarini, C.; Ishikawa, T.T. Chemistry and Tensile Properties of a Recycled AA7050 Via Spray Forming and ECAP/E. Mater. Res. 2012, 15, 739–748. [Google Scholar] [CrossRef]
- Bochniak, W.; Ostachowski, P.; Korbel, A.; Łagoda, M. Potential of the KOBO extrusion process for nonferrous metals in the form of solids and chips. Int. J. Adv. Manuf. Technol. 2023, 127, 733–750. [Google Scholar] [CrossRef]
- Topolski, K.; Ostachowski, P. Solid state processing of titanium chips by an unconventional plastic working. J. Mater. Res. Technol. 2021, 13, 808–822. [Google Scholar] [CrossRef]
- Topolski, K.; Jaroszewicz, J.; Garbacz, H. Structural Aspects and Characterization of Structure in the Processing of Titanium Grade4 Different Chips. Metals 2021, 11, 101. [Google Scholar] [CrossRef]
- Pantke, K.; Güley, V.; Khalifa, N.B.; Heilmann, M.; Biermann, D.; Tekkaya, A.E. Aluminum Scrap Recycling by Hot Extrusion without Melting Process. In Proceedings of the 12th International Conference on Aluminium Alloys, Yokohama, Japan, 5–9 September 2010. [Google Scholar]
- Haase, M.; Tekkaya, A.E. Recycling of Aluminum Chips by Hot Extrusion with Subsequent Cold Extrusion. Procedia Eng. 2014, 81, 652–657. [Google Scholar] [CrossRef]
- Taha, M.A.; Abbas, A.T.; Benyahia, F.; Alharbi, H.F.; Guitián, B.; Nóvoa, X.R. Enhanced Corrosion Resistance of Recycled Aluminum Alloy 6061 Chips Using Hot Extrusion Followed by ECAP. J. Chem. 2019, 2019, 3658507. [Google Scholar] [CrossRef]
- Selmy, A.; El Aal, M.A.; El-Gohry, A.; Taha, M. Solid-State Recycling of Aluminum Alloy (AA-6061) Chips via Hot Extrusion Followed by Equal Channel Angular Pressing (ECAP). Egypt. Int. J. Eng. Sci. Technol. 2016, 21, 33–42. [Google Scholar] [CrossRef]
- Tekkaya, A.E.; Güley, V.; Haase, M.; Jäger, A. Hot Extrusion of Aluminum Chips. In ICAA13 Pittsburgh; Weiland, H., Rollett, A.D., Cassada, W.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Abd El Aal, M.I.; Taha, M.A.; Selmy, A.I.; El-Gohry, A.M.; Kim, H.S. Solid state recycling of aluminium AA6061 alloy chips by hot extrusion. J. Mater. Res. Express 2018, 6, 36525. [Google Scholar] [CrossRef]
- Hosseini, M.; Paydar, M.H. Fabrication of phosphor bronze/Al two-phase material by recycling phosphor bronze chips using hot extrusion process and investigation of their microstructural and mechanical properties. Int. J. Miner. Metall. Mater. 2020, 27, 809–817. [Google Scholar] [CrossRef]
- Al-Alimi, S.; Shamsudin, S.; Yusuf, N.K.; Lajis, M.A.; Zhou, W.; Didane, D.H.; Sadeq, S.; Saif, Y.; Wahib, A.; Harun, Z. Recycling Aluminium AA6061 Chips with Reinforced Boron Carbide (B4C) and Zirconia (ZrO2) Particles via Hot Extrusion. Metals 2022, 12, 1329. [Google Scholar] [CrossRef]
- Zohourkari, I.; Assarzadeh, S.; Zohoor, M. Modeling and Analysis of Hot Extrusion Metal Forming Process Using Artificial Neural Network and Anova. Eng. Syst. Des. Anal. 2010, 49187, 831–839. [Google Scholar]
- Sokolov, V.A. Melting Zircon in an Electric-Arc Furnace—A Method for Preparing Refractory Materials and Green Semifinished Products. Refract. Ind. Ceram. 2014, 55, 191–193. [Google Scholar] [CrossRef]
- Yang, L.; Hu, H.; Yang, S.; Wang, S.; Chen, F.; Guo, Y. Life cycle carbon footprint of electric arc furnace steelmaking processes under different smelting modes in China. Sustain. Mater. Technol. 2023, 35, e00564. [Google Scholar] [CrossRef]
- Hebeisen, M.C. Vacuum Melting and Casting of Superalloys; Nasa Technical Report. 1 January 1971, 19710016415. Available online: https://ntrs.nasa.gov/api/citations/19710016415/downloads/19710016415.pdf (accessed on 7 May 2024).
- Glavicic, M.; Kobryn, P.; Spadafora, F.; Semiatin, S. Texture evolution in vacuum arc remelted ingots of Ti-6Al-4V. Mater. Sci. Eng. A 2003, 346, 8–18. [Google Scholar] [CrossRef]
- Abu-Lebdeh, T.M.; Leon, G.P.D.; Hamoush, S.A.; Seals, R.D.; Lamberti, V.E. Gas Atomization of Molten Metal: Part II. Applications. Am. J. Eng. Appl. Sci. 2016, 9, 334–349. [Google Scholar] [CrossRef]
- Zhang, S.; Frederick, A.; Wang, Y.; Eller, M.; McGinn, P.; Hu, A.; Feng, Z. Microstructure Evolution and Mechanical Property Characterization of 6063 Aluminum Alloy Tubes Processed with Friction Stir Back Extrusion. JOM 2019, 71, 4436–4444. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Hu, X.; Wu, K. Effects of hot extrusion on microstructure and mechanical properties of Mg matrix composite reinforced with deformable TC4 particles. J. Magnes. Alloys 2020, 8, 421–430. [Google Scholar] [CrossRef]
- Tekkaya, A.; Schikorra, M.; Becker, D.; Biermann, D.; Hammer, N.; Pantke, K. Hot profile extrusion of AA-6060 aluminum chips. J. Mater. Process. Technol. 2009, 209, 3343–3350. [Google Scholar] [CrossRef]
- Zhang, Z.; Tong, C.; Zhou, W.; Jiang, S.; Lv, J.; Shi, Z.; Lin, J. Investigation of the mechanisms on the abnormal features observed in thermal-mechanical testing of AA6061 under extrusion conditions. Mater. Sci. Eng. A 2023, 884, 145537. [Google Scholar] [CrossRef]
- Ensafi, M.; Faraji, G.; Abdolvand, H. Cyclic extrusion compression angular pressing (CECAP) as a novel severe plastic deformation method for producing bulk ultrafine grained metals. Mater. Lett. 2017, 197, 12–16. [Google Scholar] [CrossRef]
- Pippan, R.; Scheriau, S.; Hohenwarter, A.; Hafok, M. Advantages and Limitations of HPT: A Review. Materials Science Forum—Mater. Sci. Forum. 2008, 584, 16–21. [Google Scholar] [CrossRef]
- Długosz, P.; Bochniak, W.; Ostachowski, P.; Molak, R.; Duarte Guigou, M.; Hebda, M. The Influence of Conventional or KOBO Extrusion Process on the Properties of AZ91 (MgAl9Zn1) Alloy. Materials 2021, 14, 6543. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mendonça, C.; Capellato, P.; Bayraktar, E.; Gatamorta, F.; Gomes, J.; Oliveira, A.; Sachs, D.; Melo, M.; Silva, G. Recycling Chips of Stainless Steel Using a Full Factorial Design. Metals 2019, 9, 842. [Google Scholar] [CrossRef]
- Mendonça, C.d.S.P.; Ribeiro, V.A.d.S.; Junqueira, M.M.; Sachs, D.; Oliveira, L.A.; Melo, M.d.L.N.M.; Silva, G. Recycling Chips of Stainless Steel by High Energy Ball Milling. Mater. Sci. Forum 2018, 930, 454–459. [Google Scholar] [CrossRef]
- Claudiney, M.; Adhimar, O.; Daniela, S.; Patricia, C.; Vander, R.; Mateus, J.; Mirian, M.; Gilbert, S. A New Method to Recycle stainless–Steel Duplex UNS S31803 Chips. Metals 2018, 8, 546. [Google Scholar] [CrossRef]
- Prashantha, H.G.; Anthony, X. Processing of Graphene/CNT-Metal Powder; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Demirel, H.; Güneş, A.; Şahin, Ö.S. Recycling and Characterization of Metallic Chips Using Powder Metallurgy. Int. J. Comput Exp. Sci. Eng. 2019, 5, 151–153. [Google Scholar] [CrossRef]
- Raybould, D. The Powder Metallurgy, Dynamic and Quasistatic, of Stainless-Steel Scrap Turnings. In Proceedings of the Seventeenth International Machine Tool Design and Research Conference; Tobias, S.A., Ed.; Palgrave: London, UK, 1977. [Google Scholar]
- Großwendt, F.; Bürk, V.; Kopanka, B.; Jäger, S.; Pollak, S.; Leich, L.; Röttger, A.; Petermann, M.; Weber, S. A novel powder-metallurgical eco-friendly recycling process for tool steel grinding sludge. J. Clean. Prod. 2023, 392, 136329. [Google Scholar] [CrossRef]
- Kem, A. Applications of Powder Metallurgy to the Production of Recycled-Iron-and-Aluminum Deoxidation Briquettes for In-Ladle Use. Metallurgist 2019, 62, 979–985. [Google Scholar] [CrossRef]
- Gonçalves, P.H.; Pontes, A.M.P.; Lamoglia, M.S.; Kuffner, B.H.B.; da Silva, A.A.A.P.; Silva, G. Solid State Recycling of Vanadis®8 Steel Scraps Using Powder Metallurgy. Mater. Res. 2023, 26, e20230204. [Google Scholar] [CrossRef]
- Umeda, J.; Mimoto, T.; Imai, H.; Kondoh, K. Powder forming process from machined titanium chips via heat treatment in hydrogen atmosphere. J. Jpn. Soc. Powder Powder Metall. 2016, 63, 1002–1008. [Google Scholar] [CrossRef]
- Razumov, N.; Masaylo, D.; Silin, A.; Borisov, E.; Ozerskoy, N.; Goncharov, I.; Popovich, A. Investigation of additive manufacturing from the heat-resistant steel powder produced by recycling of the machining chips. J. Manuf. Process. 2021, 64, 1070–1076. [Google Scholar] [CrossRef]
- Wei, L.K.; Abd Rahim, S.Z.; Al Bakri Abdullah, M.M.; Yin, A.T.M.; Ghazali, M.F.; Omar, M.F.; Nemeș, O.; Sandu, A.V.; Vizureanu, P.; Abdellah, A.E.-H. Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review. Materials 2023, 16, 4635. [Google Scholar] [CrossRef]
- Deshpande, A.; Agiwal, H.; Baumann, C.; Krall, S.; Bleicher, F.; Pfefferkorn, F.E. Recycling metal cutting chips into a consolidated deposition with friction surfacing. Manuf. Lett. 2023, 35, 743–749. [Google Scholar] [CrossRef]
- Cislo, C.N.; Kronthaler, B.; Buchmayr, B.; Weiß, C. Solid State Recycling of Aluminum Alloy Chips via Pulsed Electric Current Sintering. J. Manuf. Mater. Process. 2020, 4, 23. [Google Scholar] [CrossRef]
- Thomas, B.M.; Derguti, F.; Jackson, M. Continuous extrusion of a commercially pure titanium powder via the Conform process. Mater. Sci. Technol. 2017, 33, 899–903. [Google Scholar] [CrossRef]
- Besekar, A.; Hussain, I.; Immanuel, R.J. Recycling of titanium as reinforcement in cast aluminium alloy A356 for improving the microstructural refinement and mechanical performance towards a sustainable material development. Mater. Today Proc. 2023, 10, 843. [Google Scholar] [CrossRef]
- Zapico, P.; Giganto, S.; Barreiro, J.; Martínez-Pellitero, S. Characterisation of 17-4PH metallic powder recycling to optimise the performance of the selective laser melting process. J. Mater. Res. Technol. 2020, 9, 1273–1285. [Google Scholar] [CrossRef]
- Weiss, C.; Haefner, C.L.; Munk, J. On the Influence of AlSi10Mg Powder Recycling Behavior in the LPBF Process and Consequences for Mechanical Properties. JOM 2022, 74, 1188–1199. [Google Scholar] [CrossRef]
- Smolina, I.; Gruber, K.; Pawlak, A.; Ziółkowski, G.; Grochowska, E.; Schob, D.; Kobiela, K.; Roszak, R.; Ziegenhorn, M.; Kurzynowski, T. Influence of the AlSi7Mg0.6 Aluminium Alloy Powder Reuse on the Quality and Mechanical Properties of LPBF Samples. Materials 2022, 15, 5019. [Google Scholar] [CrossRef]
- Jacob, G.; Brown, C.; Donmez, M.; Watson, S. Effects of powder recycling on stainless steel powder and built material properties in metal powder bed fusion processes. In Advanced Manufacturing Series (NIST AMS); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. [Google Scholar]
- Slotwinski, J.A.; Garboczi, E.J.; Stutzman, P.E.; Ferraris, C.F.; Watson, S.S.; Peltz, M.A. Characterization of Metal Powders Used for Additive Manufacturing. J. Res. Natl. Inst. Stand. Technol. 2014, 119, 460–493. [Google Scholar] [CrossRef]
- Chuang, C.A.; Ahmed, S.S.S.; Kenesei, P.; Almer, J.; Singh, D. High-Energy X-ray Tomographic Analysis of Precursor Metal Powders (Ti-6Al-4V) Used for Additive Manufacturing. J. Mater. Eng. Perform. 2021, 30, 610–616. [Google Scholar] [CrossRef]
- Carrion, P.E.; Soltani-Tehrani, A.; Phan, N.; Shamsaei, N. Powder Recycling Effects on the Tensile and Fatigue Behavior of Additively Manufactured Ti-6Al-4V Parts. JOM 2019, 71, 963–973. [Google Scholar] [CrossRef]
- Popov, V.V., Jr.; Katz-Demyanetz, A.; Garkun, A.; Bamberger, M. The effect of powder recycling on the mechanical properties and microstructure of electron beam melted Ti-6Al-4V specimens. Addit. Manuf. 2018, 22, 834–843. [Google Scholar]
- Yánez, A.; Fiorucci, M.P.; Martel, O.; Cuadrado, A. The Influence of Dimensions and Powder Recycling on the Roughness and Mechanical Properties of Ti-6Al-4V Parts Fabricated by Laser Powder Bed Fusion. Materials 2022, 15, 5787. [Google Scholar] [CrossRef]
- Gorji, N.E.; O’Connor, R.; Mussatto, A.; Snelgrove, M.; González, P.M.; Brabazon, D. Recyclability of stainless steel (316 L) powder within the additive manufacturing process. Materialia 2019, 8, 100489. [Google Scholar] [CrossRef]
- Maamoun, A.H.; Elbestawi, M.; Dosbaeva, G.K.; Veldhuis, S.C. Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder. Addit. Manuf. 2018, 21, 234–247. [Google Scholar] [CrossRef]
- Misiolek, W.Z.; Haase, M.; Ben Khalifa, N.; Tekkaya, A.E.; Kleiner, M. High quality extrudates from aluminum chips by new billet compaction and deformation routes. CIRP Ann. 2012, 61, 239–242. [Google Scholar] [CrossRef]
- Sopchak, N.D.; Misiolek, W.Z. Density Gradients in Multilayer Compacted Iron Powder Parts. Mater. Manuf. Process. 2000, 15, 65–79. [Google Scholar] [CrossRef]
- Galanty, M.; Kazanowski, P.; Kansuwan, P.; Misiolek, W.Z. Consolidation of metal powders during the extrusion process. J. Mater. Process. Technol. 2002, 125, 491–496. [Google Scholar] [CrossRef]
- Chmura, W.; Gronostajski, Z. Bearing composites made from aluminium and aluminium bronze chips. J. Mater. Process. Technol. 2006, 178, 188–193. [Google Scholar] [CrossRef]
- Gumaste, A.; Haridas, R.S.; Gupta, S.; Gaddam, S.; Kandasamy, K.; McWilliams, B.A.; Cho, K.C.; Mishra, R.S. Solid Stir Extrusion: Innovating friction stir technology for continuous extrusion process. J. Mater. Process. Technol. 2023, 316, 117952. [Google Scholar] [CrossRef]
- Ahmadkhaniha, D.; Huang, Y.; Jaskari, M.; Järvenpää, A.; Sohi, M.H.; Zanella, C.; Karjalainen, L.P.; Langdon, T.G. Effect of high-pressure torsion on microstructure, mechanical properties and corrosion resistance of cast pure Mg. J. Mater. Sci. 2018, 53, 16585–16597. [Google Scholar] [CrossRef]
- Luo, P.; McDonald, D.; Palanisamy, S.; Dargusch, M.; Xia, K. Ultrafine-grained pure Ti recycled by equal channel angular pressing with high strength and good ductility. J. Mater. Process. Technol. 2013, 213, 469–476. [Google Scholar] [CrossRef]
- Babu, S.S.; Mourad, A.H.I.; Harib, K.H.; Vijayavenkataraman, S. Recent developments in the application of machine-learning towards accelerated predictive multiscale design and additive manufacturing. Virtual Phys. Prototyp. 2023, 18, e2141653. [Google Scholar] [CrossRef]
- Zhou, H.-R.; Yang, H.; Li, H.-Q.; Ma, Y.-C.; Yu, S.; Shi, J.; Cheng, J.-C.; Gao, P.; Yu, B.; Miao, Z.-Q.; et al. Advancements in machine learning for material design and process optimization in the field of additive manufacturing. China Foundry 2024, 21, 101–115. [Google Scholar] [CrossRef]
- Mahrouf, M.; Jamei, M.; Linkens, D.A. Optimal design of alloy steels using multiobjective genetic algorithms. Mater. Manuf. Process. 2005, 20, 553–567. [Google Scholar]
- Yu, H.; Liang, J.; Bi, Z.; Li, J.; Xu, W. Computational design of novel Ni superalloys with low crack susceptibility for additive manufacturing. Metall. Mater. Trans. A 2022, 53, 1945–1954. [Google Scholar] [CrossRef]
- Zhu, C.; Li, C.; Wu, D.; Ye, W.; Shi, S.; Ming, H.; Zhang, X.; Zhou, K. A titanium alloys design method based on high-throughput experiments and machine learning. J. Mater. Res. Technol. 2021, 11, 2336–2353. [Google Scholar] [CrossRef]
- Menou, E.; Rame, J.; Desgranges, C.; Ramstein, G.; Tancret, F. Computational design of a single crystal nickel-based superalloy with improved specific creep endurance at high temperature. Comput. Mater. Sci. 2019, 170, 109194. [Google Scholar] [CrossRef]
- Gao, S.; Li, Z.; Van Petegem, S.; Ge, J.; Goel, S.; Vas, J.V.; Luzin, V.; Hu, Z.; Seet, H.L.; Sanchez, D.F.; et al. Additive manufacturing of alloys with programmable microstructure and properties. Nat. Commun. 2023, 14, 6752. [Google Scholar] [CrossRef]
- Kats, D.; Wang, Z.D.; Gan, Z.T. A physics-informed machine learning method for predicting grain structure characteristics in directed energy deposition. Comput. Mater. Sci. 2022, 202, 110958. [Google Scholar] [CrossRef]
- Suzuki, A.; Shiba, Y.; Ibe, H.; Takata, N.; Kobashi, M. Machine-learning assisted optimization of process parameters for controlling the microstructure in a laser powder bed fused WC/Co cemented carbide. Addit. Manuf. 2022, 59, 103089. [Google Scholar]
- Erps, T.; Foshey, M.; Luković, M.K.; Shou, W.; Goetzke, H.H.; Dietsch, H.; Stoll, K.; von Vacano, B.; Matusik, W. Accelerated discovery of 3D printing materials using data-driven multiobjective optimization. Sci. Adv. 2021, 7, eabf7435. [Google Scholar] [CrossRef]
- Chernyavsky, D.; Kononenko, D.Y.; Han, J.H.; Kim, H.J.; Brink, J.v.D.; Kosiba, K. Machine learning for additive manufacturing: Predicting materials characteristics and their uncertainty. Mater. Des. 2023, 227, 111699. [Google Scholar] [CrossRef]
- Wanigasekara, C.; Oromiehie, E.; Swain, A.; Prusty, B.G.; Nguang, S.K. Machine Learning Based Predictive Model for AFP-Based Unidirectional Composite Laminates. IEEE Trans. Ind. Inform. 2019, 16, 2315–2324. [Google Scholar] [CrossRef]
- Wagner, H.; Köke, H.; Dähne, S.; Niemann, S.; Hühne, C.; Khakimova, R. Decision Tree-Based Machine Learning to Optimize the Laminate Stacking of Composite Cylinders for Maximum Buckling Load and Minimum Imperfection Sensitivity. Compos. Struct. 2019, 220, 45–63. [Google Scholar] [CrossRef]
- Yang, Z.; Yabansu, Y.C.; Al-Bahrani, R.; Liao, W.-K.; Choudhary, A.N.; Kalidindi, S.R.; Agrawal, A. Deep Learning Approaches for Mining Structure-Property Linkages in High Contrast Composites from Simulation Datasets. Comput. Mater. Sci. 2018, 151, 278–287. [Google Scholar] [CrossRef]
- Sherman, S.; Simmons, J.; Przybyla, C. Mesoscale Characterization of Continuous Fiber Reinforced Composites through Machine Learning: Fiber Chirality. Acta Mater. 2019, 181, 447–459. [Google Scholar] [CrossRef]
- Hashemi, M.S.; Safdari, M.; Sheidaei, A. A Supervised Machine Learning Approach for Accelerating the Design of Particulate Composites: Application to Thermal Conductivity. Comput. Mater. Sci. 2021, 197, 110664. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, Y.; Zhang, Z.; Rosen, D.W. Machine Learning Integrated Design for Additive Manufacturing. J. Intell. Manuf. 2020, 33, 1073–1086. [Google Scholar] [CrossRef]
- Yang, Y.; He, M.; Li, L. Power Consumption Estimation for Mask Image Projection Stereolithography Additive Manufacturing Using Machine Learning Based Approach. J. Clean. Prod. 2020, 251, 119710. [Google Scholar] [CrossRef]
- Li, Y.; Hu, F.; Qin, J.; Ryan, M.; Wang, R.; Liu, Y. A Hybrid Machine Learning Approach for Energy Consumption Prediction in Additive Manufacturing. In Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event, January 10–15 2021, Proceedings, Part IV; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Cheng, L.; Liu, J.; Liang, X.; To, A.C. Coupling Lattice Structure Topology Optimization with Design-Dependent Feature Evolution for Additive Manufactured Heat Conduction Design. Comput. Methods Appl. Mech. Eng. 2018, 332, 408–439. [Google Scholar] [CrossRef]
- Gao, J.; Luo, Z.; Xia, L.; Gao, L. Concurrent Topology Optimization of Multiscale Composite Structures in Matlab. Struct. Multidiscip. Optim. 2019, 60, 2621–2651. [Google Scholar] [CrossRef]
- Sivapuram, R.; Dunning, P.D.; Kim, H.A. Simultaneous Material and Structural Optimization Virtual and Physical Prototyping 45 by Multiscale Topology Optimization. Struct. Multidiscip. Optim. 2016, 54, 1267–1281. [Google Scholar] [CrossRef]
- Gao, J.; Luo, Z.; Li, H.; Gao, L. Topology Optimization for Multiscale Design of Porous Composites with Multi-Domain Microstructures. Comput. Methods Appl. Mech. Eng. 2019, 344, 451–476. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–72. [Google Scholar] [CrossRef]
- Jin, Y.; He, Y.; Du, J. A Novel Path Planning Methodology for Extrusion-Based Additive Manufacturing of Thin-Walled Parts. Int. J. Comput. Integr. Manuf. 2017, 30, 1301–1315. [Google Scholar] [CrossRef]
- Fera, M.; Fruggiero, F.; Lambiase, A.; Macchiaroli, R.; Todisco, V. A Modified Genetic Algorithm for Time and Cost Optimization of an Additive Manufacturing Single-Machine Scheduling. Int. J. Ind. Eng. Comput. 2018, 9, 423–438. [Google Scholar] [CrossRef]
- Abueidda, D.W.; Koric, S.; Sobh, N.A.; Sehitoglu, H. Build Orientation Optimization for Multi-Part Production in Additive Manufacturing. J. Intell. Manuf. 2017, 28, 1393–1407. [Google Scholar]
- Abueidda, D.W.; Koric, S.; Sobh, N.A.; Sehitoglu, H. Deep Learning for Plasticity and Thermo-Viscoplasticity. Int. J. Plast. 2021, 136, 102852. [Google Scholar] [CrossRef]
- Zhu, Z.; Anwer, N.; Huang, Q.; Mathieu, L. Machine Learning in Tolerancing for Additive Manufacturing. CIRP Ann. 2018, 67, 157–160. [Google Scholar] [CrossRef]
- Gong, X.; Yabansu, Y.C.; Collins, P.C.; Kalidindi, S.R. Evaluation of Ti–Mn Alloys for Additive Manufacturing Using High-Throughput Experimental Assays and Gaussian Process Regression. Materials 2020, 13, 4641. [Google Scholar] [CrossRef]
- Gardner, J.M.; Hunt, K.A.; Ebel, A.B.; Rose, E.S.; Zylich, S.C.; Jensen, B.D.; Wise, K.E.; Siochi, E.J.; Sauti, G. Machines as Craftsmen: Localized Parameter Setting Optimization for Fused Filament Fabrication 3D Printing. Adv. Mater. Technol. 2019, 4, 1800653. [Google Scholar] [CrossRef]
- Chowdhury, S.; Anand, S. Artificial Neural Network Based Geometric Compensation for Thermal Deformation in Additive Manufacturing Processes. In International Manufacturing Science and Engineering Conference, 49910:V003T08A006; American Society of Mechanical Engineers: New York, NY, USA, 2016. [Google Scholar]
- Jiang, J.; Ma, Y. Path Planning Strategies to Optimize Accuracy, Quality, Build Time and Material Use in Additive Manufacturing: A Review. Micromachines 2020, 11, 633. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-H.; Zhang, D.-G.; Yan, H.-R.; Cui, Y.-Y.; Chen, L. A New Algorithm of the Best Path Selection Based on Machine Learning. IEEE Access 2019, 7, 126913–126928. [Google Scholar] [CrossRef]
- Jiang, J.; Yu, C.; Xu, X.; Ma, Y.; Liu, J. Achieving Better Connections Between Deposited Lines in Additive Manufacturing via Machine Learning. Math. Biosci. Eng. 2020, 17, 3382–3394. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Zeng, D.; Groeneveld-Meijer, W.; Manogharan, G. Additive Manufacturing: A Machine Learning Model of Process-Structure-Property Linkages for Machining Behavior of Ti-6Al-4V. Mater. Sci. Add. Manuf. 2022, 1, 1–16. [Google Scholar] [CrossRef]
- Pandita, P.; Ghosh, S.; Gupta, V.K.; Meshkov, A.; Wang, L. Application of Deep Transfer Learning and Uncertainty Quantification for Process Identification in Powder Bed Fusion. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2022, 8, 11106. [Google Scholar] [CrossRef]
- Goswami, S.; Anitescu, C.; Chakraborty, S.; Rabczuk, T. Transfer Learning Enhanced Physics Informed Neural Network for Phase-Field Modeling of Fracture. Theor. Appl. Fract. Mech. 2020, 106, 102447. [Google Scholar] [CrossRef]
- De, S.; Britton, J.; Reynolds, M.; Skinner, R.; Jansen, K.; Doostan, A. On Transfer Learning of Neural Networks Using Bi-Fidelity Data for Uncertainty Propagation. Int. J. Uncertain. Quantif. 2020, 10, 543–573. [Google Scholar] [CrossRef]
- Wang, Z. Uncertainty Quantification and Reduction in Metal Additive Manufacturing. npj Comput. Mater. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Huang, D.J.; Li, H. A Machine Learning Guided Investigation of Quality Repeatability in Metal Laser Powder Bed Fusion Additive Manufacturing. Mater. Des. 2021, 203, 109606. [Google Scholar] [CrossRef]
- Chen, L.; Yao, X.; Xu, P.; Moon, S.K.; Bi, G. Rapid Surface Defect Identification for Additive Manufacturing with In-Situ Point Cloud Processing and Machine Learning. Virtual Phys. Prototyp. 2021, 16, 50–67. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, Y.; Zhang, D.; Xie, J.; Zhou, Y. Classification of Surface Defects on Steel Sheet Using Convolutional Neural Networks. Mater. Technol. 2017, 51, 123–131. [Google Scholar]
- Lyu, J.; Manoochehri, S. Online Convolutional Neural Network-Based Anomaly Detection and Quality Control for Fused Filament Fabrication Process. Virtual Phys. Prototyp. 2021, 16, 160–177. [Google Scholar] [CrossRef]
- Batu, T.; Lemu, H.G.; Shimels, H. Application of Artificial Intelligence for Surface Roughness Prediction of Additively Manufactured Components. Materials 2023, 16, 6266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, Z.; Zhang, Z.; Gu, G.X. Autonomous In-Situ Correction of Fused Deposition Modeling Printers Using Computer Vision and Deep Learning. Manuf. Lett. 2019, 22, 11–15. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, Z.; Gu, G.X. Automated Real-Time Detection and Prediction of Interlayer Imperfections in Additive Manufacturing Processes Using Artificial Intelligence. Adv. Intell. Syst. 2020, 2, 1900130. [Google Scholar] [CrossRef]
- Goh, G.D.; Hamzah, N.M.B.; Yeong, W.Y. Anomaly Detection in Fused Filament Fabrication Using Machine Learning. 3D Print. Addit. Manuf. 2023, 10, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Petsiuk, A.; Pearce, J.M. Towards Smart Monitored AM: Open Source in-Situ Layer-Wise 3D Printing Image Anomaly Detection Using Histograms of Oriented Gradients and a Physics-Based Rendering Engine. Addit. Manuf. 2022, 52, 102690. [Google Scholar] [CrossRef]
- Scime, L.; Beuth, J. Anomaly Detection and Classification in a Laser Powder Bed Additive Manufacturing Process Using a Trained Computer Vision Algorithm. Addit. Manuf. 2018, 19, 114–126. [Google Scholar] [CrossRef]
- Holzmond, O.; Li, X. In Situ Real Time Defect Detection of 3D Printed Parts. Addit. Manuf. 2017, 17, 135–142. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, S.; Shin, Y.C. In-Process Monitoring of Porosity during Laser Additive Manufacturing Process. Addit. Manuf. 2019, 28, 497–505. [Google Scholar] [CrossRef]
- Bugatti, M.; Colosimo, B.M. Towards Real-Time in-Situ Monitoring of Hot-Spot Defects in L-PBF: A New Classification-Based Method for Fast Video-Imaging Data Analysis. J. Intell. Manuf. 2021, 33, 1–17. [Google Scholar] [CrossRef]
- Ogunsanya, M.; Isichei, J.; Parupelli, S.K.; Desai, S.; Cai, Y. In-Situ Droplet Monitoring of Inkjet 3D Printing Process Using Image Analysis and Machine Learning Models. Procedia Manuf. 2021, 53, 427–434. [Google Scholar] [CrossRef]
- Hossain, S.; Taheri, H. In-Situ Process Monitoring for Metal Additive Manufacturing Through Acoustic Techniques Using Wavelet and Convolutional Neural Network (CNN). Int. J. Adv. Manuf. Technol. 2021, 116, 3473–3488. [Google Scholar] [CrossRef]
- Becker, P.; Roth, C.; Roennau, A.; Dillmann, R. Acoustic Anomaly Detection in Additive Manufacturing with Long Short-Term Memory Neural Networks. In Proceedings of the 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA), Bangkok, Thailand, 16–21 April 2020; pp. 921–926. [Google Scholar]
- Pandiyan, V.; Drissi-Daoudi, R.; Shevchik, S.; Masinelli, G.; Le-Quang, T.; Logé, R.; Wasmer, K. Semi-Supervised Monitoring of Laser Powder Bed Fusion Process Based on Acoustic Emissions. Virtual Phys. Prototyp. 2021, 16, 481–497. [Google Scholar] [CrossRef]
- Drissi-Daoudi, R.; Pandiyan, V.; Logé, R.; Shevchik, S.; Masinelli, G.; Ghasemi-Tabasi, H.; Parrilli, A.; Wasmer, K. Differentiation of Materials and Laser Powder Bed Fusion Processing Regimes from Airborne Acoustic Emission Combined with Machine Learning. Virtual Phys. Prototyp. 2022, 17, 181–204. [Google Scholar] [CrossRef]
- Nam, J.; Jo, N.; Kim, J.S.; Lee, S.W. Development of a Health Monitoring and Diagnosis Framework for Fused Deposition Modeling Process Based on a Machine Learning Algorithm. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 234, 324–332. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Gao, R.X. Deep Learning-Based Tensile Strength Prediction in Fused Deposition Modeling. Comput. Ind. 2019, 107, 11–21. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, W.; Liu, Q.; Zhao, Y.; Liu, P.; Wu, D.; Banu, M.; Chen, L. Data-Driven Modeling of Process, Structure and Property in Additive Manufacturing: A Review and Future Directions. J. Manuf. Process. 2022, 77, 13–31. [Google Scholar] [CrossRef]
- Morris, C.; Bekker, L.; Haberman, M.R.; Seepersad, C.C. Design Exploration of Reliably Manufacturable Materials and Structures with Applications to Negative Stiffness Metamaterials and Microstereolithography. J. Mech. Des. 2018, 140, 1–14. [Google Scholar] [CrossRef]
- Bao, H.; Wu, S.; Wu, Z.; Kang, G.; Peng, X.; Withers, P.J. A Machine-Learning Fatigue Life Prediction Approach of Additively Manufactured Metals. Eng. Fract. Mech. 2021, 242, 107508. [Google Scholar] [CrossRef]
- Zhan, Z.; Li, H. Machine Learning Based Fatigue Life Prediction with Effects of Additive Manufacturing Process Parameters for Printed SS 316L. Int. J. Fatigue 2021, 142, 105941. [Google Scholar] [CrossRef]
- Lu, C.; Jia, X.; Lee, J.; Shi, J. Knowledge Transfer Using Bayesian Learning for Predicting the Process-Property Relationship of Inconel Alloys Obtained by Laser Powder Bed Fusion. Virtual Phys. Prototyp. 2022, 17, 787–805. [Google Scholar] [CrossRef]
- Wu, Q.; Mukherjee, T.; De, A.; DebRoy, T. Residual Stresses in Wire-arc Additive Manufacturing—Hierarchy of Influential Variables. Addit. Manuf. 2020, 35, 101355. [Google Scholar] [CrossRef]
- Valent, R.C.; Ostapenko, A.; Sousa, B.C.; Grubbs, J.; Massar, C.J.; Cote, D.B.; Neamtu, R. Classifying Powder Flowability for Cold Spray Additive Manufacturing Using Machine Learning. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 2919–2928. [Google Scholar]
- Mythreyi, O.V.; Srinivaas, M.R.; Kumar, T.A.; Jayaganthan, R. Machine-Learning-Based Prediction of Corrosion Behavior in Additively Manufactured Inconel 718. Data 2021, 6, 80. [Google Scholar] [CrossRef]
- Du, Y.; Mukherjee, T.; DebRoy, T. Physics-Informed Machine Learning and Mechanistic Modeling of Additive Manufacturing to Reduce Defects. Appl. Mater. Today 2021, 24, 101123. [Google Scholar] [CrossRef]
- Sing, S.L. Perspectives on Additive Manufacturing Enabled Beta-Titanium Alloys for Biomedical Applications. Int. J. Bioprinting 2022, 8, 478–486. [Google Scholar] [CrossRef]
- Goh, G.D.; Sing, S.L.; Lim, Y.F.; Thong, J.L.J.; Peh, Z.K.; Mogali, S.R.; Yeong, W.Y. Machine Learning for 3D Printed Multi-Materials Tissue-Mimicking Anatomical Models. Mater. Des. 2021, 211, 110125. [Google Scholar] [CrossRef]
- Nasrin, T.; Pourali, M.; Pourkamali-Anaraki, F.; Peterson, A.M. Active learning for prediction of tensile properties for material extrusion additive manufacturing. Sci. Rep. 2023, 13, 11460. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Bennett, J.; Saha, S.; Lu, Y.; Cao, J.; Liu, W.K.; Gan, Z. Mechanistic data-driven prediction of as-built mechanical properties in metal additive manufacturing. npj Comput. Mater. 2021, 7, 86. [Google Scholar] [CrossRef]
- Ghiasian, S.E.; Lewis, K. A Machine Learning-Based Design Recommender System for Additive Manufacturing. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 84003:V11AT11A025; American Society of Mechanical Engineers: New York, NY, USA, 2020. [Google Scholar]
- Yang, S.; Page, T.; Zhang, Y.; Zhao, Y.F. Towards an Automated Decision Support System for the Identification of Additive Manufacturing Part Candidates. J. Intell. Manuf. 2020, 31, 1917–1933. [Google Scholar] [CrossRef]
- Mycroft, W.; Katzman, M.; Tammas-Williams, S.; Hernandez-Nava, E.; Panoutsos, G.; Todd, I.; Kadirkamanathan, V. A Data-Driven Approach for Predicting Printability in Metal Additive Manufacturing Processes. J. Intell. Manuf. 2020, 31, 1769–1781. [Google Scholar] [CrossRef]
Method | Type | Materials | Microstructure | Advantages | Disadvantages |
---|---|---|---|---|---|
Electric arc furnace (EAF) | Conventional | Stainless steel [141], zirconium alloy [169,269], 390 A alloy [173]. | Uniform and equiaxed distribution of grains [173]. | EAF in the steel-making process leads to lower carbon emissions [270]. | A very high (up to 20%) burnout/oxidation loss can result due to remelting scrap in electric arc furnace [149]. EAF provides three major sources of contamination: (i) refractory crucibles, (ii) slags, and (iii) air atmosphere [271]. |
Electroslag remelting (ESR) | Conventional | Super alloys [149,150], titanium alloys [174]. | Dendritic structure was observed in the cast ESR ingot whereas recrystallized grain structure was observed in the forged ingot. TiC and TiN precipitates were observed in both the cast and forged ingots [149]. | ESR yields high quality ingots of steels and super alloys [174]. | In the traditional method of ESR using consumable electrode, there is difficulty in compaction of scrap into electrode of satisfactory quality. To overcome this problem super alloy scrap has been recycled using ESR using non-consumable water cooled electrode [149]. |
Vacuum arc remelting (VAR) | Conventional | Super alloys [271], titanium alloys [272], alloys used in nuclear fuel parts, zirconium alloy [156]. | Three distinct regions observed in Ti alloy ingot developed using VAR: 1. a thin zone of nominally equiaxed prior-beta grains formed adjacent to the mold wall; 2. long columnar prior-beta grains; 3. at the center of the ingot, an equiaxed microstructure whose grain size decreased towards the center of the ingot was observed [272]. | High purity, good control, and reproducibility [167]. | Biofilms defects [154], VAR process requires structural integrity and electrical conductivity of the starting material [166]. |
Electron beam melting (EBM) | Conventional | High purity metals and alloys [159,162,164,179], titanium alloy [162,181], tantalum alloy [162,181], uranium [179,183], hafnium [182], zirconium alloy [157,172]. | Widmanstätten structure characteristic of the basketweave morphology can be observed in Zircaloy-4 (Raw state) [172] Grain boundaries free of inclusions [181]. | No wastage and environmentally safe [181]. | Constant vacuum for electron guns to function is required in EBM, which limits the amount of outgassing that can occur during melting [166]. |
Plasma arc melting (PAM) | Conventional | Titanium alloys [167,168,184], tantalum alloys [166,184]. | Plasma-melted ingots typically have a columnar structure due to solidification pattern induced by cold walls of the mold and the prevailing thermal gradients [167]. | The higher pressure in PAM helps avoid losses of low vapor-pressure alloying elements like aluminum and chromium [167]. PAF can carry out refining by removing high and low-density inclusions during melting [167]. | Service life of plasma torches with electrodes is limited due to various factors like type of material used for electrode, design configuration of electrodes, reactivity with plasma gases, and nature of the current AC or DC [185]. |
Vacuum induction melting (VIM) | Conventional | Titanium alloy [136], zircaloy [157], titanium–aluminide [158,159], super alloys [271]. | Fine needle-shaped structure with multi directional distribution. A phase with and small amount of β phase with columnar grains [136]. | Short melting time, precise control, homogenous mixing, and low cost [136]. | Inferior properties of large castings produced by vacuum induction melts [271]. |
Gas Atomization (GA) | Conventional | Steel [187], aluminum alloys [124,191], super alloys [189], titanium alloys [190]. | Rapid solidification microstructure consisting of a fine dendrite structure which can be observed in the atomized Al 2024 powders [191]. | Generates spherical metal powders which can be used for additive manufacturing [191], higher atomization efficiency, and a greater consistency with the spray [273]. | Rapid solidification or heat extraction can lead to metal freezing prematurely within the delivery tube. Pressure can become positive or negative from the gas stream with the nozzle tip, which can cause an increase in metal flow rate or a blockage during actual experimentation [273]. |
Friction stir extrusion (FSE) | Direct Conversion | Aluminum alloys [223,224,225,229], brass [227], magnesium alloy [228]. | The grain structure of extruded tubes showed grain refinement near the tube ID surface. A gradual transition in grain size occurs from the ID to OD of the extruded tubes [274]. Heavily stretched grain in the periphery and recrystallized grain in the center [228]. | Equiaxed refined grain structure in the extrudate upon frictional heat and severe plastic deformation can result in developing lightweight tubes with enhanced strength and formability, which could be used in the aerospace and automotive industries [274]. | The discontinuity of the process limits the extrudates volume to the capacity of the chamber [230]. |
Hot Extrusion | Direct Conversion | Aluminum alloys [260,261,262,263,264,265,267], bronze [266], reinforced magnesium matrix composite [275]. | Refinement in grain size after hot extrusion. The coarse grains of the as-cast composite were completely translated into the fine equiaxed grains through hot extrusion [275]. | Only 5% energy required than the conventional process chain, which includes a remelting step of the scrap to produce new extrusion billets [276]. | Surface oxidation, different thermal-mechanical properties, and orange peel defect [277]. |
Cyclic Extrusion Compression (CEC) | Direct Conversion | Aluminum alloys [231], magnesium alloys [232], aluminum–magnesium–silicon alloy [214]. | Evolution from the ultrafine grained material at lower deformation to a nanomaterial, highly misoriented microbands [214]. | Improvement in billet density, chip boundaries, and cyclic hardness [231]. | Requirement of back pressure during the process [278]. |
High Pressure Torsion (HPT) | Direct Conversion | Aluminum alloys [215,235,236], Mg-Zn composites [237]. | The microstructure becomes finer with increasing the number of HPT turns and the distance from disk center [236]. | Allows for defined continuous variation of strain, and extremely high shear strain can be achieved [279]. | Uniform microstructure can be achieved except in the central region, only if the sample is deformed in the saturation regime. Limitation in the size of sample [279]. |
Equal Channel Angular Pressing (ECAP) | Direct Conversion | Titanium alloys [247,249], aluminum alloys [216,248], magnesium [250]. | Fully dense bulk Ti with fine grain sizes having strength higher or comparable to commercial wrought pure Ti [247] Nano equiaxed grains α grains [249]. | ECAP process with back pressures allows consolidation of machine chips to near full consolidation of approx. 99.9% [249]. | Lack of hydrostatic pressure [278]. |
KOBO Extrusion Process (KEP) | Direct Conversion | Aluminum alloys, titanium alloys [217,258,259], AZ91 alloy [280]. | Homogeneous microstructure with equiaxed grains [258]. | Processing of titanium chips into a bulk solid form without remelting [258]. | Maintaining a constant value of the extrusion force by adjusting the oscillation frequency of the die and the speed of the punch movement is required to obtaining the same material properties along the entire length of the sample [280]. |
Direct Conversion Methods | Material | Chip Production Method | Chip Details | Chip Compaction Equipment | Process Details | Temperature | Density | Grain Size | Mechanical Tests Results |
---|---|---|---|---|---|---|---|---|---|
Friction Stir Extrusion | AZ31 magnesium alloy [228], aluminum alloy [210,229,312]. | Milling [228,229] Average dimension of 5 mm length, 2 mm width, and 0.2 mm thickness [228]. Depth of cut of 0.5 mm, a tool rotating speed of 150 mm/min, and a tool feed rate of 200 mm/min [229]. | The average size of the chips produced during this process are 7 mm length, 2 mm width, and 2 mm thickness [229]. | Dedicated fixture was designed [228]. | Extrusion rate, equal to 0.5 mm/s [228]. | 500 and 550 °C [210]. | - | 10–20 μm [312]. | Tensile strength up to 80% of the parent material [228]. With varying tool force UTS 60–200 MPa [229]. Yield strength 112–113 MPa [312]. UTS 195–205 MPa [312]. |
Cyclic Extrusion Compression | Aluminum alloy [231]. AlMgSi alloy [214]. | Lathe—Turning Input spindle speed of 1000 rev/min, a feed rate of 250 mm/tooth, and a depth of cut of 0.7 mm [231]. | 0.3569 mm2 to 0.0219 mm2 [231]. | Hydraulic press [231]. | Pressure 55–165 MPa [231]. Back pressure 681–2371 Mpa [231]. | 550 °C [231] | [231] | = 16 about 74% of the sample volume was occupied by the grains with the dimension below 100 nm [214]. | Macro hardness Vickers machine 72.26 HV to 108.43 HV [231]. |
High Pressure Torsion | Aluminum alloy [215,235]. Pure magnesium [313]. | Lathe—Turning speed, feed, and depth of cut of 120 m min−1, 0.21 mm/rev, and 5 mm [215]. | Continuous chip with a length range from 2–35 mm [215]. | HPT attachment with hydraulic press [235]. | Pressure of 6.0 GPa [313]. | 200 °C–550 °C [215]. | Relative density 99.5–99.99% [215]. 95–98% of actual materials density [235]. | ~ 1.6–4.0 µm [313]. | Yield stress seven times in comparison with the cast Mg [313]. |
Equal Channel Angular Pressing | Titanium alloy [249,314]. | Turning Cutting speed of 10 m/min, a feed rate of 0.1 mm/rev, and a depth of cut of 50 µm [249]. | 5 mm × 3 mm × 0.15 mm [314]. | ECAP die [249]. | Back pressures 50 to 250 MPa, constant ram speed of 4 mm/min [249]. | 400 to 500 °C [249]. | Relative density ~99.9% [249]. | ~70 nm [249]. | Microhardness 415 HV after 8 passes [249]. |
KOBO Extrusion Process | Titanium Grade 2 (Ti-99.4 wt%) [217]. | Turning. | Long tangled bands about 0.3 mm thick, 2.5 mm wide, and 100–200 mm long [217]. | Vertical hydraulic press [217]. | Extrusion ratio R = 14, piston speed of 0.1 mm/s [217]. | Briquette heated at 350 °C and annealed for 10 min [217]. | Ø8 mm ) ) [217]. | 19–24 µm. | Microhardness (average HV0.2) 159–183 HV [217]. Yield stress (MPa) 362–381HV [217]. |
Hot Extrusion Method | Aluminum alloy [260,264]. | Milling Cutting depth of 2 and 10 mm [260] feed per tooth of fz = 0.375 mm [260]. | Chip length 20–120 mm [264] Chip thickness 0.2–1.2 mm [264] Chip width 1–8.5 mm [264]. | Conventional 2.5 MN extrusion press [260,264]. | Die geometry, a simple flat extrusion die of a round profile of diameter 12 mm [260]. Compaction force of 400 kN during extrusion [264]. | 530 °C [260] preheated for 6 h at a temperature of 550 °C [264]. | Which is relative density of 83% [264]. | - | Yield strength 222–239 MPa [260]. UTS 441–460 MPa [260]. Microhardness HV 110–115 HV [260]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golvaskar, M.; Ojo, S.A.; Kannan, M. Recent Advancements in Material Waste Recycling: Conventional, Direct Conversion, and Additive Manufacturing Techniques. Recycling 2024, 9, 43. https://doi.org/10.3390/recycling9030043
Golvaskar M, Ojo SA, Kannan M. Recent Advancements in Material Waste Recycling: Conventional, Direct Conversion, and Additive Manufacturing Techniques. Recycling. 2024; 9(3):43. https://doi.org/10.3390/recycling9030043
Chicago/Turabian StyleGolvaskar, Mandar, Sammy A. Ojo, and Manigandan Kannan. 2024. "Recent Advancements in Material Waste Recycling: Conventional, Direct Conversion, and Additive Manufacturing Techniques" Recycling 9, no. 3: 43. https://doi.org/10.3390/recycling9030043
APA StyleGolvaskar, M., Ojo, S. A., & Kannan, M. (2024). Recent Advancements in Material Waste Recycling: Conventional, Direct Conversion, and Additive Manufacturing Techniques. Recycling, 9(3), 43. https://doi.org/10.3390/recycling9030043