Considering Grouped or Individual Non-Methane Volatile Organic Compound Emissions in Life Cycle Assessment of Composting Using Three Life Cycle Impact Assessment Methods
Abstract
1. Introduction
2. Results
2.1. Influence of LCIA Method Selection on Overall Composting Emissions
2.2. Influence of LCIA Method Selection on Overall Composting Emissions
2.3. Endpoint Impact Categories: Considering Individual NMVOC vs. Grouped NMVOC
3. Discussion
3.1. LCIA Method Comparison
3.2. Midpoint Impact Categories: Considering Individual NMVOC vs. Grouped NMVOC
3.3. Endpoint Impact Categories: Considering Individual NMVOC vs. Grouped NMVOC
4. Materials and Methods
4.1. Investigated Composting Systems
4.2. Goal and Scope
4.3. Life-Cycle Inventory
4.4. Life Cycle Impact Assessment
4.5. Analysis of NMVOC Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allesch, A.B.P. Assessment methods for solid waste management: A literature review. Waste Manag. Res. 2014, 32, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, N. Getting to know the odor compounds. Biocycle 2002, 43, 42–44. [Google Scholar]
- Komilis, D.P.; Ham, R.K.; Park, J.K. Emission of volatile organic compounds during composting of municipal solid wastes. Water Res. 2004, 38, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Sironi, S.; Capelli, L.; Céntola, P.; Del Rosso, R.; Il Grande, M. Continuous monitoring of odours from a composting plant using electronic noses. Waste Manag. 2007, 27, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Calleja, I.; Delgado, L. European environmental technologies action plan (ETAP). J. Clean. Prod. 2008, 16, 181–183. [Google Scholar] [CrossRef]
- Giusti, L. A review of waste management practices and their impact on human health. Waste Manag. 2009, 29, 2227–2239. [Google Scholar] [CrossRef] [PubMed]
- Muller, T.; Thissen, R.; Braun, S.; Dott, W.; Fischer, G. (M)VOC and composting facilities. Part 1: (M)VOC emissions from municipal biowaste and plant refuse. Environ. Sci. Pollut. Res. 2004, 11, 91–97. [Google Scholar] [CrossRef]
- Pagans, E.l.; Font, X.; Sánchez, A. Biofiltration for ammonia removal from composting exhaust gases. Chem. Eng. J. 2005, 113, 105–110. [Google Scholar] [CrossRef]
- Liu, Z.; Kanjo, Y.; Mizutani, S. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—Physical means, biodegradation, and chemical advanced oxidation: A review. Sci. Total Environ. 2009, 407, 731–748. [Google Scholar] [CrossRef]
- Maulini-Duran, C.; Puyuelo, B.; Artola, A.; Font, X.; Sánchez, A.; Gea, T. VOC emissions from the composting of the organic fraction of municipal solid waste using standard and advanced aeration strategies. J. Chem. Technol. Biotechnol. 2014, 89, 579–586. [Google Scholar] [CrossRef]
- Khosravi, N.; Jobson, B.T. Estimation of VOC emission factors for manure compost using continuous measurements by PTR-MS. In AGU Fall Meeting Abstract; American Geophysical Union: Washington, DC, USA, 2020; p. A115-0009. [Google Scholar]
- Pagans, E.; Font, X.; Sánchez, A. Emission of volatile organic compounds from composting of different solid wastes: Abatement by biofiltration. J. Hazard. Mater. 2006, 131, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Monedero, M.A.; Fernández-Hernández, A.; Higashikawa, F.S.; Cayuela, M.L. Relationships between emitted volatile organic compounds and their concentration in the pile during municipal solid waste composting. Waste Manag. 2018, 79, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Nie, E.; Zheng, G.; Shao, Z.; Yang, J.; Chen, T. Emission characteristics and health risk assessment of volatile organic compounds produced during municipal solid waste composting. Waste Manag. 2018, 79, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Saldarriaga, J.F.A.; Aguado, R.; Morales, G.E. Assessment of VOC Emissions from Municipal Solid Waste Composting. Environ. Eng. Sci. 2014, 31, 300–307. [Google Scholar] [CrossRef]
- Lehtinen, J.; Tolvanen, O.; Nivukoski, U.; Veijanen, A.; Hänninen, K. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland. Waste Manag. 2013, 33, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Colón, J.; Cadena, E.; Pognani, M.; Barrena, R.; Sánchez, A.; Font, X.; Artola, A. Determination of the energy and environmental burdens associated with the biological treatment of source-separated Municipal Solid Wastes. Energy Environ. Sci. 2012, 5, 5731–5741. [Google Scholar] [CrossRef]
- Cadena, E.; Colón, J.; Artola, A.; Sánchez, A.; Font, X. Environmental impact of two aerobic composting technologies using life cycle assessment. Int. J. Life Cycle Assess. 2009, 14, 401–410. [Google Scholar] [CrossRef]
- Colón, J.; Martínez-Blanco, J.; Gabarrell, X.; Rieradevall, J.; Font, X.; Artola, A.; Sánchez, A. Performance of an industrial biofilter from a composting plant in the removal of ammonia and VOCs after material replacement. J. Chem. Technol. Biotechnol. 2009, 84, 1111–1117. [Google Scholar] [CrossRef]
- Laurent, A.; Hauschild, M.Z. Impacts of NMVOC emissions on human health in European countries for 2000–2010: Use of sector-specific substance profiles. Atmos. Environ. 2014, 85, 247–255. [Google Scholar] [CrossRef]
- Maranghi, S.; Brondi, C. Life Cycle Assessment in the Chemical Product Chain: Challenges, Methodological Approaches and Applications. In Life Cycle Assessment in the Chemical Product Chain; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- IPCC. Climate Change 2013: The Scientific Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- IPCC. Climate Change 2021 6th AR: The Scientific Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2021; p. 1535. [Google Scholar]
- Rosenbaum, R.K.; Hauschild, M.Z.; Boulay, A.M.; Fantke, P.; Laurent, A.; Núñez, M.; Vieira, M. Life Cycle Impact Assessment. In Life Cycle Assessment—Theory and Practice; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 167–270. [Google Scholar]
- van Zelm, R.; Huijbregts, M.A.J.; den Hollander, H.A.; van Jaarsveld, H.A.; Sauter, F.J.; Struijs, J.; van Wijnen, H.J.; van de Meent, D. European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos. Environ. 2008, 42, 441–453. [Google Scholar] [CrossRef]
- van Zelm, R.; Preiss, P.; van Goethem, T.; Van Dingenen, R.; Huijbregts, M. Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation. Atmos. Environ. 2016, 134, 129–137. [Google Scholar] [CrossRef]
- Bulle, C.; Margni, M.; Patouillard, L.; Boulay, A.-M.; Bourgault, G.; De Bruille, V.; Cao, V.; Hauschild, M.; Henderson, A.; Humbert, S.; et al. IMPACT World+: A globally regionalized life cycle impact assessment method. Int. J. Life Cycle Assess. 2019, 24, 1653–1674. [Google Scholar] [CrossRef]
- Goyal, R.; England, M.H.; Sen Gupta, A.; Jucker, M. Reduction in surface climate change achieved by the 1987 Montreal Protocol. Environ. Res. Lett. 2019, 14, 124041. [Google Scholar] [CrossRef]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Clemens, J.; Cuhls, C. Greenhouse gas emissions from mechanical and biological waste treatment of municipal waste. Environ. Technol. 2003, 24, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.; Lant, P. Including N2O in ozone depletion models for LCA. Int. J. Life Cycle Assess. 2012, 17, 252–257. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- WMO. Assessment for decision makers. In Global Ozone Reserach and Monitoring Project; World Meterological Organisation: Geneva, Switzerland, 2014. [Google Scholar]
- Roy, P.-O.; Deschênes, L.; Margni, M. Life Cycle Impact Assessment of Terrestrial Acidification: Modeling Spatially Explicit Soil Sensitivity at the Global Scale. Environ. Sci. Technol. 2012, 46, 8270–8278. [Google Scholar] [CrossRef] [PubMed]
- Seppälä, J.; Posch, M.; Johansson, M.; Hettelingh, J.P. Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator (14 pp). Int. J. Life Cycle Assess. 2006, V11, 403–416. [Google Scholar] [CrossRef]
- Posch, M.; Seppälä, J.; Hettelingh, J.-P.; Johansson, M.; Margni, M.; Jolliet, O. The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA. Int. J. Life Cycle Assess. 2008, 13, 477–486. [Google Scholar] [CrossRef]
- Gronlund, C.J.; Humbert, S.; Shaked, S.; O’Neill, M.S.; Jolliet, O. Characterizing the burden of disease of particulate matter for life cycle impact assessment. Air Qual. Atmos. Health 2015, 8, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef]
- Humbert, S.; Marshall, J.D.; Shaked, S.; Spadaro, J.V.; Nishioka, Y.; Preiss, P.; McKone, T.E.; Horvath, A.; Jolliet, O. Intake Fraction for Particulate Matter: Recommendations for Life Cycle Impact Assessment. Environ. Sci. Technol. 2011, 45, 4808–4816. [Google Scholar] [CrossRef]
- Fazio, S.C.V.; Sala, S.; Schau, E.M.; Secchi, M.; Zampori, L.; Diaconu, E. Supporting information to the characterisation factors of recommended EF Life Cycle Impact Assessment methods. Version 2 from ILCD to EF 3.0. In JRC Technical Report; European Commission Ispra: Ispra, Italy, 2018. [Google Scholar]
- Zhang, J.; Wang, C.; Qu, K.; Ding, J.; Shang, Y.; Liu, H.; Wei, M. Characteristics of Ozone Pollution, Regional Distribution and Causes during 2014–2018 in Shandong Province, East China. Atmosphere 2019, 10, 501. [Google Scholar] [CrossRef]
- Pinho, P.; Maia, R.; Monterroso, A. The quality of Portuguese Environmental Impact Studies: The case of small hydropower projects. Environ. Impact Assess. Rev. 2007, 27, 189–205. [Google Scholar] [CrossRef]
- Owsianiak, M.; Laurent, A.; Bjørn, A.; Hauschild, M.Z. IMPACT 2002+, ReCiPe 2008 and ILCD’s recommended practice for characterization modelling in life cycle impact assessment: A case study-based comparison. Int. J. Life Cycle Assess. 2014, 19, 1007–1021. [Google Scholar] [CrossRef]
- Li, S.; Hofstra, N.; van de Schans, M.G.M.; Yang, J.; Li, Y.; Zhang, Q.; Ma, L.; Strokal, M.; Kroeze, C.; Chen, X.; et al. Riverine Antibiotics from Animal Production and Wastewater. Environ. Sci. Technol. Lett. 2023, 10, 1059–1067. [Google Scholar] [CrossRef]
- Chaparro-Garnica, J.; Guiton, M.; Salinas-Torres, D.; Morallón, E.; Benetto, E.; Cazorla-Amorós, D. Life Cycle assessment of biorefinery technology producing activated carbon and levulinic acid. J. Clean. Prod. 2022, 380, 135098. [Google Scholar] [CrossRef]
- van Zelm, R.; Huijbregts, M.A.J.; van de Meent, D. USES-LCA 2.0—A global nested multi-media fate, exposure, and effects model. Int. J. Life Cycle Assess. 2009, 14, 282–284. [Google Scholar] [CrossRef]
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox—The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008, 13, 532–546. [Google Scholar] [CrossRef]
- Laurent, A.; Lautier, A.; Rosenbaum, R.; Olsen, S.; Hauschild, M. Normalization references for Europe and North America for application with USEtox™ characterization factors. Int. J. Life Cycle Assess. 2011, 16, 728–738. [Google Scholar] [CrossRef]
- Hellweg, S.; Demou, E.; Bruzzi, R.; Meijer, A.; Rosenbaum, R.K.; Huijbregts, M.A.J.; McKone, T.E. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment. Environ. Sci. Technol. 2009, 43, 1670–1679. [Google Scholar] [CrossRef]
- Kranert, M.C.-L.K. Sammlung und Transport. In Einführung in Die Abfallwirtschaft; Cord-Landwehr, M.K.K., Ed.; Vieweg+Teubner: Wiesbaden, Germany, 2010; pp. 91–133. [Google Scholar]
- Friedrich, J. Nachhaltigkeitsbewertung von Systemalternativen zur Transformation des Wasser-Energie-Nexus im städtischen Gebäudebestand. Ph.D. Thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany, 2020. [Google Scholar]
- Kranert, M.C.-L.K. Biologische Verfahren. In Einführung in Die Abfallwirtschaft; Cord-Landwehr, M.K.K., Ed.; Vieweg+Teubner: Wiesbaden, Germany, 2010; pp. 185–291. [Google Scholar]
- Sánchez, A.; Artola, A.; Font, X.; Gea, T.; Barrena, R.; Gabriel, D.; Sánchez-Monedero, M.A.; Roig, A.; Cayuela, M.L.; Mondini, C. Greenhouse gas emissions from organic waste composting. Environ. Chem. Lett. 2015, 13, 223–238. [Google Scholar] [CrossRef]
- Epstein, E. Industrial Composting: Environmental Engineering and Facilities Management; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Clemens, C.C.B.M.J. Ermittlung der Emissionssituation bei der Verwertung von Bioabfällen; Umweltbundesamt: Dessau-Roßlau, Germany, 2015. [Google Scholar]
- RAL. Güte- und Prüfbestimmungen für Kompost; RAL: Berlin, Germany, 2007. [Google Scholar]
- WMO. Scientific Assessment of Ozone Depletion: 2010. In Global Ozone Reserach and Monitoring Project; World Meterological Organisation: Geneva, Switzerland, 2010. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Maulini-Duran, C.; Artola, A.; Font, X.; Sánchez, A. Gaseous emissions in municipal wastes composting: Effect of the bulking agent. Bioresour. Technol. 2014, 172, 260–268. [Google Scholar] [CrossRef]
- Bach, V.; Finkbeiner, M. Approach to qualify decision support maturity of new versus established impact assessment methods—Demonstrated for the categories acidification and eutrophication. Int. J. Life Cycle Assess. 2017, 22, 387–397. [Google Scholar] [CrossRef]
- Dreyer, L.; Niemann, A.; Hauschild, M. Comparison of Three Different LCIA Methods: EDIP97, CML2001 and Eco-indicator 99. Int. J. Life Cycle Assess. 2003, 8, 191–200. [Google Scholar] [CrossRef]
- Liu, Q.; Li, M.; Chen, R.; Li, Z.; Qian, G.; An, T.; Fu, J.; Sheng, G. Biofiltration treatment of odors from municipal solid waste treatment plants. Waste Manag. 2009, 29, 2051–2058. [Google Scholar] [CrossRef]
- Dhamodharan, K.; Varma, V.S.; Veluchamy, C.; Pugazhendhi, A.; Rajendran, K. Emission of volatile organic compounds from composting: A review on assessment, treatment and perspectives. Sci. Total Environ. 2019, 695, 133725. [Google Scholar] [CrossRef]
ReCiPe 2016 (H) | EF 3.0 | IMPACT World+ | |||||
---|---|---|---|---|---|---|---|
Ozone formation | Total composting emissions | kg NOx | 1.5 × 10−1 | kg NMVOCeq | 2.6 × 10−1 | kg NMVOCeq | 1.1 × 10−1 |
Grouped NMVOC | kg NOx | 1.6 × 10−1 | kg NMVOCeq | 8.8 × 10−1 | kg NMVOCeq | 8.8 × 10−1 | |
% share of total | 10.2% | 33.2% | 79.8% | ||||
Individual NMVOC | kg NOx | 1.4 × 10−1 | kg NMVOCeq | 1.6 × 10−1 | kg NMVOCeq | 1.2 × 10−1 | |
% share of total | 8.7% | 0.6% | 1.1% | ||||
Freshwater ecotoxicity | Total composting emissions | kg 1,4-Diclorobenzene (DCB) | 2.3 | kg CTUe | −1.0 × 104 | kg CTUe | 1.6 × 105 |
Grouped NMVOC | × | kg CTUe | 7.6 × 10−1 | × | |||
% share of total | × | 0.0% | × | ||||
Individual NMVOC | kg 1,4-DCB | 6.6 × 10−7 | kg CTUe | 2.0 × 10−3 | kg CTUe | 5.5 × 10−14 | |
% share of total | 0.0% | 0.0% | 0.0% | ||||
Human toxicity, carcinogens | Total composting emissions | kg 1,4-DCB | 4.8 × 10−1 | kg CTUh | 8.1 × 10−9 | kg CTUh | 5.9 × 10−7 |
Grouped NMVOC | × | kg CTUh | × | × | |||
% share of total | × | × | × | ||||
Individual NMVOC | kg 1,4-DCB | 1.4 × 10−3 | kg CTUh | 2.4 × 10−10 | kg CTUh | 3.0 × 10−10 | |
% share of total | 0.3% | 2.9% | 0.1% | ||||
Human toxicity, non-carcinogens | Total composting emissions | kg 1,4-DCB | 3.5 | kg CTUh | 6.4 × 10−9 | kg CTUh | −1.3 × 10−6 |
Grouped NMVOC | × | kg CTUh | 5.4 × 10−9 | × | |||
% share of total | × | 84.8% | × | ||||
Individual NMVOC | kg 1,4-DCB | 1.3 × 10−2 | kg CTUh | 5.4 × 10−10 | kg CTUh | 8.3 × 10−10 | |
% share of total | 0.4% | 8.5% | −0.1% |
ReCiPe 2016 | EF 3.0 | IMPACT World+ | |
---|---|---|---|
Climate change | IPCC AR5 [23] | IPCC AR5 [23] | IPCC AR5 [23] |
Acidification potential | GEOS-Chem [57] | [35,36] | GEOS-Chem [33] |
Ozone depletion potential | WMO 2011 [57] | WMO 2014 [33] | WMO 2014 [33] |
Ozone formation potential | TM5-FASST [26] | LOTOSEUROS [25] | LOTOSEUROS [25] |
Particulate matter formation | TM5-FASST [26] | UNEP recommendations | [37,39] |
ReCiPe 2016 | EF 3.0 | IMPACT World+ | |
---|---|---|---|
Ozone formation | kg NOx eq. | kg NMVOC eq. | kg NMVOC eq. |
Freshwater ecotoxicity | kg 1,4-DCB | kg CTUe | kg CTUe |
Human toxicity, carcinogens | kg 1,4-DCB | kg CTUh | kg CTUh |
Human toxicity, non-carcinogens | kg 1,4-DCB | kg CTUh | kg CTUh |
NMVOC Emissions | |
---|---|
Styrene | Dimethyl disulfide |
2-Pentanone | Pyridine |
Alpha-pinene | Toluene |
Beta-pinene | Xylene |
Limonene | Decane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, B.; Stichnothe, H. Considering Grouped or Individual Non-Methane Volatile Organic Compound Emissions in Life Cycle Assessment of Composting Using Three Life Cycle Impact Assessment Methods. Recycling 2024, 9, 35. https://doi.org/10.3390/recycling9030035
Joseph B, Stichnothe H. Considering Grouped or Individual Non-Methane Volatile Organic Compound Emissions in Life Cycle Assessment of Composting Using Three Life Cycle Impact Assessment Methods. Recycling. 2024; 9(3):35. https://doi.org/10.3390/recycling9030035
Chicago/Turabian StyleJoseph, Ben, and Heinz Stichnothe. 2024. "Considering Grouped or Individual Non-Methane Volatile Organic Compound Emissions in Life Cycle Assessment of Composting Using Three Life Cycle Impact Assessment Methods" Recycling 9, no. 3: 35. https://doi.org/10.3390/recycling9030035
APA StyleJoseph, B., & Stichnothe, H. (2024). Considering Grouped or Individual Non-Methane Volatile Organic Compound Emissions in Life Cycle Assessment of Composting Using Three Life Cycle Impact Assessment Methods. Recycling, 9(3), 35. https://doi.org/10.3390/recycling9030035