The Influence of a Commercial Few-Layer Graphene on the Photodegradation Resistance of a Waste Polyolefins Stream and Prime Polyolefin Blends
Abstract
:1. Introduction
- Initiation: The production of primary radicals due to the absorption of photons by chromophore groups.
- Propagation: The production of successive polymer radicals due to the attack of primary radicals on the polymer chains, followed by consequential crosslinking or chain scission.
2. Results and Discussion
2.1. Morphology
2.2. Dispersion of FLG
2.3. Effect of Adding FLG on UV-Exposed Composites
2.3.1. Chemical Analysis
2.3.2. Surface Appearance
2.3.3. Mechanical Properties
2.4. Discussions
3. Materials and Methods
3.1. Materials
3.2. Methods
3.3. Photodegradation Process
3.4. Characterizations
4. Conclusions
- The addition of FLG can effectively slow down the photodegradation of polyolefins blends.
- Although FLG exhibits a thermodynamic preference for PE over PP, the photostabilization of a PE/PP blend is not significantly affected by the selective distribution of FLG in either phase.
- A mere 0.5 wt.% or 1 wt.% of FLG is found sufficient to ensure the photostability of a prime PE/PP blend.
- To ensure better photoprotection in recycled polymer blends, a higher concentration of FLG is required, attributed partly to the predegraded condition of MPWS.
- Furthermore, pretreatment of prime polyolefins with FLG could be a recommended step, which, in turn, would extend the lifespan and generate a less degraded MPWS for potential reuse.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, M.K.; Mohanty, A.K.; Misra, M. Upcycling of waste polyolefins in natural fiber and sustainable filler-based biocomposites: A study on recent developments and future perspectives. Compos. Part B Eng. 2023, 263, 110852. [Google Scholar] [CrossRef]
- Jubinville, D.; Esmizadeh, E.; Saikrishnan, S.; Tzoganakis, C.; Mekonnen, T. A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications. Sustain. Mater. Technol. 2020, 25, e00188. [Google Scholar] [CrossRef]
- Sultana, S.M.N.; Helal, E.; Guti, G.; David, E.; Moghimian, N.; Demarquette, N.R. Effect of Few-Layer Graphene on the Properties of Mixed Polyolefin Waste Stream. Crystals 2023, 13, 358. [Google Scholar] [CrossRef]
- Fang, C.; Nie, L.; Liu, S.; Yu, R.; An, N.; Li, S. Characterization of polypropylene-polyethylene blends made of waste materials with compatibilizer and nano-filler. Compos. Part B Eng. 2013, 55, 498–505. [Google Scholar] [CrossRef]
- Karaagac, E.; Koch, T.; Archodoulaki, V.M. The effect of PP contamination in recycled high-density polyethylene (rPE-HD) from post-consumer bottle waste and their compatibilization with olefin block copolymer (OBC). Waste Manag. 2021, 119, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Najafi, S.K.; Hamidinia, E.; Tajvidi, M. Mechanical properties of composites from sawdust and recycled plastics. J. Appl. Polym. Sci. 2006, 100, 3641–3645. [Google Scholar] [CrossRef]
- Kazemi, Y.; Kakroodi, A.R.; Rodrigue, D. Compatibilization Efficiency in Post-Consumer Recycled Polyethylene/Polypropylene Blends: Effect of Contamination. Polym. Eng. Sci. 2015, 55, 2368–2376. [Google Scholar] [CrossRef]
- Karimi, S.; Helal, E.; Gutierrez, G.; David, E.; Samara, M.; Demarquette, N. Photo-stabilization mechanisms of High-Density Polyethylene (HDPE) by a commercial few-layer graphene. Polym. Eng. Sci. 2023, 63, 3879–3890. [Google Scholar] [CrossRef]
- Gutiérrez-Villarreal, M.H.; Zavala-Betancourt, S.A. A Comparative Study of the Photodegradation of Two Series of Cyclic Olefin Copolymers. Int. J. Polym. Sci. 2017, 2017, 1870814. [Google Scholar] [CrossRef]
- Ojeda, T.; Freitas, A.; Birck, K.; Dalmolin, E.; Jacques, R.; Bento, F.; Camargo, F. Degradability of linear polyolefins under natural weathering. Polym. Degrad. Stab. 2011, 96, 703–707. [Google Scholar] [CrossRef]
- Peng, Y.; Guo, X.; Cao, J.; Wang, W. Effects of two staining methods on color stability of wood flour/polypropylene composites during accelerated UV weathering. Polym. Compos. 2017, 38, 1194–1205. [Google Scholar] [CrossRef]
- Yousif, E.; Haddad, R. Photodegradation and Photostabilization of Polymers, Especially Polystyrene: Review. SpringerPlus 2013, 2, 398. [Google Scholar] [CrossRef] [PubMed]
- Rabek, J.F. Polymer Photodegradation: Mechanisms and Experimental Methods; Chapman & Hall: London, UK, 1995. [Google Scholar]
- Rånby, B. Photodegradation and photo-oxidation of synthetic polymers. J. Anal. Appl. Pyrolysis 1989, 15, 237–247. [Google Scholar] [CrossRef]
- Karimi, S.; Helal, E.; Gutierrez, G.; Moghimian, N.; Madinehei, M.; David, E.; Samara, M.; Demarquette, N. A Review on Graphene’ s Light Stabilizing Effects for Reduced Photodegradation of Polymers. Crystals 2021, 11, 3. [Google Scholar] [CrossRef]
- Waldman, W.R.; De Paoli, M.A. Photodegradation of polypropylene/polystyrene blends: Styrene-butadiene-styrene compatibilisation effect. Polym. Degrad. Stab. 2008, 93, 273–280. [Google Scholar] [CrossRef]
- Kumar, A.P.; Depan, D.; Tomer, N.S.; Singh, R.P. Nanoscale particles for polymer degradation and stabilization-Trends and future perspectives. Prog. Polym. Sci. 2009, 34, 479–515. [Google Scholar] [CrossRef]
- Gijsman, P.; Jan, H.; Daan, T. The mechanism of action of hindered amine light stabilizers. Polym. Degrad. Stab. 1993, 39, 225–233. [Google Scholar] [CrossRef]
- Chaudhuri, I.; Fruijtier-Pölloth, C.; Ngiewih, Y.; Levy, L. Evaluating the evidence on genotoxicity and reproductive toxicity of carbon black: A critical review. Crit. Rev. Toxicol. 2018, 48, 143–169. [Google Scholar] [CrossRef]
- Tipton, D.A.; Lewis, J.W. Effects of a hindered amine light stabilizer and a UV light absorber used in maxillofacial elastomers on human gingival epithelial cells and fibroblasts. J. Prosthet. Dent. 2008, 100, 220–231. [Google Scholar] [CrossRef]
- Alotaibi, M.D.; McKinley, A.J.; Patterson, B.M.; Reeder, A.Y. Benzotriazoles in the Aquatic Environment: A Review of Their Occurrence, Toxicity. Degrad. Anal. Water Air Soil Pollut. 2015, 226, 226. [Google Scholar] [CrossRef]
- Johra, F.T.; Lee, J.W.; Jung, W.G. Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Dash, G.N.; Pattanaik, S.R.; Behera, S. Graphene for electron devices: The panorama of a decade. IEEE J. Electron Devices Soc. 2014, 2, 77–104. [Google Scholar] [CrossRef]
- Yoo, B.M.; Shin, H.J.; Yoon, H.W.; Park, H.B. Graphene and graphene oxide and their uses in barrier polymers. J. Appl. Polym. Sci. 2014, 131, 39628. [Google Scholar] [CrossRef]
- Cui, Y.; Kundalwal, S.I.; Kumar, S. Gas barrier performance of graphene/polymer nanocomposites. Carbon 2016, 98, 313–333. [Google Scholar] [CrossRef]
- Junior, J.C.F.; Moghimian, N.; Gutiérrez, G.; Helal, E.; Ajji, A.; de Oliveira Barra, G.M.; Demarquette, N.R. Effects of an industrial graphene grade and surface finishing on water and oxygen permeability, electrical conductivity, and mechanical properties of high-density polyethylene (HDPE) multilayered cast films. Mater. Today Commun. 2022, 31, 103470. [Google Scholar] [CrossRef]
- Moghimian, N.; Nazarpour, S. The future of carbon: An update on graphene’s dermal, inhalation, and gene toxicity. Crystals 2020, 10, 718. [Google Scholar] [CrossRef]
- de Oliveira, Y.D.C.; Amurin, L.G.; Valim, F.C.F.; Fechine, G.J.M.; Andrade, R.J.E. The role of physical structure and morphology on the photodegradation behaviour of polypropylene-graphene oxide nanocomposites. Polymer 2019, 176, 146–158. [Google Scholar] [CrossRef]
- Mistretta, M.C.; Botta, L.; Vinci, A.D.; Ceraulo, M.; La Mantia, F.P. Photo-oxidation of polypropylene/graphene nanoplatelets composites. Polym. Degrad. Stab. 2019, 160, 35–43. [Google Scholar] [CrossRef]
- Moon, Y.; Yun, J.; Kim, H.; Lee, Y. Effect of graphite oxide on photodegradation behavior of poly (vinyl alcohol)/graphite oxide composite hydrogels. Carbon Lett. 2011, 12, 138–142. [Google Scholar] [CrossRef]
- Hasani, M.; Mahdavian, M.; Yari, H.; Ramezanzadeh, B. Versatile protection of exterior coatings by the aid of graphene oxide nano-sheets; comparison with conventional UV absorbers. Prog. Org. Coat. 2018, 116, 90–101. [Google Scholar] [CrossRef]
- Goodwin, D.G.; Shen, S.J.; Lyu, Y.; Lankone, R.; Barrios, A.C.; Kabir, S.; Perreault, F.; Wohlleben, W.; Nguyen, T.; Sung, L. Graphene/polymer nanocomposite degradation by ultraviolet light: The effects of graphene nanofillers and their potential for release. Polym. Degrad. Stab. 2020, 182, 109365. [Google Scholar] [CrossRef] [PubMed]
- Nuraje, N.; Khan, S.I.; Misak, H.; Asmatulu, R. The Addition of Graphene to Polymer Coatings for Improved Weathering. ISRN Polym. Sci. 2013, 2013, 514617. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Morreale, M.; Botta, L.; Mistretta, M.C.; Ceraulo, M.; Scaffaro, R. Degradation of polymer blends: A brief review. Polym. Degrad. Stab. 2017, 145, 79–92. [Google Scholar] [CrossRef]
- Christensen, P.A.; Egerton, T.A.; Martins-Franchetti, S.M.; Jin, C.; White, J.R. Photodegradation of polycaprolactone/poly(vinyl chloride) blend. Polym. Degrad. Stab. 2008, 93, 305–309. [Google Scholar] [CrossRef]
- Fernandes, L.; Freitas, C.A.; Demarquette, N.R.; Fechine, G.J.M. Photodegradation of Thermodegraded Polypropylene/ High-Impact Polystyrene Blends: Mechanical Properties. J. Appl. Polym. Sci. 2010, 120, 770–779. [Google Scholar] [CrossRef]
- Halina, K. Photodegradation of Polystyrene and Poly(vinyl acetate) Blends-I. Irradiation of PS/PVAc blends by Polychromatic Light. Eur. Polym. J. 1995, 31, 1037–1042. [Google Scholar]
- Mailhot, B.; Morlat, S.; Gardette, J.L. Photooxidation of blends of polystyrene and poly(vinyl methyl ether): FTIR and AFM studies. Polymer 2000, 41, 1981–1988. [Google Scholar] [CrossRef]
- Rivaton, A.; Serre, F.; Gardette, J.L. Oxidative and photooxidative degradations of PP/PBT blends. Polym. Degrad. Stab. 1998, 62, 127–143. [Google Scholar] [CrossRef]
- Ołdak, D.; Kaczmarek, H.; Buffeteau, T.; Sourisseau, C. Photo- and bio-degradation processes in polyethylene, cellulose and their blends studied by ATR-FTIR and raman spectroscopies. J. Mater. Sci. 2005, 40, 4189–4198. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Al-Dousari, N.M.; Abraham, G.J.; D’souza, M.A.; Al-Qabandi, O.A.; Al-Zakri, W. Effect of Die Head Temperature at Compounding Stage on the Degradation of Linear Low Density Polyethylene/Plastic Film Waste Blends after Accelerated Weathering. Int. J. Polym. Sci. 2016, 2016, 8–11. [Google Scholar] [CrossRef]
- López-Martínez, E.D.; Martínez-Colunga, J.G.; Ramírez-Vargas, E.; Sanchez-Valdes, S.; Ramos-de Valle, L.F.; Benavides-Cantu, R.; Rodríguez-Gonzalez, J.A.; Mata-Padilla, J.M.; Cruz-Delgado, V.J.; Borjas-Ramos, J.J.; et al. Influence of carbon structures on the properties and photodegradation of LDPE/LLDPE films. Polym. Adv. Technol. 2022, 33, 1727–1741. [Google Scholar] [CrossRef]
- Diallo, A.K.; Helal, E.; Gutiérrez, G.; Madinehei, M.; David, E.; Demarquette, N.; Moghimian, N. Graphene: A multifunctional additive for sustainability. Sustain. Mater. Technol. 2022, 33, e00487. [Google Scholar] [CrossRef]
- Tu, C.; Nagata, K.; Yan, S. Influence of melt-mixing processing sequence on electrical conductivity of polyethylene/polypropylene blends filled with graphene. Polym. Bull. 2017, 74, 1237–1252. [Google Scholar] [CrossRef]
- Kasaliwal, G.R.; Göldel, A.; Pötschke, P.; Heinrich, G. Influences of polymer matrix melt viscosity and molecular weight on MWCNT agglomerate dispersion. Polymer 2011, 52, 1027–1036. [Google Scholar] [CrossRef]
- Abbasi, F.; Shojaei, D.A.; Bellah, S.M. The compatibilization effect of exfoliated graphene on rheology, morphology, and mechanical and thermal properties of immiscible polypropylene/polystyrene (PP/PS) polymer blends. J. Thermoplast. Compos. Mater. 2019, 32, 1378–1392. [Google Scholar] [CrossRef]
- Parameswaranpillai, J.; Joseph, G.; Shinu, K.P.; Jose, S.; Salim, N.V.; Hameed, N. Development of hybrid composites for automotive applications: Effect of addition of SEBS on the morphology, mechanical, viscoelastic, crystallization and thermal degradation properties of PP/PS-xGnP composites. RSC Adv. 2015, 5, 25634–25641. [Google Scholar] [CrossRef]
- Haghnegahdar, M.; Naderi, G.; Ghoreishy, M.H.R. Electrical and thermal properties of a thermoplastic elastomer nanocomposite based on polypropylene/ethylene propylene diene monomer/graphene. Soft Mater. 2017, 15, 82–94. [Google Scholar] [CrossRef]
- Pour, R.H.; Hassan, A.; Soheilmoghaddam, M.; Bidsorkhi, H.C. Mechanical, thermal, and morphological properties of graphene reinforced polycarbonate/acrylonitrile butadiene styrene nanocomposites. Polym. Compos. 2016, 37, 1633–1640. [Google Scholar] [CrossRef]
- Bijarimi, M.; Amirul, M.; Norazmi, M.; Ramli, A.; Desa, M.S.Z.; Desa, M.A.; Samah, M.A.A. Preparation and characterization of poly (lactic acid) (PLA)/polyamide 6 (PA6)/graphene nanoplatelet (GNP) blends bio-based nanocomposites. Mater. Res. Express 2019, 6, 055044. [Google Scholar] [CrossRef]
- Hocker, S.J.A.; Kim, W.T.; Schniepp, H.C.; Kranbuehl, D.E. Polymer crystallinity and the ductile to brittle transition. Polymer 2018, 158, 72–76. [Google Scholar] [CrossRef]
- ASTM G154; Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Materials. ASTM International: West Conshohocken, PA, USA, 2023; p. 12.
- ASTM D1238; Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. ASTM International: West Conshohocken, PA, USA, 2010; p. 15.
- ASTM D638; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2015; p. 17.
- ASTM D256; Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM International: West Conshohocken, PA, USA, 2023; p. 20.
Polymer Blend System | Findings of the Authors on Photostability | Ref. |
---|---|---|
Polycaprolactone(PCL)/Poly (vinyl chloride) (PVC) | A positive interaction effect of the components resulted in an increased photostability of the blend compared to that of the homopolymers. | [35] |
PP/high impact polystyrene (HIPS) | The blend was found to be more photostable than pure PP as a result of the opacity of the blend and the larger scattering effect by the phase interface. | [36] |
PS/poly(viny1 acetate) (PVAc) | An accelerated photodegradation tendency of the blend was reported. The degradation behavior was found to be significantly influenced by the composition and morphology of the blend. | [37] |
Poly(vinyl methyl ether) (PVME)/PS | The photodegradation of the blend was deemed to be governed by the photooxidation trend of PVME. | [38] |
PP/poly(butylene terephthalate) (PBT) | The photodegradation of the blend was considered to involve both photolytic degradation and photooxidation of PBT sequence. | [39] |
Low-density polyethylene (LDPE)/cellulose | The blend was reported to be less photostable and more biodegradable than the pure components. | [40] |
Liner low-density polyethylene (LLDPE)/plastic waste (46 wt.% LLDPE, 51 wt.% LDPE, 1 wt.% HDPE, and 2 wt.% PP) | The presence of plastic waste was found to affect the photostability of pure LLDPE. | [41] |
LLDPE/LDPE | The addition of carbonaceous fillers (carbon black, carbon nanotube and graphene) was found to improve the photostability of the blend composite. | [42] |
(1) MPWS (2) prime PE/PP | The addition of commercial-grade few-layer graphene resulted in the retardation of photodegradation of the blend systems. | This work |
Parameters | MPWS | Prime Blend (FLG Premixed with PE) | ||||||
---|---|---|---|---|---|---|---|---|
Concentration of FLG (wt.%) | 0 | 1 | 4 | 7 | 10 | 0 | 0.5 | 1 |
Change in CI (%) | 1069 | 964 | 903 | 821 | 645 | 1325 | No significant change | |
Crack density (μm/μm2) | 0.0228 | 0.0088 | 0.0004 | No visible cracks but surface delamination | 0.0182 | |||
Retention of ductility (%) | 20 | 60 | 70 | 80 | 90 | 10 |
Polymer | Commercial Name | MFI (g/10 min) |
---|---|---|
MPWS | N/A | ≥4 (230 °C, 2.16 kg) |
PE | Formolene HB5502B | 0.35 (190 °C/2.16 kg) |
PP | Polypropylene 3720 WZ | 20 (230 °C, 2.16 kg) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultana, S.M.N.; Helal, E.; Gutiérrez, G.; David, E.; Moghimian, N.; Demarquette, N.R. The Influence of a Commercial Few-Layer Graphene on the Photodegradation Resistance of a Waste Polyolefins Stream and Prime Polyolefin Blends. Recycling 2024, 9, 29. https://doi.org/10.3390/recycling9020029
Sultana SMN, Helal E, Gutiérrez G, David E, Moghimian N, Demarquette NR. The Influence of a Commercial Few-Layer Graphene on the Photodegradation Resistance of a Waste Polyolefins Stream and Prime Polyolefin Blends. Recycling. 2024; 9(2):29. https://doi.org/10.3390/recycling9020029
Chicago/Turabian StyleSultana, S. M. Nourin, Emna Helal, Giovanna Gutiérrez, Eric David, Nima Moghimian, and Nicole R. Demarquette. 2024. "The Influence of a Commercial Few-Layer Graphene on the Photodegradation Resistance of a Waste Polyolefins Stream and Prime Polyolefin Blends" Recycling 9, no. 2: 29. https://doi.org/10.3390/recycling9020029
APA StyleSultana, S. M. N., Helal, E., Gutiérrez, G., David, E., Moghimian, N., & Demarquette, N. R. (2024). The Influence of a Commercial Few-Layer Graphene on the Photodegradation Resistance of a Waste Polyolefins Stream and Prime Polyolefin Blends. Recycling, 9(2), 29. https://doi.org/10.3390/recycling9020029