Hygrothermal Optimization for Excavated Soil Reuse in Various Climate Buildings: A Global Literature Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology and Bibliometric Analysis
2.2. Methods for Recycling Excavated Soil
- Different typologies of earthen construction suitable for revalorizing excavated soils.
- Various technical processes associated with these typologies of earthen construction.
- Different additives associated with soil to enhance specific properties.
2.2.1. Earth-Based Materials in the Literature
2.2.2. Earth-Based Material Production Techniques
- Non-mechanical or manual techniques involve utilizing the earth as a construction material without applying mechanical means; instead, it involves solely manual methods (see Figure 5d for example). This approach revolves around shaping the material by hand, either with or without molds or formworks, to create bricks or sections of a wall. Earth plaster, cob, and adobe are prime materials crafted using these techniques.
- Compaction or compression refers to compacting earth within a mold or formwork, utilizing either mechanical machinery or manual effort to create bricks or entire walls. Compression forces span from 0.39 MPa [9] to 62 MPa (or 100 kN) [10]. Examples of earth-based materials produced through this method include rammed earth, Compressed Earth Blocks (CEB), and Compressed Stabilized Earth Blocks (CSEB), see Figure 5b).
- Extrusion or pulverization encompasses the production of materials through extrusion processes, notably employed in 3D-printing methodologies (see Figure 5a,e).
- The fired method involves the production of bricks through the process of firing (see Figure 5c). Fired bricks serve as an exemplar of this material.
2.2.3. Earth-Based Material Additives
- Bioadditives encompass various types sourced from plants (leaves, fibers, and cores) or animals (manure, wool, and blood), each offering distinct properties to the material.
- Mineral additives primarily originate from the cement industry and include natural geosourced additions like lime and sand, contributing unique characteristics to the mix.
- Other additives may comprise polymers, phase change materials, waste from mining industries, and ash from power plants (from incineration processes), diversifying the material’s composition and functionalities.
2.2.4. Soil-Excavated Valorization Techniques Nomenclature
- N: Represents materials produced without mechanical intervention.
- C: Denotes materials formed through compaction or compression methods.
- E: Signifies materials produced through extrusion techniques.
- F: Represents materials created via firing processes.
- R: Refers to materials without any additives.
- Fb: Indicates materials with fiber additions.
- S: Stands for stabilized materials with mineral-sourced additives.
- M: Represents materials with a mixed composition (mineral-sourced, bio-, and other additives).
- A: Denotes materials with other specific additions.
2.3. Earth-Based Material Hygrothermal Properties
- Dry Density: This parameter represents the mass per unit volume of soil when utterly devoid of moisture, providing insight into the soil’s compactness and structural composition.
- Thermal Conductivity (Dry): Thermal conductivity refers to the material’s ability to conduct heat and is essential in understanding how efficiently heat is transferred through the material when devoid of moisture.
- Dry Specific Heat: Specific heat is the amount of heat required to raise the temperature of a unit mass of material by one degree Celsius when dry, indicating its heat storage capacity.
- Thermal Diffusivity: This property quantifies how quickly a material responds to changes in temperature, indicating its ability to conduct heat relative to its capacity to store thermal energy.
- Thermal Effusivity: It signifies a material’s ability to exchange thermal energy with its surroundings, influenced by thermal conductivity and specific heat.
- Water Vapor Permeability: This parameter measures the rate of water vapor transmission through a unit area of material of a specified thickness, influenced by temperature, humidity, and vapor pressure differences.
- Water Vapor Resistance Factor: It evaluates a material’s resistance to water vapor passage, comparing it to the resistance offered by air.
- Moisture Buffer Value: This value directly measures a material’s capacity to absorb and release moisture in response to changing environmental conditions.
- Moisture Effusivity: It characterizes the rate of moisture absorption by a material when subjected to a sudden increase in surface humidity.
- Water Absorption Coefficient: This coefficient illustrates the rate at which porous building materials absorb liquid water through capillary action.
- Moisture Content: The quantity of water in a material, reflecting its moisture state under specific environmental conditions.
- Sorption Isotherms (Moisture Content per RH): Graphical representations indicating the relationship between a substance’s moisture content and the relative humidity of the surrounding air at a given temperature, essential for understanding moisture equilibrium in materials.
2.4. Climate Classification (Köppen Climate Classification)
- Group A: Tropical/Megathermal Climates: These climates are characterized by consistently high temperatures, usually above 18 °C (64.4 °F) throughout the year, particularly at sea level and low elevations. They are accompanied by significant annual precipitation.
- Group B: Arid (Desert and Semi-arid) Climates: Arid climates are identified by annual precipitation levels significantly lower than the potential evapotranspiration.
- Group C: Temperate/Mesothermal Climates: Temperate climates in the Köppen system maintain temperatures above 0 °C (32 °F) (or −3 °C (26.6 °F) in previous references) during their coldest month but remain below 18 °C (64.4 °F). The −3 °C (26.6 °F) average temperature aligns with the equatorward limit of frozen ground and sustained snow cover for a month or more.
- Group D: Continental/Microthermal Climates: These climates exhibit average temperatures in the warmest month surpassing 10 °C (50 °F) and average temperatures in the coldest month dropping below 0 °C (or −3 °C (27 °F) in previous mentions). Found predominantly in continental interiors and upper east coasts, particularly above 40° N, these climates are rarer in the Southern Hemisphere’s mid-latitudes due to smaller land masses and limited land between 40 and 60° S. They occur primarily in select highland locations.
- Group E: Polar Climates: Within the Köppen system, Polar climates maintain the warmest monthly temperatures below 10 °C (50 °F). They can be categorized into two main types: tundra and icecap climates.
3. Results
3.1. Comprehensive Analysis of Studies Investigating the Hygrothermal Properties of Earth-Based Materials
3.2. Influence of Incorporation and Production Techniques on the Hygrothermal Properties of Earth-Based Materials
3.2.1. Global Influence
3.2.2. Influence of Fiber Additives on Hygrothermal Properties
3.2.3. Stabilizer Additive Influence
3.2.4. Influence of Other Additives and Mixtures
3.2.5. Influence of Compression Techniques
3.3. Correlating Hygrothermal Properties, Production Techniques, and Climate Conditions
4. Discussions
4.1. Literature Gap Analysis
4.2. Critical Analysis of Study Repartition and Earth-Based Material-Manufactured Techniques around the World
4.3. Proposal of New Decision-Support Tools: Development of MATARUN Ternary Diagrams
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CSEB | Compressed Stabilized Earth Blocks | CEB | Compressed Earth Blocks |
N | No mechanical | DTS | Dynamic Thermal Simulation |
C | Compression/compaction | E | Extrusion |
F | Firing | R | No additives |
Fb | Fibers additions | S | Stablized |
M | Mixed composition | A | With others additions |
LEM | Light Earth Method | PoP | Publish or Perish |
LEED | Leadership in Energy and Environmental Design |
Appendix A
Appendix A.1. References of Research Presented on This Article
Technics | References |
---|---|
No mechanical | [29,37,43,46,49,51,75,81] |
Compressed | [9,10,23,26,27,28,29,30,32,33,34,40,45,47,48,50,51,52,57,59,65,66,67,68,69,70,71,76,77,84,85,86,87,88,89,90,91,95,96,98,99,100] |
Extruded | [57,91,93,94] |
Fired | [40,83,87,92,97,103] |
Mineral Additive | No Mechanical | Compressed | Extruded |
---|---|---|---|
Lime | [35,36] | [19,21,26,34] | - |
Cement | - | [18,19,20,21,23,24,26,28,30,31,32,50] | - |
NaOH | - | [26] | - |
Fiberglass | - | [32] | - |
Pozzolan | - | [32] | - |
Calcium Carbide Residue | - | [23] | - |
Bioadditive | No Mechanical | Compressed | Extruded |
---|---|---|---|
Hemp | [22,37] | [38,39,40,41,42,43] | - |
Wheat | [46,49] | [10,41,45,47,48] | - |
Barley | [35,51,52] | [10,50,51] | - |
Reed | [41,53,55] | [37,54] | - |
Olive | [56] | [57,58] | - |
Rice | [53,59] | [53] | - |
Straw | [61,63] | [26,37,62] | [37] |
Bagasse | [59] | - | - |
Corn | [51] | - | - |
Alfa | - | [65,66] | - |
Hibiscus cannabinus | - | [67] | - |
Kenaf | - | [68] | - |
Lavender | - | [50] | - |
Palm | - | [69] | - |
Pennisetum Setaceum | - | [70] | - |
Pumice | - | [43] | - |
Sawdust | - | [65] | - |
Seaweed | - | [43] | - |
Thatch | - | [71] | - |
Typha Australis | - | [71] | - |
Fonio | - | [74] | - |
Grass | [53] | [53] | - |
Cocos Nucifera, Canarium Schweinfurthii | - | [28] | - |
Flax | - | [31,41,47,54,64] | - |
Typha australis | - | [72] | - |
Other Additive | No Mechanical | Compressed |
---|---|---|
PCM | [75] | [30,32] |
Geopolymer (NaOH-activated MK) | - | [27] |
Wood biomass ash (domestic wood heating, wood from tree pruning) | - | [77] |
Lignin sulfonate | - | [76] |
Tannin | - | [76] |
Sheep Wool | - | [76,102] |
Guar gum (HydroxyPropyl Guar) | - | [32] |
Paper | - | [82] |
Oat fiber | - | [75] |
Mix of Additive | No Mechanical | Compressed |
---|---|---|
Cement/Pozzolan | - | [22] |
Cement/sawdust | - | [22] |
Cement/Agave/cactus mucilage and xanthan gum | - | [80] |
Cement/Agave | - | [80] |
Cement/wheat straw | - | [10] |
Cement/Barley straw | - | [10] |
Cement/mining waste | - | [78] |
Gypsum/wheat straw | - | [10] |
Gypsum/Barley straw | - | [10] |
Cement/Hemp fiber | - | [31] |
Natural polymer (Alginate)/Organic fiber (Sheep wool) | - | [79] |
PCM/Flax Straw | - | [64] |
PCM/Reed | - | [55] |
River sand/wheat straw | - | [46] |
River sand/wheat straw/cow dung | - | [46] |
Flax fiber/Glycerol Carbonate | - | [81] |
Pozzolan/Microsilica | - | [32] |
Calcium Carbide Residue/Rice Husk Ash | - | [23] |
Lime/PCM | [75] | - |
Lime/oat fiver | [75] | - |
Appendix A.2. Hydrothermal Properties Presented on This Article
No Mechanical | Compressed | |||||
---|---|---|---|---|---|---|
Properties | Mean | Min | Max | Mean | Min | Max |
Dry density | 1912.38 | 1699.00 | 2239.00 | 1906.19 | 1470.00 | 3120.00 |
Water vapor permeability factor | 5.00 | 3.30 | 6.70 | 8.44 | 5.40 | 15.83 |
Dry thermal conductivity | 0.79 | 0.51 | 1.35 | 0.91 | 0.35 | 2.10 |
Extruded | Fired | |||||
Properties | Mean | Min | Max | Mean | Min | Max |
Dry density | 2045.25 | 1788.00 | 2268.00 | 2039.12 | 1777.00 | 2567.60 |
Water vapor permeability factor | 5.00 | 3.00 | 7.00 | 17.80 | 12.60 | 23.00 |
Dry thermal conductivity | 0.54 | 0.19 | 0.91 | 0.75 | 0.35 | 1.04 |
Additive | Proportion | No Mechanical (Min/Mean/Max) | Compressed (Min/Mean/Max) | Extruded (Min/Mean/Max) |
---|---|---|---|---|
Bioadditive | ||||
Hemp | 1.5–67% | 316/1016.25/1503.8 | 205/480.26/2244 | -/-/- |
Wheat | 0.3–20% | 971.21/1636.9/2028.4 | 1462/1605.39/1827.58 | -/-/- |
Barley | 1–6% | 1315/1458.71/1613 | 1139.9/1545.49/1818 | -/-/- |
Reed | 3–35% | 620/726.9/1047.6 | 650/1002.5/1355 | -/-/- |
Olive | 4–40% | 1409/1543.5/1669 | 1344.3/1509.15/1669 | -/-/- |
Rice | 1–6% | 836/836/836 | -/-/- | -/-/- |
Straw | 0.4–2% | 1456/1614.6/1823.3 | 1211/1355.5/1500 | 1283.7/1489.13/1780.3 |
Bagasse | 1–6% | -/-/- | -/-/- | -/-/- |
Corn | 1–2% | 948/1088.5/1229 | -/-/- | -/-/- |
Alfa | 1–8% | -/-/- | 1512/2182.67/2520 | -/-/- |
Hibiscus cannabinus | 0.2–0.8% | -/-/- | -/-/- | -/-/- |
Kenaf | 1.20% | -/-/- | -/-/- | -/-/- |
Lavender | 3–6% | -/-/- | 1585/1678.5/1772 | -/-/- |
Palm | 3–6% | -/-/- | 1122.3/1214.71/1285.6 | -/-/- |
Pennisetum Setaceum | 8% | -/-/- | 1330/1330/1330 | -/-/- |
Pumice | 3.50% | -/-/- | 831/831/831 | -/-/- |
Sawdust | 8% | -/-/- | 1542/1542/1542 | -/-/- |
Seaweed | 1–4% | -/-/- | 1100/1233.33/1400 | -/-/- |
Thatch | 1–4% | -/-/- | 1741.66/1752.53/1770.61 | -/-/- |
Typha Australis | 15.10–23% | -/-/- | 1000/1164.58/1304.5 | -/-/- |
Fonio | 0.20–1% | -/-/- | -/-/- | -/-/- |
Grass | -/-/- | -/-/- | 616/684/721 | -/-/- |
Cocos Nucifera. Canarium Schweinfurthii | 5–15% | -/-/- | 1120/1363.33/1650 | -/-/- |
Flax | 1–3% | -/-/- | 1050/1591.19/1912.5 | -/-/- |
Typha australis | 16–33% | -/-/- | 304.3/404.27/585.5 | -/-/- |
-/-/- | -/-/- | -/-/- | -/-/- | |
Mineral additive | ||||
Lime | 5–15% | 1843/2016.5/2190 | 1130/1777.25/2190 | -/-/- |
Cement | 3–15% | -/-/- | 1491/1886.44/2490 | -/-/- |
NaOH | 3% | -/-/- | -/-/- | -/-/- |
Fiberglass | 1–2% | -/-/- | -/-/- | -/-/- |
Pozzolan | 10% | -/-/- | -/-/- | -/-/- |
Calcium Carbide Residue | 5–25% | -/-/- | 1477/1594.4/1711 | -/-/- |
-/-/- | -/-/- | -/-/- | -/-/- | |
Other additive | ||||
PCM | 5–29% | 1270/1270/1270 | 1750/1754.5/1768 | -/-/- |
Geopolymer (NaOH-activated MK) | 5–20% | -/-/- | 1730/1780/1840 | -/-/- |
wood biomass ash (domestic wood heating. wood from tree pruning) | 5–20% | -/-/- | 1830/1869.375/1920 | -/-/- |
Lignin sulfonate | 1% | -/-/- | 2170/2170/2170 | -/-/- |
tannin | 1% | -/-/- | 2130/2130/2130 | -/-/- |
sheep Wool | 0.25% | -/-/- | 2170/2170/2170 | -/-/- |
Guar gum (HydroxyPropyl Guar) | 2.50% | -/-/- | 1611/1611/1611 | -/-/- |
Paper | -/-/- | -/-/- | -/-/- | -/-/- |
Oat fiber | 0.20% | 1670/1670/1670 | -/-/- | -/-/- |
Mix of additive | ||||
Cement/Pozzolan | 10%/45% | -/-/- | 1329/1516/1643 | -/-/- |
Cement/sawdust | 10%/9% | -/-/- | 1050/1118.33/1207 | -/-/- |
Cement/Agave/cactus mucilage and xanthan gum | 16%/1%/ | -/-/- | 1910/1910/1910 | -/-/- |
Cement/Agave | 16%/1% | -/-/- | 1910/1910/1910 | -/-/- |
Cement/wheat straw | 5–10%/1–3% | -/-/- | 1100/1188.18/1301.8 | -/-/- |
Cement/Barley straw | 5–10%/1–3% | -/-/- | 1139.9/1215.93/1301.8 | -/-/- |
Cement/mining waste | 10%/0–40% | -/-/- | 1650/1716/1750 | -/-/- |
Gypsum/wheat straw | 5–10%/1–3% | -/-/- | 1211/1429.98/1575.6 | -/-/- |
Gypsum/Barley straw | 5–10%/1–3% | -/-/- | 1211/1428.58/1575.6 | -/-/- |
Cement/Hemp fiber | 5–9%/0.8% | -/-/- | -/-/- | -/-/- |
Natural polymer (Alginate)/ Organic fiber (Sheep wool) | 3%/0.25% | -/-/- | 1390/1450/1510 | -/-/- |
PCM/Flax Straw | 2–10%/2.5% | -/-/- | 1910.1/1915.67/1922.6 | -/-/- |
PCM/Reed | 2–20%/25% | -/-/- | 700/700/700 | -/-/- |
River sand/wheat straw | 80%/0–3.10% | -/-/- | 1313.8/1572.08/1748.2 | -/-/- |
River sand/wheat straw/cow dung | 80%/0.7–1.60%/6–11% | -/-/- | 1312.8/1572.04/1748.9 | -/-/- |
Flax fiber/Glycerol Carbonate | 0.75%/1% | -/-/- | 1593/1593/1593 | -/-/- |
Pozzolan/Microsilica | 10%/1.5% | -/-/- | 1904/1904/1904 | -/-/- |
Calcium Carbide Residue/Rice Husk Ash | 12–18%/2–8% | -/-/- | 1555/1571.25/1578 | -/-/- |
Lime/PCM | 1.6%/17% | 1430/1430/1430 | -/-/- | -/-/- |
Lime/oat fiver | 2%/0.20% | 1720/1720/1720 | -/-/- | -/-/- |
Additive | Proportion | No Mechanical (Min/Mean/Max) | Compressed (Min/Mean/Max) |
---|---|---|---|
Bioadditive | |||
Hemp | 1.5–67% | 3.5/3.5/3.5 | 2.24/3.71/6.8 |
Wheat | 0.3–20% | -/-/- | 7.01/7.49/7.88 |
Barley | 1–6% | 5.5/7.82/11 | -/-/- |
Reed | 3–35% | 7.8/8.23/9 | 7.101/7.1/7.101 |
Olive | 4–40% | 12.5/13.78/15.1 | 12.5/13.78/15.1 |
Rice | 1–6% | -/-/- | -/-/- |
Straw | 0.4–2% | 7.27/11/18 | -/-/- |
Bagasse | 1–6% | -/-/- | -/-/- |
Corn | 1–2% | 4.5/5.25/6 | -/-/- |
Alfa | 1–8% | -/-/- | -/-/- |
Cocos Nucifera, Canarium Schweinfurthii | 5–15% | -/-/- | -/-/- |
Flax | 1–3% | -/-/- | 9.25/11.32/13.75 |
Typha australis | 16–33% | -/-/- | 1.28/1.69/2.5 |
Mineral additive | |||
Lime | 5–15% | -/-/- | 5.9/7.42/9.4 |
Cement | 3–15% | -/-/- | 6.5/7.79/14.34 |
Other additive | |||
Lignin sulfonate | 1% | -/-/- | 14/14/14 |
Tannin | 1% | -/-/- | 11/11/11 |
Sheep Wool | 0.25% | -/-/- | 12/12/12 |
Mix of additive | |||
PCM/Reed | 2–20%/25% | -/-/- | 7.217/7.99/8.673 |
Flax fiber/Glycerol Carbonate | 0.75%/1% | -/-/- | 3.4/3.4/3.4 |
Additive | Proportion | No Mechanical (Min/Mean/Max) | Compressed (Min/Mean/Max) | Extruded (Min/Mean/Max) |
---|---|---|---|---|
Bioadditive | ||||
Hemp | 1.5–67% | 0.115/0.29/0.43 | 0.06/0.18/1.27 | -/-/- |
Wheat | 0.3–20% | 0.3032/0.44/0.58 | 0.25/0.44/1.041 | -/-/- |
Barley | 1–6% | 0.15/0.55/0.87 | 0.155/0.51/0.82 | -/-/- |
Reed | 3–35% | 0.13/0.16/0.25 | 0.156/0.22/0.32 | -/-/- |
Olive | 4–40% | 0.428/0.5/0.593 | 0.39/0.49/0.61 | -/-/- |
Rice | 1–6% | 0.178/0.52/0.65 | 0.19/0.19/0.19 | -/-/- |
Straw | 0.4–2% | 0.63/0.73/0.84 | 0.26/0.38/0.5 | 0.32/0.39/0.48 |
Bagasse | 1–6% | 0.45/0.57/0.65 | -/-/- | -/-/- |
Corn | 1–2% | 0.3/0.44/0.58 | -/-/- | -/-/- |
Alfa | 1–8% | -/-/- | 0.401/1.15/1.44 | -/-/- |
Hibiscus cannabinus | 0.2–0.8% | -/-/- | 1.3/1.44/1.57 | -/-/- |
Kenaf | 1.20% | -/-/- | 0.9/1.33/1.7 | -/-/- |
Lavender | 3–6% | -/-/- | 0.289/0.31/0.325 | -/-/- |
Palm | 3–6% | -/-/- | 0.265/0.36/0.49 | -/-/- |
Pennisetum Setaceum | 8% | -/-/- | 0.333/0.33/0.333 | -/-/- |
Pumice | 3.50% | -/-/- | 0.15/0.15/0.15 | -/-/- |
Sawdust | 8% | -/-/- | 0.509/0.51/0.509 | -/-/- |
Seaweed | 1–4% | -/-/- | 0.4/0.53/0.65 | -/-/- |
Thatch | 1–4% | -/-/- | 0.485/0.55/0.642 | -/-/- |
Typha Australis | 15.10–23% | -/-/- | 0.127/0.15/0.163 | -/-/- |
Fonio | 0.20–1% | -/-/- | 0.37/0.76/1 | -/-/- |
Grass | -/-/- | -/-/- | 0.121/0.12/0.124 | -/-/- |
Cocos Nucifera. Canarium Schweinfurthii | 5–15% | -/-/- | 0.19/0.28/0.38 | -/-/- |
Flax | 1–3% | -/-/- | 0.4/0.69/1.27 | -/-/- |
Typha australis | 16–33% | -/-/- | -/-/- | -/-/- |
Geoadditive | ||||
Lime | 5–15% | 0.892/1.54/2.18 | 0.25/0.79/2.18 | -/-/- |
Cement | 3–15% | -/-/- | 0.243/0.81/1.47 | -/-/- |
NaOH | 3% | -/-/- | -/-/- | -/-/- |
Fiberglass | 1–2% | -/-/- | -/-/- | -/-/- |
Pozzolan | 10% | -/-/- | -/-/- | -/-/- |
Calcium Carbide Residue | 5–25% | -/-/- | 0.69/0.81/0.89 | -/-/- |
Other additive | ||||
PCM | 5–29% | 0.51/0.51/0.51 | 0.85/1.22/1.42 | -/-/- |
Geopolymer (NaOH-activated MK) | 5–20% | -/-/- | 0.71/0.77/0.8 | -/-/- |
Wood biomass ash (domestic wood heating. wood from tree pruning) | 5–20% | -/-/- | 0.748/0.8/0.87 | -/-/- |
Lignin sulfonate | 1% | -/-/- | 1.87/1.87/1.87 | -/-/- |
Tannin | 1% | -/-/- | 1.45/1.45/1.45 | -/-/- |
Sheep Wool | 0.25% | -/-/- | 1.45/1.45/1.45 | -/-/- |
Guar gum (HydroxyPropyl Guar) | 2.50% | -/-/- | 0.83/0.83/0.83 | -/-/- |
Paper | -/-/- | -/-/- | -/-/- | -/-/- |
Oat fiber | 0.20% | 0.58/0.58/0.58 | -/-/- | -/-/- |
Mix of additive | ||||
Cement/Pozzolan | 10%/45% | -/-/- | 0.65/0.68/0.71 | -/-/- |
Cement/sawdust | 10%/9% | -/-/- | 0.5/0.55/0.65 | -/-/- |
Cement/Agave/cactus mucilage and xanthan gum | 16%/1%/ | -/-/- | 0.846/0.85/0.846 | -/-/- |
Cement/Agave | 16%/1% | -/-/- | 0.786/0.79/0.786 | -/-/- |
Cement/wheat straw | 5–10%/1–3% | -/-/- | 0.325/0.47/0.608 | -/-/- |
Cement/Barley straw | 5–10%/1–3% | -/-/- | 0.38/0.51/0.632 | -/-/- |
Cement/mining waste | 10%/0–40% | -/-/- | 1.42/1.46/1.58 | -/-/- |
Gypsum/wheat straw | 5–10%/1–3% | -/-/- | 0.415/0.53/0.64 | -/-/- |
Gypsum/Barley straw | 5–10%/1–3% | -/-/- | 0.424/0.54/0.64 | -/-/- |
Cement/Hemp fiber | 5–9%/0.8% | -/-/- | 0.3/0.5/0.58 | -/-/- |
Natural polymer (Alginate)/ Organic fiber (Sheep wool) | 3%/0.25% | -/-/- | 0.53/0.61/0.68 | -/-/- |
PCM/Flax Straw | 2–10%/2.5% | -/-/- | 0.65/0.66/0.68 | -/-/- |
PCM/Reed | 2–20%/25% | -/-/- | 0.134/0.14/0.144 | -/-/- |
River sand/wheat straw | 80%/0–3.10% | -/-/- | 0.41/0.48/0.6 | -/-/- |
River sand/wheat straw/cow dung | 80%/0.7–1.60%/6–11% | -/-/- | 0.43/0.83/1.19 | -/-/- |
Flax fiber/Glycerol Carbonate | 0.75%/1% | -/-/- | 0.518/0.52/0.518 | -/-/- |
Pozzolan/Microsilica | 10%/1.5% | -/-/- | 0.87/0.87/0.87 | -/-/- |
Calcium Carbide Residue/Rice Husk Ash | 12–18%/2–8% | -/-/- | 0.64/0.73/0.86 | -/-/- |
Lime/PCM | 1.6%/17% | 0.72/0.72/0.72 | -/-/- | -/-/- |
Lime/oat fiver | 2%/0.20% | 0.38/0.38/0.38 | -/-/- | -/-/- |
References
- ADEME. Déchets Chiffres clés, Édition 2023. Annual Report. 2023. Available online: https://librairie.ademe.fr/dechets-economie-circulaire/6108-dechets-chiffres-cles-edition-2023.html (accessed on 1 October 2023).
- Agorah. Rapport Annuel de l’ORD, Edition 2022. Annual Report. 2022. Available online: https://www.agorah.com/index.php/observatoire-reunionnais-des-dechets/ (accessed on 1 October 2023).
- Gasnier, H. Construire en terres d’excavation, un enjeu pour la ville durable. Ph.D. Thesis, Université Grenoble Alpes, Grenoble, France, 2019. [Google Scholar]
- Hale, S.E.; Roque, A.J.; Okkenhaug, G.; Sørmo, E.; Lenoir, T.; Carlsson, C.; Kupryianchyk, D.; Flyhammar, P.; Žlender, B. The Reuse of Excavated Soils from Construction and Demolition Projects: Limitations and Possibilities. Sustainability 2021, 13, 6083. [Google Scholar] [CrossRef]
- Harzing, A.W. Publish or Perish. Account. Educ. 2007, 16, 267–268. [Google Scholar]
- Rincón, L.; Carrobé, A.; Martorell, I.; Medrano, M. Improving thermal comfort of earthen dwellings in sub-Saharan Africa with passive design. J. Build. Eng. 2019, 24, 100732. [Google Scholar] [CrossRef]
- Touati, K.; Le Guern, M.; El Mendili, Y.; Azil, A.; Streiff, F.; Carfrae, J.; Fox, M.; Goodhew, S.; Boutouil, M. Earthen-based building: In-situ drying kinetics and shrinkage. Constr. Build. Mater. 2023, 369, 130544. [Google Scholar] [CrossRef]
- Touati, K.; Al Sahmarany, B.; Le Guern, M.; El Mendili, Y.; Streiff, F.; Goodhew, S. Insight into the Optimization of Implementation Time in Cob Construction: Field Test and Compressive Strength Versus Drying Kinetics. Eng 2023, 4, 2075–2089. [Google Scholar] [CrossRef]
- Mansour, M.B.; Jelidi, A.; Cherif, A.S.; Jabrallah, S.B. Optimizing thermal and mechanical performance of compressed earth blocks (CEB). Constr. Build. Mater. 2016, 104, 44–51. [Google Scholar] [CrossRef]
- Ashour, T.; Korjenic, A.; Korjenic, S.; Wu, W. Thermal conductivity of unfired earth bricks reinforced by agricultural wastes with cement and gypsum. Energy Build. 2015, 104, 139–146. [Google Scholar] [CrossRef]
- Temga, J.P.; Angelo Mazzù, J.P.N.; Palazzini, D.; Ndjouenkeu, R.; Vitali, F. Valorisation of crude earth as sustainable building material: A case of international cooperation in the Logone Valley (Chad–Cameroon). Int. J. Sustain. Eng. 2014, 7, 222–234. [Google Scholar] [CrossRef]
- Davis, L.; Maïni, S.; Royo Olid, J. Feasibility Report for Compressed Stabilized Earth Block (CSEB) Production and Use in the North and East of Sri Lanka; EU Publications: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Mahdjoub, N.; Marc Kalina, A.A.; Tilley, E. Innovating traditional building materials in Chembe, Malawi: Assessing post-consumer waste glass and burnt clay bricks for performance and circularity. Int. J. Sustain. Eng. 2021, 14, 874–883. [Google Scholar] [CrossRef]
- Vyncke, J.; Kupers, L.; Denies, N. Earth as Building Material—An overview of RILEM activities and recent Innovations in Geotechnics. MATEC Web Conf. 2018, 149, 02001. [Google Scholar] [CrossRef]
- Perrot, A.; Rangeard, D.; Courteille, E. 3D printing of earth-based materials: Processing aspects. Constr. Build. Mater. 2018, 172, 670–676. [Google Scholar] [CrossRef]
- Geiger, R. “Klassifikation der Klimate nach W. Köppen” [Classification of climates after W. Köppen]. Landolt-Börnstein—Zahlenwerte Und Funkt Aus. Phys Chemie Astron. Geophys. Tech. Alte Ser. 1954, 3, 603–607. [Google Scholar]
- Geiger, R. Überarbeitete Neuausgabe von Geiger, R.: Köppen-Geiger/Klima der Erde; Wandkarte 1:16 Mill; Klett-Perthes: Gotha, Germany, 1961. [Google Scholar]
- Touré, P.M.; Sambou, V.; Faye, M.; Thiam, A.; Adj, M.; Azilinon, D. Mechanical and hygrothermal properties of compressed stabilized earth bricks (CSEB). J. Build. Eng. 2017, 13, 266–271. [Google Scholar] [CrossRef]
- Adam, E.; Jones, P. Thermophysical properties of stabilised soil building blocks. Build. Environ. 1995, 30, 245–253. [Google Scholar] [CrossRef]
- Allinson, D.; Hall, M. Hygrothermal analysis of a stabilised rammed earth test building in the UK. Energy Build. 2010, 42, 845–852. [Google Scholar] [CrossRef]
- Romero, A.B.C.; Francisca, F.M.; Giomi, I. Hygrothermal properties of soil–cement construction materials. Constr. Build. Mater. 2021, 313, 125518. [Google Scholar] [CrossRef]
- Meukam, P.; Jannot, Y.; Noumowe, A.; Kofane, T. Thermo physical characteristics of economical building materials. Constr. Build. Mater. 2004, 18, 437–443. [Google Scholar] [CrossRef]
- Nshimiyimana, P.; Messan, A.; Courard, L. Physico-Mechanical and Hygro-Thermal Properties of Compressed Earth Blocks Stabilized with Industrial and Agro By-Product Binders. Materials 2020, 13, 3769. [Google Scholar] [CrossRef]
- Saidi, M.; Cherif, A.S.; Sediki, E.; Zeghmati, B. Hygrothermal Behavior of Earth-Based Materials: Experimental and Numerical Analysis. MATEC Web Conf. 2020, 330, 01030. [Google Scholar] [CrossRef]
- Hall, M.; Allinson, D. Analysis of the hygrothermal functional properties of stabilised rammed earth materials. Build. Environ. 2009, 44, 1935–1942. [Google Scholar] [CrossRef]
- McGregor, F.; Heath, A.; Fodde, E.; Shea, A. Conditions affecting the moisture buffering measurement performed on compressed earth blocks. Build. Environ. 2014, 75, 11–18. [Google Scholar] [CrossRef]
- Sore, S.O.; Messan, A.; Prud’homme, E.; Escadeillas, G.; Tsobnang, F. Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso. Constr. Build. Mater. 2018, 165, 333–345. [Google Scholar] [CrossRef]
- Ganou, B.K.; Mbouendeu, J.O.T.; Ndapeu, D.; Zhao, Z.; Tchemou, G.; Michel, F.; Njeugna, E.; Messan, A.; Courard, L. Experimental thermophysical dependent mechanical analysis of earth bricks with Canarium schweinfurthii and Cocos nucifera bio-aggregates - A case study in Cameroon. Cogent Eng. 2023, 10, 2159159. [Google Scholar] [CrossRef]
- Ebrahimi, M.H.; Devillers, P.; Garcia-Diaz, E. Sustainable construction for affordable housing program in Kabul. J. Contemp. Urban Aff. 2021, 6, 23–35. [Google Scholar] [CrossRef]
- Toufigh, V.; Samadianfard, S. Experimental and numerical investigation of thermal enhancement methods on rammed-earth materials. Sol. Energy 2022, 244, 474–483. [Google Scholar] [CrossRef]
- Affan, H.; Touati, K.; Benzaama, M.H.; Chateigner, D.; Mendili, Y.E. Earth-Based Building Incorporating Sargassum muticum Seaweed: Mechanical and Hygrothermal Performances. Buildings 2023, 13, 932. [Google Scholar] [CrossRef]
- Toufigh, V.; Kianfar, E. The effects of stabilizers on the thermal and the mechanical properties of rammed earth at various humidities and their environmental impacts. Constr. Build. Mater. 2019, 200, 616–629. [Google Scholar] [CrossRef]
- Liuzzi, S.; Hall, M.; Stefanizzi, P.; Casey, S. Hygrothermal behaviour and relative humidity buffering of unfired and hydrated lime-stabilised clay composites in a Mediterranean climate. Build. Environ. 2013, 61, 82–92. [Google Scholar] [CrossRef]
- Zhang, L.; Han, W. Simultaneous Investigation of Mechanical and Hygrothermal Properties of Lime Stabilized Earth Bricks. IOP Conf. Ser. Earth Environ. Sci. 2021, 706, 012006. [Google Scholar] [CrossRef]
- Liuzzi, S.; Stefanizzi, P. Experimental Study on Hygrothermal Performances of Indoor Covering Materials. Int. J. Heat Technol. 2016, 34, S365–S370. [Google Scholar] [CrossRef]
- Rincón, L.; Carrobé, A.; Medrano, M.; Solé, C.; Castell, A.; Martorell, I. Analysis of the Thermal Behavior of an Earthbag Building in Mediterranean Continental Climate: Monitoring and Simulation. Energies 2019, 13, 162. [Google Scholar] [CrossRef]
- Gomaa, M.; Carfrae, J.; Goodhew, S.; Jabi, W.; Reyes, A.V. Thermal performance exploration of 3D printed cob. Archit. Sci. Rev. 2019, 62, 230–237. [Google Scholar] [CrossRef]
- Labat, M.; Magniont, C.; Oudhof, N.; Aubert, J.E. From the experimental characterization of the hygrothermal properties of straw-clay mixtures to the numerical assessment of their buffering potential. Build. Environ. 2016, 97, 69–81. [Google Scholar] [CrossRef]
- Colinart, T.; Vinceslas, T.; Lenormand, H.; Menibus, A.H.D.; Hamard, E.; Lecompte, T. Hygrothermal properties of light-earth building materials. J. Build. Eng. 2020, 29, 101134. [Google Scholar] [CrossRef]
- Bruno, A.W.; Gallipoli, D.; Perlot, C.; Kallel, H. Thermal performance of fired and unfired earth bricks walls. J. Build. Eng. 2020, 28, 101017. [Google Scholar] [CrossRef]
- Zeghari, K.; Gounni, A.; Louahlia, H.; Marion, M.; Boutouil, M.; Goodhew, S.; Streif, F. Novel Dual Walling Cob Building: Dynamic Thermal Performance. Energies 2021, 14, 7663. [Google Scholar] [CrossRef]
- Belarbi, Y.E.; Sawadogo, M.; Poullain, P.; Issaadi, N.; Hamami, A.E.A.; Bonnet, S.; Belarbi, R. Experimental Characterization of Raw Earth Properties for Modeling Their Hygrothermal Behavior. Buildings 2022, 12, 648. [Google Scholar] [CrossRef]
- Thomson, A.; Maskell, D.; Walker, P.; Lemke, M.; Shea, A.; Lawrence, M. Improving the hygrothermal properties of clay plasters. In Proceedings of the 15th International Conference on Non-Conventional Materials and Technologies (NOCMAT 2015), Winnipeg, MB, Canada, 10–13 August 2015. [Google Scholar]
- Vinceslas, T.; Colinart, T.; Lenorm, H.; de Menibus, A.H.; Hamard, E.; Lecompte, T. Hygrothermal properties of light earth insulation materials: Evaluation od uncertainties and consequences. Acad. J. Civ. Eng. 2019, 37, 198–203. [Google Scholar]
- Azhary, K.E.; Chihab, Y.; Mansour, M.; Laaroussi, N.; Garoum, M. Energy Efficiency and Thermal Properties of the Composite Material Clay-straw. Energy Procedia 2017, 141, 160–164. [Google Scholar] [CrossRef]
- Aluma, B. Determining the Thermal Conductivity of Earth Plaster Samples with Mortar Mixes Suitable for African Architecture. Ph.D. Thesis, Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, Turkish, 2023. [Google Scholar]
- Phung, T.A. Formulation et Caractérisation d’un Composite Terre-Fibres végétales: La Bauge. Génie Civil. Ph.D. Thesis, Normandie Université, Le Havre, France, 2018. [Google Scholar]
- Hadji, F.; Ihaddadene, N.; Ihaddadene, R.; Betga, A.; Charick, A.; Logerais, P. Thermal conductivity of two kinds of earthen building materials formerly used in Algeria. J. Build. Eng. 2020, 32, 101823. [Google Scholar] [CrossRef]
- Zlateva, P. Thermal characteristics analyses of clay bricks with wheat straw additives. IOP Conf. Ser. Earth Environ. Sci. 2023, 1234, 012005. [Google Scholar] [CrossRef]
- Giroudon, M.; Laborel-Préneron, A.; Aubert, J.E.; Magniont, C. Comparison of barley and lavender straws as bioaggregates in earth bricks. Constr. Build. Mater. 2019, 202, 254–265. [Google Scholar] [CrossRef]
- Palumbo, M.; McGregor, F.; Heath, A.; Walker, P. The influence of two crop by-products on the hygrothermal properties of earth plasters. Build. Environ. 2016, 105, 245–252. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Aubert, J.J.E.; Magniont, C.; Bertron, A. Influence of straw content on the mechanical and thermal properties of bio-based earth composites. Acad. J. Civ. Eng. 2015, 33, 517–522. [Google Scholar]
- Wieser, M.; Onnis, S.; y Meli, G. Conductividad tèRmica de la Tierra Alivianada con Fibras Naturales en Paneles de Quincha; SAC-CII/PROTERRA: La Antigua Guatemala, Guatemala, 2018. [Google Scholar]
- Azil, A.; Touati, K.; Sebaibi, N.; Guern, M.L.; Streiff, F.; Goodhew, S.; Gomina, M.; Boutouil, M. Monitoring of drying kinetics evolution and hygrothermal properties of new earth-based materials using climatic chamber simulation. Case Stud. Constr. Mater. 2023, 18, e01798. [Google Scholar] [CrossRef]
- Alassaad, F.; Touati, K.; Levacher, D.; Sebaibi, N. Impact of phase change materials on lightened earth hygroscopic, thermal and mechanical properties. J. Build. Eng. 2021, 41, 102417. [Google Scholar] [CrossRef]
- Liuzzi, S.; Rubino, C.; Stefanizzi, P.; Petrella, A.; Boghetich, A.; Casavola, C.; Pappalettera, G. Hygrothermal properties of clayey plasters with olive fibers. Constr. Build. Mater. 2018, 158, 24–32. [Google Scholar] [CrossRef]
- Hammouti, A.E.; Channouf, S.; Charai, M.; Horma, O.; Miri, H.; Mezrhab, A.; Karkri, M.; Tankari, M.A. Resource deposit, characterization and energy saving potential of olive pomace as a promising aggregate for energy efficient earth bricks in eastern Morocco. Constr. Build. Mater. 2023, 393, 131989. [Google Scholar] [CrossRef]
- Liuzzi, S.; Rubino, C.; Stefanizzi, P. Use of clay and olive pruning waste for building materials with high hygrothermal performances. Energy Procedia 2017, 126, 234–241. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Choksiriwanna, J. The Physical and Thermal Properties of Adobe Brick Containing Bagasse for Earth Construction. Int. J. Build. Urban Inter. Landsc. Technol. 2011, 1, 57–66. [Google Scholar] [CrossRef]
- Ferreira, J.P.R. Influence of Temperature on the Sorption-Desorption Curves of Earth-Based Materials and Consequences on Their Hygrothermal Behaviour. Master’s Thesis, New University of Lisbon, Lisbon, Portugal, 2016. [Google Scholar]
- Heracleous, C.; Panagiotou, R.; Ioannou, I.; Michael, A.; Philokyprou, M. Hygrothermal Performance of Adobe Structures. IOP Conf. Ser. Earth Environ. Sci. 2023, 1196, 012059. [Google Scholar] [CrossRef]
- Kaczorek, D. Moisture Buffering of Multilayer Internal Wall Assemblies at the Micro Scale: Experimental Study and Numerical Modelling. Appl. Sci. 2019, 9, 3438. [Google Scholar] [CrossRef]
- Collet, F. Caractérisation Hydrique et Thermique de Matériaux de géNie Civil à Faibles Impacts Environnementaux. Ph.D. Thesis, INSA, Rennes, France, 2004. [Google Scholar]
- Alassaad, F.; Touati, K.; Levacher, D.; Mendili, Y.E.; Sebaibi, N. Improvement of cob thermal inertia by latent heat storage and its implication on energy consumption. Constr. Build. Mater. 2022, 329, 127163. [Google Scholar] [CrossRef]
- Charai, M.; Mezrhab, A.; Moga, L. A structural wall incorporating biosourced earth for summer thermal comfort improvement: Hygrothermal characterization and building simulation using calibrated PMV-PPD model. Build. Environ. 2022, 212, 108842. [Google Scholar] [CrossRef]
- Ajouguim, S.; Talibi, S.; Djelal-Dantec, C.; Hajjou, H.; Waqif, M.; Stefanidou, M.; Saadi, L. Effect of Alfa fibers on the mechanical and thermal properties of compacted earth bricks. Mater. Today Proc. 2021, 37, 4049–4057. [Google Scholar] [CrossRef]
- Millogo, Y.; Morel, J.C.; Aubert, J.E.; Ghavami, K. Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers. Constr. Build. Mater. 2014, 52, 71–78. [Google Scholar] [CrossRef]
- Laibi, A.B.; Poullain, P.; Leklou, N.; Gomina, M.; Sohounhloué, D.K.C. Influence of the kenaf fiber length on the mechanical and thermal properties of Compressed Earth Blocks (CEB). KSCE J. Civ. Eng. 2018, 22, 785–793. [Google Scholar] [CrossRef]
- Mellaikhafi, A.; Ouakarrouch, M.; Benallel, A.; Tilioua, A.; Ettakni, M.; Babaoui, A.; Garoum, M.; Hamdi, M.A.A. Characterization and thermal performance assessment of earthen adobes and walls additive with different date palm fibers. Case Stud. Constr. Mater. 2021, 15, e00693. [Google Scholar] [CrossRef]
- Charai, M.; Sghiouri, H.; Mezhab, A.; Karkri, M.; Hammouti, K.E. Etude thermomécanique d’une éco-brique locale pour la construction. Acad. J. Civ. Eng. 2020, 38, 289–292. [Google Scholar]
- Nitcheu, M.; Meukam, P.; Damfeu, J.C.; Njomo, D. Thermomechanical Characterisation of Compressed Clay Bricks Reinforced by Thatch Fibres for the Optimal Use in Building. Mater. Sci. Appl. 2018, 9, 913–935. [Google Scholar] [CrossRef]
- Niang, I.; Maalouf, C.; Moussa, T.; Samin, E.; Mai, T.H.; Gaye, S. Hygric behaviour of a clay-Typha bio-based material for building. E3S Web Conf. 2019, 85, 08004. [Google Scholar] [CrossRef]
- Dieye, Y.; Sambou, V.; Faye, M.; Thiam, A.; Adj, M.; Azilinon, D. Thermo-mechanical characterization of a building material based on Typha Australis. J. Build. Eng. 2017, 9, 142–146. [Google Scholar] [CrossRef]
- Ouedraogo, M.; Dao, K.; Millogo, Y.; Aubert, J.E.; Messan, A.; Seynou, M.; Zerbo, L.; Gomina, M. Physical, thermal and mechanical properties of adobes stabilized with fonio (Digitaria exilis) straw. J. Build. Eng. 2019, 23, 250–258. [Google Scholar] [CrossRef]
- Santos, T.; Nunes, L.; Faria, P. Production of eco-efficient earth-based plasters: Influence of composition on physical performance and bio-susceptibility. J. Clean. Prod. 2017, 167, 55–67. [Google Scholar] [CrossRef]
- Losini, A.E.; Grillet, A.C.; Vo, L.; Dotelli, G.; Woloszyn, M. Biopolymers impact on hygrothermal properties of rammed earth: From material to building scale. Build. Environ. 2023, 233, 110087. [Google Scholar] [CrossRef]
- Boussaa, N.; Kheloui, F.; Chelouah, N. Mechanical, thermal and durability investigation of compressed earth bricks stabilized with wood biomass ash. Constr. Build. Mater. 2023, 364, 129874. [Google Scholar] [CrossRef]
- Vilela, A.P.; Eugênio, T.M.C.; de Oliveira, F.F.; Mendes, J.F.; Ribeiro, A.G.C.; Brandão Vaz, L.E.V.d.S.; Mendes, R.F. Technological properties of soil-cement bricks produced with iron ore mining waste. Constr. Build. Mater. 2020, 262, 120883. [Google Scholar] [CrossRef]
- Rivera-Gómez, C.; Galán-Marín, C.; López-Cabeza, V.P.; Diz-Mellado, E. Sample key features affecting mechanical, acoustic and thermal properties of a natural-stabilised earthen material. Constr. Build. Mater. 2021, 271, 121569. [Google Scholar] [CrossRef]
- Suárez-Domínguez, E.J.; Aranda-Jiménez, Y.G.; Zúñiga-Leal, C. Resistencia mecànica y conductividad tèrmica de suelo cemento plàstico con adiciòn de fibra vegetal. In Proceedings of the SIACOT, La Antigua, Guatemala, 22–25 October 2018. [Google Scholar]
- Lagouin, M.; Laborel-Préneron, A.; Magniont, C.; Geoffroy, S.; Aubert, J.E. Moisture buffer capacity of a bilayer bio- and geo-based wall. Constr. Build. Mater. 2022, 329, 127209. [Google Scholar] [CrossRef]
- Nutt, N.; Kubjas, A.; Nei, L. Adding waste paper to clay plaster to raise its ability to buffer moisture. Proc. Est. Acad. Sci. 2020, 69, 179. [Google Scholar] [CrossRef]
- Rahmani, S.; Kaoula, D.; Hamdy, M. Exploring the thermal behaviour of building materials: Terracotta, concrete hollow block and hollow brick, under the arid climate, case study of Biskra-Algeria. Mater. Today Proc. 2022, 58, 1380–1388. [Google Scholar] [CrossRef]
- Abhilash, H.; McGregor, F.; Millogo, Y.; Fabbri, A.; Séré, A.; Aubert, J.; Morel, J. Physical, mechanical and hygrothermal properties of lateritic building stones (LBS) from Burkina Faso. Constr. Build. Mater. 2016, 125, 731–741. [Google Scholar] [CrossRef]
- Kohandelnia, M.; Hosseinpoor, M.; Yahia, A.; Belarbi, R. Hygrothermal and microstructural characterization of self-consolidating earth concrete (SCEC). J. Build. Eng. 2023, 69, 106287. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Jelle, B.P.; Wang, Y.; Gustavsen, A. Hygrothermal properties of compressed earthen bricks. Constr. Build. Mater. 2018, 162, 576–583. [Google Scholar] [CrossRef]
- Zhang, L.; Sang, G.; Han, W. Effect of hygrothermal behaviour of earth brick on indoor environment in a desert climate. Sustain. Cities Soc. 2020, 55, 102070. [Google Scholar] [CrossRef]
- Jiang, B.; Wu, T.; Xia, W.; Liang, J. Hygrothermal performance of rammed earth wall in Tibetan Autonomous Prefecture in Sichuan Province of China. Build. Environ. 2020, 181, 107128. [Google Scholar] [CrossRef]
- Tan, J.; Liang, J.; Wan, L.; Jiang, B. Influence of Non-Constant Hygrothermal Parameters on Heat and Moisture Transfer in Rammed Earth Walls. Buildings 2022, 12, 1077. [Google Scholar] [CrossRef]
- Mu, J.; Yu, S.; Hao, S. Quantitative evaluation of thermal conductivity of earth materials with different particle size distributions. Renew. Sustain. Energy Rev. 2023, 184, 113574. [Google Scholar] [CrossRef]
- Fgaier, F.E.; Lafhaj, Z.; Antczak, E.; Chapiseau, C. Dynamic thermal performance of three types of unfired earth bricks. Appl. Therm. Eng. 2016, 93, 377–383. [Google Scholar] [CrossRef]
- Oumeziane, Y.A.; Pierre, A.; Mankibi, F.E.; Lepiller, V.; Gasnier, M.; Désévaux, P. Hygrothermal properties of an early 20th century clay brick from eastern France: Experimental characterization and numerical modelling. Constr. Build. Mater. 2021, 273, 121763. [Google Scholar] [CrossRef]
- Cagnon, H.; Aubert, J.; Coutand, M.; Magniont, C. Hygrothermal properties of earth bricks. Energy Build. 2014, 80, 208–217. [Google Scholar] [CrossRef]
- Fgaier, F.E.; Lafhaj, Z.; Brachelet, F.; Antczak, E.; Chapiseau, C. Thermal performance of unfired clay bricks used in construction in the north of France: Case study. Case Stud. Constr. Mater. 2015, 3, 102–111. [Google Scholar] [CrossRef]
- Medjelekh, D.; Ulmet, L.; Dubois, F. Characterization of hygrothermal transfers in the unfired earth. Energy Procedia 2017, 139, 487–492. [Google Scholar] [CrossRef]
- khadjavian, S.; Nariman, F. Thermal Comfort Evaluation of a Rammed Earth Residential Building: Case Study: Yazd City in Iran. Available online: https://www.academia.edu (accessed on 1 October 2023).
- Laaroussi, N.; Cherki, A.; Garoum, M.; Khabbazi, A.; Feiz, A. Thermal Properties of a Sample Prepared Using Mixtures of Clay Bricks. Energy Procedia 2013, 42, 337–346. [Google Scholar] [CrossRef]
- Azhary, K.E.; Raefat, S.; Laaroussi, N.; Garoum, M. Energy performance and thermal proprieties of three types of unfired clay bricks. Energy Procedia 2018, 147, 495–502. [Google Scholar] [CrossRef]
- Azhary, K.E.; Ouakarrouch, M.; Laaroussi, N.; Garoum, M. Energy Efficiency of a Vernacular Building Design and Materials in Hot Arid Climate: Experimental and Numerical Approach. Int. J. Renew. Energy Dev. 2021, 10, 481–494. [Google Scholar] [CrossRef]
- El hammouti, A.; Charai, M.; Channouf, S.; Horma, O.; Nasri, H.; Mezrhab, A.; Karkri, M.; Tankari, M.A. Laboratory-testing and industrial scale performance of different clays from eastern Morocco for brick manufacturing. Constr. Build. Mater. 2023, 370, 130624. [Google Scholar] [CrossRef]
- Alausa, S.; Adekoya, B.; Aderibigbe, J.; Nwaokocha, C. Thermal Characteristics of Laterite-Mud and Concrete-Block for Walls in Building Construction in Nigeria. Int. J. Eng. Appl. Sci. 2013, 4, 8269. [Google Scholar]
- Parlato, M.C.M.; Porto, S.M.C.; Galán-Marín, C.; Rivera-Gómez, C.A.; Cuomo, M.; Nocera, F. Thermal Performance, Microstructure Analysis and Strength Characterisation of Agro-Waste Reinforced Soil Materials. Sustainability 2023, 15, 11543. [Google Scholar] [CrossRef]
- Galan-Marin, C.; Rivera-Gomez, C.; Garcia-Martinez, A. Use of Natural-Fiber Bio-Composites in Construction versus Traditional Solutions: Operational and Embodied Energy Assessment. Materials 2016, 9, 465. [Google Scholar] [CrossRef] [PubMed]
1st | 2nd | 3rd |
---|---|---|
A (Tropical) | f (Rainforest) | |
m (Monsoon) | ||
w (Savanna, dry winter) | ||
s (Savanna, dry summer) | ||
B (Dry) | W (Arid desert) | h (Hot) |
S (Semi-Arid or steppe) | k (Cold) | |
C (Temperate) | w (Dry winter) | a (Hot summer) |
f (No dry season) | b (Warm summer) | |
s (Dry summer) | c (Cold summer) | |
D (Continental) | w (Dry winter) | a (Hot summer) |
f (No dry season) | b (Warm summer) | |
s (Dry summer) | c (Cold summer) | |
d (Very cold winter) | ||
E (Polar) | T (Tundra) | |
F (Icecap) |
Climat Classification | Techniques (See Figure 6) | Country | Number of Studies | |
---|---|---|---|---|
Tropical | Am | CR, CS, CFb | Cameroon | 1 |
Aw | CR, CF, CS, CM, NR, NFb | Benin, Burkina Faso, Cameroon, Nigeria, Thailand | 6 | |
Dry | BSh | CR, CS, CFb, CA, CM | Burkina Faso, Mexico, Morocco, Senegal | 9 |
BSk | NR, CR, CS, NFb, CA, NS, CFb, ER, CM | Afghanistan, Bulgaria, Iran, Italy, Morocco, Sapin, Turkish | 7 | |
BWh | CR, FR, CFb, CM, ER, NFb, CS | Algeria, Egypt, Iran, Morocco, Peru, Sudan | 10 | |
BWk | CR, FR, CS | China, Morrocco | 4 | |
Temperate | Cfa | NR, CR, ER, NFb, CFb, CM | France | 4 |
Cfb | NR, CR, ER, FR, CS, NFb, CFb, CA, CM | France | 26 | |
Csa | CR, CA, CFb, FR, NR, NA, NM, CS | Algeria, Cyprus, France, Morroco, Portugal, Tunisia | 8 | |
Cwa | CS, CM, CR | Argentina, Brazil, China | 3 | |
Continental | Dfb | CM, CR, CA, NFb | Cameroon, Canada, Estonia, Poland | 4 |
Dsa | CR, CS, CA, CM | Iran | 1 | |
Dwb | CR | China | 1 | |
Dwc | CR | China | 1 |
Compressed | No Mechanical | |||
---|---|---|---|---|
Hemp | ||||
Barley | ||||
Wheat | ||||
Reed | ||||
Rice | ||||
Global (all fibers) |
Technique | Dry Density | Dry Thermal Conductivity | Water Vapor Resistance | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | |
NR | 1912.38 | 1699 | 2239 | 0.79 | 0.5051 | 1.35 | 5.00 | 3.3 | 6.7 |
CR | 1906.19 | 1470 | 3120 | 0.91 | 0.35 | 2.1 | 8.44 | 5.4 | 15.83 |
ER | 2045.25 | 1788 | 2268 | 0.54 | 0.19 | 0.91 | 5.00 | 3 | 7 |
FR | 2039.12 | 1777 | 2567.6 | 0.75 | 0.346 | 1.04 | 17.80 | 12.6 | 23 |
NS | 2016.50 | 1843 | 2190 | 1.54 | 0.892 | 2.18 | 9.30 | 9.3 | 9.3 |
CS | 1807.19 | 1130 | 2490 | 0.78 | 0.243 | 1.47 | 7.51 | 5.9 | 14.34 |
ES | - | - | - | - | - | - | - | - | - |
FS | - | - | - | - | - | - | - | - | - |
NFb | 1313.26 | 316 | 2028.4 | 0.45 | 0.115 | 0.87 | 9.22 | 3.5 | 18 |
CFb | 1239.07 | 205 | 2520 | 0.51 | 0.06 | 1.7 | 6.58 | 1.28 | 15.1 |
EFb | 1489.13 | 1283.7 | 1780.3 | 0.39 | 0.32 | 0.48 | - | - | - |
FFb | - | - | - | - | - | - | - | - | - |
NA | 1270.00 | 1270 | 1270 | 0.51 | 0.51 | 0.51 | - | - | - |
CA | 1503.63 | 220 | 2170 | 1.00 | 0.71 | 1.87 | 12.33 | 11 | 14 |
EA | - | - | - | - | - | - | - | - | - |
FA | - | - | - | - | - | - | - | - | - |
NM | 1606.67 | 1430 | 1720 | 0.56 | 0.38 | 0.72 | - | - | |
CM | 1475.12 | 700 | 1924 | 0.64 | 0.134 | 1.58 | 7.07 | 3.4 | 8.673 |
EM | - | - | - | - | - | - | - | - | - |
FM | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fogue Djombou, Y.I.; Gorra, M.; Malet-Damour, B. Hygrothermal Optimization for Excavated Soil Reuse in Various Climate Buildings: A Global Literature Meta-Analysis. Recycling 2024, 9, 7. https://doi.org/10.3390/recycling9010007
Fogue Djombou YI, Gorra M, Malet-Damour B. Hygrothermal Optimization for Excavated Soil Reuse in Various Climate Buildings: A Global Literature Meta-Analysis. Recycling. 2024; 9(1):7. https://doi.org/10.3390/recycling9010007
Chicago/Turabian StyleFogue Djombou, Yannick Igor, Melvyn Gorra, and Bruno Malet-Damour. 2024. "Hygrothermal Optimization for Excavated Soil Reuse in Various Climate Buildings: A Global Literature Meta-Analysis" Recycling 9, no. 1: 7. https://doi.org/10.3390/recycling9010007
APA StyleFogue Djombou, Y. I., Gorra, M., & Malet-Damour, B. (2024). Hygrothermal Optimization for Excavated Soil Reuse in Various Climate Buildings: A Global Literature Meta-Analysis. Recycling, 9(1), 7. https://doi.org/10.3390/recycling9010007