The Potential Material Flow of WEEE in a Data-Constrained Environment—The Case of Jordan
Abstract
:1. Introduction
Motivation of This Study
2. Materials and Methods
2.1. Data Sources
2.2. Scope of This Study
2.3. PBM
2.4. Materials Included in WEEE
2.5. Estimation of WEEE Processing Plants Number
2.6. Financial Revenue Estimation
2.7. Environmental Benefits Estimation
2.8. Sensitivity Analysis and Scenarios
3. Results
3.1. WEEE Generation Rates
3.2. WEEE Material Flow
3.3. Potential Number of WEEE Processing Plants
3.4. Potential Financial Revenues of WEEE Recycling
3.5. Environmental Benefits of WEEE Recycling
3.6. Sensitivity Analysis
3.6.1. Average EEE Weight and Composition Scenarios
3.6.2. Varying EEE Lifetime Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
EEE Type | Average Weight (kg) | Fe (%) | Stainless Steel | Cu (%) | Al (%) | Ag (PPM) | Au (PPM) | Pd (PPM) | Plastics (%) | Others (%) | Zn (%) | In (PPM) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CRT TV | 33.2 | 10.3 | NR | 3.7 | 2.6 | 12 | 0.5 | 2 | 22.8 | 60.6 | NR | NR |
LCD TV | 9.5 | 28.1 | 1.34 | 1.5 | 4.79 | NR | 2.42 | NR | NR | NR | 0.43 | 530 |
R | 85.8 | 45.1 | 1.14 | 3.39 | 1.22 | NR | 0.21 | NR | NR | NR | 0.38 | NR |
W | 48.1 | 40.6 | 20.8 | 29 | 0.2 | NR | 0.52 | NR | NR | NR | 0.48 | NR |
AC | 47.1 | 45.7 | 0.22 | 1.49 | 7.71 | NR | 0.68 | NR | NR | NR | 0.48 | NR |
EEE Type | Average Weight (kg) | Fe (%) | Stainless Steel | Cu (%) | Al (%) | Ag (PPM) | Au (PPM) | Plastics (%) | Zinc (%) |
---|---|---|---|---|---|---|---|---|---|
CRT TV | 28.3 | 22.8 | NR | 4.3 | 3.9 | 48.1 | 8.0 | 15.0 | 0.1 |
LCD TV | 13.9 | 22.8 | NR | 4.3 | 3.9 | 48.1 | 8.0 | 15.0 | 0.1 |
R | 50.6 | 63.1 | 2.6 | 2.5 | 3.2 | NR | NR | 8.5 | NR |
W | 72.2 | 54.2 | 1.7 | 3.2 | 1.7 | NR | NR | 15.7 | NR |
AC | 30.9 | 63.1 | 2.6 | 2.5 | 3.2 | NR | NR | 8.5 | NR |
EEE Type | Baseline | α | β | |||||||
---|---|---|---|---|---|---|---|---|---|---|
+30% α BL | −30% αBL | +30% βBL | −30% βBL | |||||||
α | β | α | β | α | β | α | β | α | β | |
TV | 10.5 | 3.44 | 13.65 | 3.44 | 9.6 | 3.44 | 10.5 | 4.47 | 10.5 | 2.41 |
R | 11.8 | 3.44 | 15.34 | 3.44 | 10.7 | 3.44 | 11.8 | 4.47 | 11.8 | 2.41 |
W | 9.3 | 3.44 | 12.09 | 3.44 | 8.5 | 3.44 | 9.3 | 4.47 | 9.3 | 2.41 |
AC | 8.3 | 3.44 | 10.79 | 3.44 | 7.6 | 3.44 | 8.3 | 4.47 | 8.3 | 2.41 |
References
- Duman, G.M.; Kongar, E.; Gupta, S.M. Estimation of electronic waste using optimized multivariate grey models. Waste Manag. 2019, 95, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows, and the Circular Economy Potential; United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR)–co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn-Germany/Geneva-Switzerland/Rotterdam–The Netherland. 2020. Available online: https://ewastemonitor.info/wp-content/uploads/2020/11/GEM_2020_def_july1_low.pdf (accessed on 22 November 2023).
- Awasthi, A.K.; Awasthi, M.K.; Mishra, S.; Sarsaiya, S.; Pandey, A.K. Evaluation of E-waste materials linked potential consequences to environment in India. Environ. Technol. Innov. 2022, 28, 102477. [Google Scholar] [CrossRef]
- Wang, F. E-Waste: Collect More, Treat Better; Tracking Take-Back System Performance for Eco-Efficient Electronics Recycling|. Ph.D. Thesis, Delft University of Technology, Delft, The, Netherlands, 2014. Available online: https://repository.tudelft.nl/islandora/object/uuid%3A91404545-dc7b-48c8-b9b5-a37fbf74ce5c (accessed on 22 November 2023).
- Ilankoon, I.M.S.K.; Ghorbani, Y.; Chong, M.N.; Herath, G.; Moyo, T.; Petersen, J. E-waste in the international context—A review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Manag. 2018, 82, 258–275. [Google Scholar] [CrossRef] [PubMed]
- Ongondo, F.O.; Williams, I.D.; Cherrett, T.J. How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Manag. 2011, 31, 714–730. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakakis, E.; Janz, A.; Bilitewski, B.; Gidarakos, E. Small WEEE: Determining recyclables and hazardous substances in plastics. J. Hazard. Mater. 2009, 161, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Flaris, V.; Singh, G.; Rao, A.R. Recycling Electronic Waste. Plast. Eng. 2009, 65, 10–15. [Google Scholar] [CrossRef]
- Rao, M.D.; Singh, K.K.; Morrison, C.A.; Love, J.B. Challenges and opportunities in the recovery of gold from electronic waste. RSC Adv. 2020, 10, 4300–4309. [Google Scholar] [CrossRef]
- Rai, V.; Liu, D.; Xia, D.; Jayaraman, Y.; Gabriel, J.-C.P. Electrochemical Approaches for the Recovery of Metals from Electronic Waste: A Critical Review. Recycling 2021, 6, 53. [Google Scholar] [CrossRef]
- Sethurajan, M.; Van Hullebusch, E.D.; Fontana, D.; Akcil, A.; Deveci, H.; Batinic, B.; Leal, J.P.; Gasche, T.A.; Kucuker, M.A.; Kuchta, K.; et al. Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes—A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 212–275. [Google Scholar] [CrossRef]
- Işıldar, A.; Rene, E.R.; van Hullebusch, E.D.; Lens, P.N.L. Electronic waste as a secondary source of critical metals: Management and recovery technologies. Resour. Conserv. Recycl. 2018, 135, 296–312. [Google Scholar] [CrossRef]
- Ongondo, F.O.; Williams, I.D.; Whitlock, G. Distinct Urban Mines: Exploiting secondary resources in unique anthropogenic spaces. Waste Manag. 2015, 45, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Oguchi, M.; Sakanakura, H.; Terazono, A. Toxic metals in WEEE: Characterization and substance flow analysis in waste treatment processes. Sci. Total Environ. 2013, 463–464, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Keri, C. Chapter 13—Recycling cooling and freezing appliances. In Waste Electrical and Electronic Equipment (WEEE) Handbook, 2nd ed.; Woodhead Publishing Series in Electronic and Optical Materials; Goodship, V., Stevels, A., Huisman, J., Eds.; Woodhead Publishing: Oxford, UK, 2019; pp. 357–370. [Google Scholar] [CrossRef]
- Salhofer, S.; Spitzbart, M.; Maurer, K. Recycling of LCD Screens in Europe—State of the Art and Challenges. In Glocalized Solutions for Sustainability in Manufacturing; Hesselbach, J., Herrmann, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 454–458. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, L. Metallurgical recovery of metals from electronic waste: A review. J. Hazard. Mater. 2008, 158, 228–256. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, C.T.; Matthews, D.H.; Ashe, M.; Jaramillo, P.; McMichael, F.C. Reducing environmental burdens of solid-state lighting through end-of-life design. Environ. Res. Lett. 2010, 5, 014016. [Google Scholar] [CrossRef]
- Oguchi, M.; Murakami, S.; Sakanakura, H.; Kida, A.; Kameya, T. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources. Waste Manag. 2011, 31, 2150–2160. [Google Scholar] [CrossRef] [PubMed]
- Gollakota, A.R.K.; Gautam, S.; Shu, C.-M. Inconsistencies of e-waste management in developing nations—Facts and plausible solutions. J. Environ. Manag. 2020, 261, 110234. [Google Scholar] [CrossRef] [PubMed]
- Fraige, F.Y.; Al-Khatib, L.A.; Al-Shaweesh, M.A. Predicting WEEE Generation Rates in Jordan Using Population Balance Model. Sustainability 2023, 15, 2845. [Google Scholar] [CrossRef]
- Kumar, A.; Holuszko, M.; Espinosa, D.C.R. E-waste: An overview on generation, collection, legislation and recycling practices. Resour. Conserv. Recycl. 2017, 122, 32–42. [Google Scholar] [CrossRef]
- Kiddee, P.; Naidu, R.; Wong, M.H. Electronic waste management approaches: An overview. Waste Manag. 2013, 33, 1237–1250. [Google Scholar] [CrossRef]
- Walk, W. Forecasting quantities of disused household CRT appliances—A regional case study approach and its application to Baden-Württemberg. Waste Manag. 2009, 29, 945–951. [Google Scholar] [CrossRef]
- Yu, J.; Williams, E.; Ju, M.; Yang, Y. Forecasting Global Generation of Obsolete Personal Computers. Environ. Sci. Technol. 2010, 44, 3232–3237. [Google Scholar] [CrossRef] [PubMed]
- Chung, S. Projection of waste quantities: The case of e-waste of the People’s Republic of China. Waste Manag. Res. 2012, 30, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.G.; Magrini, A.; Mahler, C.F.; Bilitewski, B. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil. Waste Manag. 2012, 32, 335–342. [Google Scholar] [CrossRef]
- Lau, W.K.-Y.; Chung, S.-S.; Zhang, C. A material flow analysis on current electrical and electronic waste disposal from Hong Kong households. Waste Manag. 2013, 33, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Huisman, J.; Stevels, A.; Baldé, C.P. Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis. Waste Manag. 2013, 33, 2397–2407. [Google Scholar] [CrossRef]
- Guo, X.; Yan, K. Estimation of obsolete cellular phones generation: A case study of China. Sci. Total Environ. 2017, 575, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Li, J. Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China. Waste Manag. Res. 2016, 34, 67–74. [Google Scholar] [CrossRef]
- Kosai, S.; Kishita, Y.; Yamasue, E. Estimation of the metal flow of WEEE in Vietnam considering lifespan transition. Resour. Conserv. Recycl. 2020, 154, 104621. [Google Scholar] [CrossRef]
- Kim, S.; Oguchi, M.; Yoshida, A.; Terazono, A. Estimating the amount of WEEE generated in South Korea by using the population balance model. Waste Manag. 2013, 33, 474–483. [Google Scholar] [CrossRef]
- Tasaki, T.; Oguchi, M.; Kameya, T.; Urano, K. A Prediction Method for the Number of Waste Durable Goods. J. Jpn. Soc. Waste Manag. Experts 2001, 12, 49–58. [Google Scholar] [CrossRef]
- Tasaki, T.; Takasuga, T.; Osako, M.; Sakai, S. Substance flow analysis of brominated flame retardants and related compounds in waste TV sets in Japan. Waste Manag. 2004, 24, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Santoso, S.; Zagloel, T.Y.M.; Ardi, R.; Suzianti, A. Estimating the Amount of Electronic Waste Generated in Indonesia: Population Balance Model. IOP Conf. Ser. Earth Environ. Sci. 2019, 219, 012006. [Google Scholar] [CrossRef]
- Latest Information on Home Appliance Recycling|Home Appliance Association. Available online: https://www.aeha-kadenrecycle.com/effort/#report (accessed on 22 November 2023).
- Recycling Processes|Panasonic Eco Technology Center (PETEC)|Panasonic Global. Available online: https://panasonic.net/eco/petec/process/ (accessed on 22 November 2023).
- METI Ministry of Economy, Trade and Industry. Available online: https://www.meti.go.jp/policy/recycle/main/english/law/home.html (accessed on 22 November 2023).
- Fraige, F.Y.; Al-khatib, L.A.; Alnawafleh, H.M.; Dweirj, M.K.; Langston, P.A. Waste electric and electronic equipment in Jordan: Willingness and generation rates. J. Environ. Plan. Manag. 2012, 55, 161–175. [Google Scholar] [CrossRef]
- JDOS, Jordan Department of Statistics. JDOS Statistics. Available online: https://dosweb.dos.gov.jo/ (accessed on 22 November 2023).
- UN Comtrade. Available online: https://comtradeplus.un.org/ (accessed on 22 November 2023).
- McNeil, M.A.; Letschert, V.E. Modeling diffusion of electrical appliances in the residential sector. Energy Build. 2010, 42, 783–790. [Google Scholar] [CrossRef]
- Yan, L.; Wang, A.; Chen, Q.; Li, J. Dynamic material flow analysis of zinc resources in China. Resour. Conserv. Recycl. 2013, 75, 23–31. [Google Scholar] [CrossRef]
- Nguyen, D.-Q.; Yamasue, E.; Okumura, H.; Ishihara, K.N. Use and disposal of large home electronic appliances in Vietnam. J. Mater. Cycles Waste Manag. 2009, 11, 358–366. [Google Scholar] [CrossRef]
- Schilling, E.; Neubauer, D. Acceptance Sampling in Quality Control, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- MEPS Global Steel Prices & Indices|Historical Steel Prices. Available online: https://mepsinternational.com/gb/en/prices-and-indices (accessed on 22 November 2023).
- Exchange, T.L.M. Accessing Market Data|London Metal Exchange. LME. Available online: https://www.lme.com/Market-data/Accessing-market-data (accessed on 22 November 2023).
- Historical London Fix Prices Current Year|Kitco. Available online: https://www.kitco.com/gold.londonfix.html (accessed on 22 November 2023).
- Plastic Scrap Price Today, United States Country Averages Paid by Scrap Yards. Available online: https://www.recyclingmonster.com/price/plastic-scrap/337 (accessed on 22 November 2023).
- Dey, P.; Ray, S. Chapter 32—Environmental impacts of biofuels and their blends: A case study on waste vegetable oil-derived biofuel blends. In Biofuels and Bioenergy; Gurunathan, B., Sahadevan, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 755–770. [Google Scholar] [CrossRef]
- Ismail, H.; Hanafiah, M.M. An overview of LCA application in WEEE management: Current practices, progress and challenges. J. Clean. Prod. 2019, 232, 79–93. [Google Scholar] [CrossRef]
- Luo, L.; Yang, L.; Hanafiah, M.M. Construction of renewable energy supply chain model based on LCA. Open Phys. 2018, 16, 1118–1126. [Google Scholar] [CrossRef]
- He, P.; Feng, H.; Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. Life Cycle Assessment of e-Waste–Waste Cellphone Recycling. In Electronic Waste; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; pp. 231–253. [Google Scholar] [CrossRef]
- ReCiPe—PRé Sustainability. Available online: https://pre-sustainability.com/articles/recipe/ (accessed on 22 November 2023).
- Bogar, Z.O.; Gungor, A. Forecasting Waste Mobile Phone (WMP) Quantity and Evaluating the Potential Contribution to the Circular Economy: A Case Study of Turkey. Sustainability 2023, 15, 3104. [Google Scholar] [CrossRef]
- European Union. Study on Collection Rates of Waste Electrical and Electronic Equipment (WEEE). Available online: https://ec.europa.eu/environment/pdf/waste/weee/Final_Report_Art7_publication.pdf (accessed on 22 November 2023).
- Huisman, J.; Magalini, F.; Kuehr, R.; Khetriwal, D. Material Flows of the Home Appliance Industry—CECED; CECED: Brussels, Belgium, 2018. [Google Scholar] [CrossRef]
- Parajuly, K.; Wenzel, H. Potential for circular economy in household WEEE management. J. Clean. Prod. 2017, 151, 272–285. [Google Scholar] [CrossRef]
- De Meester, S.; Nachtergaele, P.; Debaveye, S.; Vos, P.; Dewulf, J. Using material flow analysis and life cycle assessment in decision support: A case study on WEEE valorization in Belgium. Resour. Conserv. Recycl. 2019, 142, 1–9. [Google Scholar] [CrossRef]
- MoEnv. Instructions for the Management of Electrical and Electronic Waste; Ministry of Environment: Amman, Jordan, 2021. Available online: https://www.moenv.gov.jo/AR/List/%d8%a7%d9%84%d8%aa%d8%b9%d9%84%d9%8a%d9%85%d8%a7%d8%aa (accessed on 25 December 2023). (In Arabic)
EEE Type | Average Lifetime (Years) | Average Weight (kg) | Average Material Composition | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Fe (%) | Cu (%) | Al (%) | Ag (PPM) | Au (PPM) | Pd (PPM) | Plastics (%) | Others (%) | |||
CRT TV | 10.5 | 33.2 | 10.3 | 3.7 | 2.6 | 12 | 0.5 | 2 | 22.8 | 60.6 |
FPD TV | 10.5 | 14.7 | 46.9 | 3.8 | 4.7 | 58.2 | 24.5 | 15.3 | 24.2 | 20.4 |
R | 11.8 | 69.50 | 61.7 | 3.4 | 2.5 | NR 1 | NR | NR | 27.8 | 4.6 |
W | 9.3 | 72.90 | 52.1 | 1.9 | 3.1 | 0.19 | 0.06 | NR | 6.8 | 36.1 |
AC | 8.3 | 28.00 | 54.4 | 15.6 | 9.4 | NR | NR | NR | 15.7 | 4.9 |
EEE Type | Legal Recycling Efficiency (ηL, %) | PETEC Material Recycling Efficiency (ηM, %) |
---|---|---|
TV | 74 | 88 |
R | 70 | 80 |
W | 82 | 93 |
AC | 80 | 95 |
Material | Fe | Cu | Al | Ag | Au | Pd | Zn | In | Plastics | Stainless Steel |
---|---|---|---|---|---|---|---|---|---|---|
Price (USD/kg) | 1.28 | 9 | 2.45 | 770 | 63,500 | 74,500 | 3.18 | 572.1 | 1 | 1.7 |
Material | Fe | Cu | Al | Ag | Au | Pd | Plastics |
---|---|---|---|---|---|---|---|
Environmental Impact (pt/kg) | 0.2 | 0.5 | 1.1 | 16.6 | 1540.6 | 9832 | 0.45 |
Year | Number of WEEE (Million Units) | Number of Required Facilities (Unit) | Cost (Million USD) |
---|---|---|---|
2030 | 1.7 | 4 | 100 |
2040 | 2.6 | 5 | 125 |
2050 | 4.8 | 9 | 225 |
EEE Type | Price (USD/kg) | Price (USD/Item) | Environmental Impact (pt/kg) | Environmental Impact (pt/Item) |
---|---|---|---|---|
CRT TV | 0.95 | 31.42 | 0.19 | 6.34 |
FPD TV | 2.90 | 42.63 | 0.31 | 4.59 |
R | 1.44 | 99.73 | 0.29 | 20.36 |
W | 0.99 | 71.86 | 0.18 | 13.01 |
AC | 2.49 | 69.69 | 0.36 | 10.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khatib, L.A.; Fraige, F.Y. The Potential Material Flow of WEEE in a Data-Constrained Environment—The Case of Jordan. Recycling 2024, 9, 4. https://doi.org/10.3390/recycling9010004
Al-Khatib LA, Fraige FY. The Potential Material Flow of WEEE in a Data-Constrained Environment—The Case of Jordan. Recycling. 2024; 9(1):4. https://doi.org/10.3390/recycling9010004
Chicago/Turabian StyleAl-Khatib, Laila A., and Feras Y. Fraige. 2024. "The Potential Material Flow of WEEE in a Data-Constrained Environment—The Case of Jordan" Recycling 9, no. 1: 4. https://doi.org/10.3390/recycling9010004
APA StyleAl-Khatib, L. A., & Fraige, F. Y. (2024). The Potential Material Flow of WEEE in a Data-Constrained Environment—The Case of Jordan. Recycling, 9(1), 4. https://doi.org/10.3390/recycling9010004