Fruit and Restaurant Waste Polysaccharides Recycling Producing Xylooligosaccharides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Xylooligosaccharide Production
2.2. Central Composite Design Model Fitting
3. Material and Methods
3.1. Agro-Industrial and Food Waste
3.2. Acid Hydrolysis
3.3. Determination of XOS
3.4. Design Experiment for Biomass Pretreatment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pereira, B.S.; Castrisana, R.N.; de Freitas, C.; Contiero, J.; Brienzo, M. Chemical composition determines the bioenergy potential of food waste from pre- and post-production. J. Mater. Cycles Waste Manag. 2021, 23, 1365–1373. [Google Scholar] [CrossRef]
- Salimi, E.; Taheri, M.E.; Passadis, K. Valorisation of restaurant food waste under the concept of a biorefinery. Biomass Conv. Bioref. 2021, 11, 661–671. [Google Scholar] [CrossRef]
- Kwan, T.H.; Ong, K.L.; Haque, M.A.; Kwan, W.H.; Kulkarni, S.; Lin, C.S.K. Valorisation of food and beverage waste via saccharification for sugars recovery. Bioresour. Technol. 2018, 255, 67–75. [Google Scholar] [CrossRef]
- Abe, M.; Branciforti, M.; Brienzo, M. Biodegradation of hemicellulose-cellulose-starch based bioplastics and microbial polyesters. Recycling 2021, 6, 22. [Google Scholar] [CrossRef]
- Nardella, S.; Conte, A.; Del Nobile, A.M. State-of-Art on the recycling of by-products from fruits and vegetables of Mediterranean countries to prolong food shelf life. Foods 2022, 11, 665. [Google Scholar] [CrossRef] [PubMed]
- SEAB. Secretaria da Agricultura e do Abastecimento do Paraná. 2017. Available online: http://www.agricultura.pr.gov.br/arquivos/File/deral/Prognosticos/2017/Fruticultura_2016_17.pdf (accessed on 15 December 2020).
- Kist, B.B. Brazilian Fruit Yearbook, 2018. Santa Cruz do Sul: Editora Gazeta Santa Cruz. 2018. Available online: http://www.editoragazeta.com.br/sitewp/wp-content/uploads/2018/04/FRUTICULTURA_2018_dupla.pdf. (accessed on 10 December 2020).
- Globo. Guava Crop Should Increase by 9.26% and Matão Producers Invest in Cultivation. 2018. Available online: https://g1.globo.com/sp/sao-carlos-regiao/noticia/safra-de-goiaba-deve-aumentar-926-e-produtores-de-matao-investem-no-cultivo.ghtml (accessed on 9 June 2021).
- Quintal, S.S.R.; Viana, A.P.; Campos, B.M.; Vivas, M.; Amaral Junior, A.T. Selection via mixed models in segregating guava families based on yield and quality traits. Rev. Bras. Frutic. Jaboticabal 2017, 39, e866. [Google Scholar] [CrossRef] [Green Version]
- Vitti, K.A.; Lima, L.M.; Filho, J.G.M. Agricultural and economic characterization of guava production in Brazil. Rev. Bras. De Frutic. 2020, 42, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pommer, C.V.; Murakami, K.R.N.; Watlington, F. The Agronomic—Guava in the World, Campinas. 2006. Available online: http://www.iac.sp.gov.br/publicacoes/agronomico/pdf/v58_Goiaba_no_mundo.pdf (accessed on 9 June 2021).
- Melati, R.B.; Shimizu, F.L.; Oliveira, G.; Pagnocca, F.C.; Souza, W.; Sant’Anna, C.; Brienzo, M. Key factors affecting the recalcitrance and conversion process of biomass. BioEnergy Res. 2019, 12, 1–20. [Google Scholar] [CrossRef]
- Zamora, H.D.Z.; Freitas, C.; Bueno, D.; Shimizu, F.L.; Contiero, J.; Brienzo, M. Biomass fractionation based on enzymatic hydrolysis for biorefinery systems. In Biorefineries: A Step Towards Renewable and Clean Energy; Springer: Berlin/Heidelberg, Germany, 2020; pp. 217–254. [Google Scholar] [CrossRef]
- Shimizu, F.L.; Zamora, H.D.Z.; Schmatz, A.A.; Melati, R.B.; Bueno, D.; Brienzo, M. Biofuels generation based on technical process and biomass quality. In Biofuel Production Technologies: Critical Analysis for Sustainability; Springer: Berlin/Heidelberg, Germany, 2020; pp. 37–64. [Google Scholar] [CrossRef]
- Shimizu, F.L.; Monteiro, P.Q.; Ghiraldi, P.H.C.; Melati, R.B.; Pagnocca, F.C.; Brienzo, M. Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Ind. Crops Prod. 2018, 115, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.; Bueno, D.; Sant’Anna, C.; Brienzo, M. High xylose yield from stem and external fraction of sugarcane biomass by diluted acid pretreatment. Biomass Convers. Biorefinery 2020, 1–9. [Google Scholar] [CrossRef]
- Brienzo, M.; Carvalho, A.F.A.C.; Figueiredo, F.C.; Neto, P.O. Sugarcane bagasse hemicellulose properties, extraction technologies and xylooligosaccharides production. In Food Waste: Practices, Management and Challenges; Riley, G.L., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2016; pp. 155–188. [Google Scholar]
- Forsan, C.F.; Freitas, C.; Masarin, F.; Brienzo, M. Xylooligosaccharide production from sugarcane bagasse and leaf using Aspergillus versicolor endoxylanase and diluted acid. Biomass Convers. Biorefinery 2021, 1–16. [Google Scholar] [CrossRef]
- Freitas, C.; Carmona, E.C.; Brienzo, M. Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioact. Carbohydr. Diet. Fibre 2019, 18, e100184. [Google Scholar] [CrossRef]
- Brienzo, M.; Carvalho, C.; Milagres, A.M.F. Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Appl. Biochem. Biotechnol. 2010, 162, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Freitas, C.; Terrone, C.C.; Masarin, F.; Carmona, E.C.; Brienzo, M. In vitro study of the effect of xylooligosaccharides obtained from banana pseudostem xylan by enzymatic hydrolysis on probiotic bacteria. Biocatal. Agric. Biotechnol. 2021, 33, 101973. [Google Scholar] [CrossRef]
- Qing, Q.; Li, H.; Kumar, R.; Wyman, C.E. Xylooligosaccharides production, quantification, and characterization in context of lignocellulosic biomass pretreatment. In Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals; John Wiley & Sons, Ltd.: Chichester, UK, 2013; pp. 391–415. [Google Scholar] [CrossRef]
- Pereira, B.S.; de Freitas, C.; Masarin Brienzo, M. Xylooligosaccharides from Industrial Fruit and Restaurant Waste Produced by Liquid Hot Water Treatment. Bioenerg. Res. 2022. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, J.; Zhang, X.; Xu, Y. An eco-friendly biorefinery strategy for xylooligosaccharides production from sugarcane bagasse using cellulosic derived gluconic acid as efficient catalyst. Bioresour. Technol. 2019, 289, 21755. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xuefei, C.; Ruochen, Z.; Lin, X.; Tongqi, Y.; Quentin, S.; Runcang, S. Evaluation of xylooligosaccharide production from residual hemicelluloses of dissolving pulp by acid and enzymatic hydrolysis. RSC Adv. 2018, 8, 35211–35217. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, O.; Erdoğan-Tokatlı, K.; Bakir, U.; Yilmaz, L. Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides. Food Sci. Technol. 2010, 43, 119–125. [Google Scholar] [CrossRef]
- Jacobsen, E.; Wyman, C.E. Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicellulose at varying solids concentration. Ind. Eng. Chem. Res. 2002, 41, 1454–1461. [Google Scholar] [CrossRef]
- Wen, P.; Zhang, T.; Wang, J.; Lian, Z.; Zhang, J. Production of xylooligosaccharides and monosaccharides from poplar by a two-step acetic acid and peroxide/acetic acid pretreatment. Biotechnol Biofuels 2019, 12, 87. [Google Scholar] [CrossRef] [Green Version]
- Alves, R.C.; Melati, R.B.; Casagrande, G.M.S.; Contiero, J.; Pagnocca, F.C.; Brienzo, M. Sieving process selects sugarcane bagasse with lower recalcitrance to xylan solubilization. J. Chem. Technol. Biotechnol. 2020, 96, 327–334. [Google Scholar] [CrossRef]
- Fernandes, E.S.; Bueno, D.; Pagnocca, F.C.; Brienzo, M. Minor biomass particle size for an efficient cellulose accessibility and enzymatic hydrolysis. ChemistrySelect 2020, 5, 7627–7631. [Google Scholar] [CrossRef]
- Brazilian standard method for sugarcane bagasse chemical characterization. NBR 16550-2016; Brazilian Association of Technical Standards: São Paulo, Brazil, 2016.
- Neto, F.S.P.P.; Roldán, I.U.M.; Galán, J.P.M.; Monti, R.; Oliveira, S.C.; Masarin, F. Model-based optimization of xylooligosaccharides production by hydrothermal pretreatment of Eucalyptus by-product. Ind. Crops Prod. 2020, 154, 112707. [Google Scholar] [CrossRef]
Banana Peels | Guava Bagasse | Orange Bagasse | Restaurant Waste | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Percentage (%, Base Dry Mass) | |||||||||||
Assay | Temp (°C) | Reaction Time (min) | H2SO4 (%) | Xylose | XOS | Xylose | XOS | Xylose | XOS | Xylose | XOS |
1 | 100 | 15 | 1 | 0.21 | 7.72 | 0.00 | 2.29 | 0.14 | 2.03 | 0.00 | 9.27 |
2 | 160 | 15 | 1 | 0.96 | 18.94 | 1.77 | 3.13 | 0.50 | 0.79 | 0.05 | 6.92 |
3 | 100 | 55 | 1 | 0.29 | 4.64 | 0.05 | 3.36 | 0.03 | 0.60 | 0.00 | 5.34 |
4 | 160 | 55 | 1 | 1.11 | 5.75 | 3.53 | 2.67 | 1.98 | 3.61 | 0.78 | 11.76 |
5 | 100 | 15 | 3 | 0.25 | 30.07 | 0.03 | 59.60 | 0.03 | 17.11 | 0.00 | 26.86 |
6 | 160 | 15 | 3 | 2.64 | 37.69 | 5.69 | 28.07 | 3.03 | 28.70 | 0.00 | 22.68 |
7 | 100 | 55 | 3 | 0.37 | 30.75 | 0.26 | 31.52 | 0.25 | 17.69 | 0.25 | 26.87 |
8 | 160 | 55 | 3 | 2.11 | 32.23 | 2.94 | 28.88 | 3.00 | 24.65 | 4.58 | 49.64 |
9 | 79.55 | 35 | 2 | 1.21 | 16.72 | 0.18 | 40.75 | 0.05 | 24.29 | 0.00 | 14.62 |
10 | 180.45 | 35 | 2 | 0.94 | 17.41 | 0.53 | 14.78 | 1.34 | 11.75 | 1.80 | 16.16 |
11 | 130 | 1.36 | 2 | 0.00 | 0.00 | 0.00 | 15.81 | 0.06 | 19.76 | 0.07 | 13.05 |
12 | 130 | 68.64 | 2 | 1.60 | 16.11 | 3.16 | 17.47 | 0.48 | 16.35 | 0.21 | 9.92 |
13 | 130 | 35 | 0.32 | 0.34 | 2.59 | 0.00 | 1.85 | 0.81 | 9.47 | 0.00 | 1.58 |
14 | 130 | 35 | 3.68 | 1.93 | 17.22 | 2.65 | 14.31 | 3.10 | 15.10 | 1.14 | 17.40 |
15 * | 130 | 35 | 2 | 0.84 | 16.25 | 0.70 | 15.69 | 1.02 | 11.34 | 0,30 | 12.78 |
Banana Peels | |||||
SS | df | MS | F | p-Value | |
Curvature | 65.00 | 1 | 65.00 | 27.86 | 0.034 |
T—Temp (°C) | 55.12 | 1 | 55.12 | 23.62 | 0.039 |
t—Time (min) | 55.12 | 1 | 55.12 | 23.62 | 0.039 |
H2SO4 (%) | 1081.12 | 1 | 1081.12 | 463.34 | 0.002 |
T + t | 36.12 | 1 | 36.12 | 15.48 | 0.058 |
T + H2SO4 | 1.12 | 1 | 1.12 | 0.48 | 0.559 |
t + H2SO4 | 15.12 | 1 | 15.12 | 6.48 | 0.126 |
Lack of Fit | 1.12 | 1 | 1.12 | 0.48 | 0.559 |
Pure Error | 4.67 | 2 | 2.33 | ||
Total SS | 1314.54 | 10 | |||
R² | 0.9956 | ||||
Guava Bagasse | |||||
SS | df | MS | F | p-Value | |
Curvature | 3.19 | 1 | 3.19 | 9.56 | 0.0906 |
T—Temp (°C) | 10.12 | 1 | 10.12 | 30.37 | 0.0314 |
t—Time (min) | 0.12 | 1 | 0.12 | 0.37 | 0.6026 |
H2SO4 (%) | 1596.12 | 1 | 1596.12 | 4788.37 | 0.0002 |
T + t | 1.12 | 1 | 1.12 | 3.37 | 0.2076 |
T + H2SO4 | 15.12 | 1 | 15.12 | 45.37 | 0.0213 |
t + H2SO4 | 1.12 | 1 | 1.12 | 3.37 | 0.2076 |
Lack of Fit | 3.12 | 1 | 3.12 | 9.37 | 0.0922 |
Pure Error | 0.67 | 2 | 0.33 | ||
Total SS | 1630.73 | 10 | |||
R² | 0.9977 |
Orange Bagasse | |||||
SS | df | MS | F | p-Value | |
Curvature | 2.76 | 1 | 2.76 | 2.76 | 0.2384 |
T—Temp (°C) | 55.12 | 1 | 55.12 | 55.12 | 0.0177 |
t—Time (min) | 0.12 | 1 | 0.12 | 0.12 | 0.7575 |
H2SO4 (%) | 820.12 | 1 | 820.12 | 820.12 | 0.0012 |
T + t | 0.12 | 1 | 0.12 | 0.12 | 0.7575 |
T + H2SO4 | 36.12 | 1 | 36.12 | 36.12 | 0.0266 |
t + H2SO4 | 3.12 | 1 | 3.12 | 3.12 | 0.2191 |
Lack of Fit | 10.12 | 1 | 10.12 | 10.12 | 0.0862 |
Pure Error | 2.00 | 2 | 1.00 | ||
Total SS | 929.63 | 10 | |||
R² | 0.987 | ||||
Restaurant Residue | |||||
SS | df | MS | F | p-Value | |
T—Temp (°C) (L) | 48.29 | 1 | 48.29 | 36.22 | 0.0265 |
t—Time (min) (Q) | 71.73 | 1 | 71.73 | 53.80 | 0.0181 |
t—Time (min) (L) | 38.58 | 1 | 38.58 | 28.93 | 0.0329 |
t—Time (min) (Q) | 13.82 | 1 | 13.82 | 10.37 | 0.0844 |
H2SO4 (L) | 1041.32 | 1 | 1041.32 | 780.99 | 0.0013 |
H2SO4 (Q) | 1.84 | 1 | 1.84 | 1.38 | 0.3609 |
T + t | 162.00 | 1 | 162.00 | 121.50 | 0.0081 |
T + H2SO4 | 24.50 | 1 | 24.50 | 18.37 | 0.0503 |
t + H2SO4 | 84.50 | 1 | 84.50 | 63.37 | 0.0154 |
Lack of Fit | 503.39 | 5 | 100.68 | 75.51 | 0.0131 |
Pure Error | 2.67 | 2 | 1.33 | ||
Total SS | 1980.94 | 16 | |||
R² | 0.7445 |
Coded Value | Real Value | |||||
---|---|---|---|---|---|---|
Assay | Temperature | Reaction Time | H2SO4 | Temperature (°C) | Reaction Time (min) | H2SO4 (%, m/v) |
1 | −1 | −1 | −1 | 100 | 15 | 1 |
2 | +1 | −1 | −1 | 160 | 15 | 1 |
3 | −1 | +1 | −1 | 100 | 55 | 1 |
4 | +1 | +1 | −1 | 160 | 55 | 1 |
5 | −1 | −1 | +1 | 100 | 15 | 3 |
6 | +1 | −1 | +1 | 160 | 15 | 3 |
7 | −1 | +1 | +1 | 100 | 55 | 3 |
8 | +1 | +1 | +1 | 160 | 55 | 3 |
9 | −1.41 | −1.41 | 0 | 79.55 | 35 | 2 |
10 | +1.41 | +1.41 | 0 | 180.45 | 35 | 2 |
11 | 0 | 0 | 0 | 130 | 1.36 | 2 |
12 | 0 | 0 | 0 | 130 | 68.64 | 2 |
13 | 0 | 0 | −1.41 | 130 | 35 | 0.32 |
14 | 0 | 0 | +1.41 | 130 | 35 | 3.68 |
15 * | 0 | 0 | 0 | 130 | 35 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, B.S.; Schmatz, A.A.; de Freitas, C.; Masarin, F.; Brienzo, M. Fruit and Restaurant Waste Polysaccharides Recycling Producing Xylooligosaccharides. Recycling 2023, 8, 16. https://doi.org/10.3390/recycling8010016
Pereira BS, Schmatz AA, de Freitas C, Masarin F, Brienzo M. Fruit and Restaurant Waste Polysaccharides Recycling Producing Xylooligosaccharides. Recycling. 2023; 8(1):16. https://doi.org/10.3390/recycling8010016
Chicago/Turabian StylePereira, Beatriz Salustiano, Alison Andrei Schmatz, Caroline de Freitas, Fernando Masarin, and Michel Brienzo. 2023. "Fruit and Restaurant Waste Polysaccharides Recycling Producing Xylooligosaccharides" Recycling 8, no. 1: 16. https://doi.org/10.3390/recycling8010016
APA StylePereira, B. S., Schmatz, A. A., de Freitas, C., Masarin, F., & Brienzo, M. (2023). Fruit and Restaurant Waste Polysaccharides Recycling Producing Xylooligosaccharides. Recycling, 8(1), 16. https://doi.org/10.3390/recycling8010016