Quantification of Construction Waste in Early Design Stages Using Bim-Based Tool
Abstract
:1. Introduction
2. Materials and Methods
2.1. Step 1: CW Quantification Model Selection
2.2. Step 2: BIM Design Platform Selection
2.3. Step 3: Development of A BIM Objects Library
2.3.1. BIM Objects
2.3.2. Structure of the Revit BIM Object Library
2.3.3. Coding in Accordance with BCCA and in Association with CW Quantification Model
2.4. Step 4: Design and Development of the Required Application Utilities and Tool Interface
2.4.1. System Requirements
- (a)
- Modelling for geometric data
- (b)
- Modelling semantic data
- (c)
- Expected CW in building elements
2.4.2. Interface Design
2.5. Step 5: Development and Programming of the Software
2.6. Step 6: Application of the Software to A Case Study
3. Results and Discussion
3.1. Validation
- (i)
- In O1 the structure and its foundation (without soil) represent 21% of the total CW in the building, which is consistent with the 24% obtained for the same type of building system (reinforced concrete) of a residential building of similar characteristics [37].
- (ii)
- Three main groups of waste were identified in both Options (1–2): soil (98.5–99.3%), debris (1.2–0.7%), and packaging (0.4–0.04%). The most voluminous waste was soil due to the excavation of the basement. In Spain, the main CW stream is soil [56], and in Europe mineral waste is the main waste stream of CDW by weight, accounting for over 80% of the total CDW generated in the EU [57]. Moreover, the composition of the CW (without soil) is consistent with that estimated for construction sites in Spain [56]. The largest fraction is of a stony nature (10.8–8.5%) (concrete), followed by the non-stone waste fraction (6.6–0.98%) (plastics, wooden pallets, metals), the potentially hazardous waste (3.4–0.3%) (formwork wood contaminated with release agents, remains of release agents, and their cans) and finally, the mixed waste (0.2–0.10%) (packaging and mixed remains).
- (iii)
- The next source of building waste in Spain is ceramics (40%) followed by concrete (24%) [56]. This is due to the high incidence of the use of brick facades and partitions, as well as the use of ceramic tiles and roof tiles. In new construction works, the flow of concrete waste is even lower, varying from 9 to 26% [56]. In the case under study, concrete waste from the structure would have accounted for 6.4% (O1) and 4.8% (O2) of the total building waste, considering a ratio of 0.086 m3/m2 [56], therefore being included in this range. This percentage could be increased by adding the waste from the losses in the execution of the mortars of the brickwork and partitions in the masonry system. Moreover, the generation ratios obtained for concrete waste for Options 1–2, 0.009 m3/m2, and 0.007 m3/m2, are within the range of 0.007–0.021 m3/m2 considered for buildings in Spain [56].
- (iv)
- Finally, O2 would have reduced 56% of the CW generated by O1, including a reduction of 92% of potentially hazardous wastes. It is mainly due to less use of auxiliary materials necessary for on-site execution, such as timber formwork which can be contaminated with release agents, and a lower level of losses and spills when the concrete is poured on-site. Although the number of prefabricated elements used in O2 was not high, this percentage is in the range of 52–100% reduction obtained with alternative construction solutions [43].
3.2. Implications of Findings
3.3. Future Works
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aslam, B.; Maqsoom, A.; Tahir, M.D.; Ullah, F.; Rehman, M.S.U.; Albattah, M. Identifying and ranking landfill sites for municipal solid waste management: An integrated remote sensing and GIS approach. Buildings 2022, 12, 605. [Google Scholar] [CrossRef]
- Villoria Sáez, P.; Osmani, M. A diagnosis of construction and demolition waste generation and recovery practice in the European Union. J. Clean. Prod. 2019, 241, 118400. [Google Scholar] [CrossRef]
- Eurostat. Overview on Waste Generation and Treatment in the European Union and Several Non-Member Countries. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation (accessed on 13 August 2022).
- European Commission. Building and Construction. 2021. Available online: https://ec.europa.eu/growth/industry/sustainability/buildings-and-construction_en (accessed on 13 August 2022).
- Coelho, A.; De Brito, J. Influence of construction and demolition waste management on the environmental impact of buildings. Waste Manag. 2012, 32, 532–541. [Google Scholar] [CrossRef]
- European Commission RE4 project, 2017. D1.2 Deliverable “Statistics Assessment” of the EU Funded Project Titled "REuse and REcycling of CDW Materials and Structures in Energy Efficient pREfabricated Elements for Building REfurbishment and Construction. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5cc9183e4&appId=PPGMS (accessed on 1 July 2022).
- National Institute of Statistics, Spanish Government. Statistics on Waste Generation. Available online: https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=estadistica_C&cid=1254736176841&menu=ultiDatos&idp=1254735976612 (accessed on 13 August 2022).
- Ministry of the Environment, Spanish Government. National Integrated Waste Plan 2008–2015. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2009-3243 (accessed on 1 August 2022).
- European Environment Agency. The European Environment-State and Outlook 2020. Knowledge for Transition to a Sustainable Europe. Available online: https://www.preventionweb.net/publication/european-environment-state-and-outlook-2020-knowledge-transition-sustainable-europe (accessed on 13 August 2022). [CrossRef]
- European Commission. Environment Policy: General Principles and Basic Framework. 2021. Available online: https://www.europarl.europa.eu/factsheets/en/sheet/71/environment-policy-general-principles-and-basic-framework (accessed on 13 August 2022).
- Sauve, G.; Van Acker, K. The environmental impacts of municipal solid waste landfills in Europe: A life cycle assessment of proper reference cases to support decision making. J. Environ. Manag. 2020, 261, 110216. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Circular Economy Action Plan. 2020. Available online: https://ec.europa.eu/environment/strategy/circular-economy-action-plan_es (accessed on 13 August 2022).
- Adams, K.T.; Osmani, M.; Thorpe, T.; Thornback, J. Circular economy in construction: Current awareness, challenges and enablers. Proc. Inst. Civ. Eng.-Waste Resour. Manag. 2017, 170, 15–24. [Google Scholar] [CrossRef]
- López Ruiz, L.A.; Roca Ramón, X.; Gassó Domingo, S. The circular economy in the construction and demolition waste sector—A review and an integrative model approach. J. Clean. Prod. 2020, 248, 119238. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, M.; Di Maio, F.; Sprecher, B.; Yang, X.; Tukker, A. An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. Sci. Total Environ. 2022, 803, 149892. [Google Scholar] [CrossRef]
- European Parliament. Circular Economy: MEPs Call for Tighter EU Consumption and Recycling Rules. News European Parliament. 2021. Available online: https://www.europarl.europa.eu/news/en/press-room/20210204IPR97114/circular-economy-meps-call-for-tighter-eu-consumption-and-recycling-rules (accessed on 13 August 2022).
- Lu, W.; Lou, J.; Webster, C.; Xue, F.; Bao, Z.; Chi, B. Estimating construction waste generation in the Greater Bay Area, China using machine learning. Waste Manag. 2021, 134, 78–88. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, A.T.W.; Shen, L.; Liu, G. Quantifying construction and demolition waste : An analytical review. Waste Manag. 2014, 34, 1683–1692. [Google Scholar] [CrossRef]
- Llatas, C. Methods for estimating construction and demolition (C&D) waste. In Handbook of Recycled Concrete and Demolition Waste; Woodhead Publishing: Sawston, UK, 2013; pp. 25–52. [Google Scholar] [CrossRef]
- Zhengdao, C.; Zhao, Y.; Xiao, B.; Yu, B.; Tam, V.W.Y.; Chen, Z. Research trend of the application of information technologies in construction and demolition waste management. J. Clean Prod. 2020, 263, 121458. [Google Scholar] [CrossRef]
- European Construction Sector Observatory. Digitalisation in the Construction Sector Analytical Report European Construction Sector. 2021. Available online: https://ec.europa.eu/docsroom/documents/45547 (accessed on 1 August 2022).
- European Construction Sector Observatory. Building Information Modelling in the EU Construction Sector. 2019. Available online: https://ec.europa.eu/docsroom/documents/34518 (accessed on 1 August 2022).
- EUBIM Task Group. Handbook for the Introduction of Building Information Modelling by the European Public Sector. 2017. Available online: http://www.eubim.eu/downloads/EU_BIM_Task_Group_Handbook_FINAL.PDF (accessed on 1 August 2022).
- Cheng, J.C.P.; Ma, L.Y.H. A BIM-based system for demolition and renovation waste estimation and planning. Waste Manag. 2013, 33, 1539–1551. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Hong, W.H.; Park, J.W.; Cha, G.W. An estimation framework for building information modeling (BIM)-based demolition waste by type. Waste Manag. Res. 2017, 35, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Li, S.; Ju, J.; Wang, Q.; Xu, Z. A building information modeling-based tool for estimating building demolition waste and evaluating its environmental impacts. Waste Manag. 2021, 134, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Porwal, A.; Hewage, K.N. Building Information Modeling–Based Analysis to Minimize Waste Rate of Structural Reinforcement. J. Constr. Eng. Manag. 2012, 138, 943–954. [Google Scholar] [CrossRef]
- Guerra, B.C.; Bakchan, A.; Leite, F.; Faust, K.M. BIM-based automated construction waste estimation algorithms : The case of concrete and drywall waste streams. Waste Manag. 2019, 87, 825–832. [Google Scholar] [CrossRef]
- Firdaus Razali, M.; Azam Haron, N.; Hassim, S.; Hizami, A.; Nahar Harun, A.; Salihu Abubakar, A. A Review: Application of Building Information Modelling (BIM) over Building Life Cycles. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 357, p. 012028. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A. Critical review of bim-based LCA method to buildings. Energy Build. 2017, 136, 110–120. [Google Scholar] [CrossRef]
- Marrero, M.; Wojtasiewicz, M.; Martínez-Rocamora, A.; Solís-Guzmán, J.; Alba-Rodríguez, M.D. BIM-LCA integration for the environmental impact assessment of the urbanization process. Sustainability 2020, 12, 4196. [Google Scholar] [CrossRef]
- Nagalli, A.; Oliveira, L.O.S.; Schamne, A.N.; Barros, B.P.; Hochleitner, H.D.; Oliveira, C.J. BIM plug-in technology for construction waste quantification. Rev. Bras. Gest. Ambiente Sustentabilidade 2021, 8, 1605–1619. [Google Scholar] [CrossRef]
- Akinade, O.O. BIM-Based Software for Construction Waste Analytics Using Artificial Intelligence Hybrid Models. Ph.D. Thesis, University of the West of England, Bristol, UK, 2017. [Google Scholar]
- Lu, W.; Webster, C.; Chen, K.; Zhang, X.; Chen, X. Computational Building Information Modelling for construction waste management: Moving from rhetoric to reality. Renew. Sustain. Energy Rev. 2017, 68, 587–595. [Google Scholar] [CrossRef]
- Mohammed, M.; Shafiq, N.; Al-Mekhlafi, A.B.A.; Al-Fakih, A.; Zawawi, N.A.; Mohamed, A.M.; Khallaf, R.; Abualrejal, H.M.; Shehu, A.A.; Al-Nini, A. Beneficial Effects of 3D BIM for Pre-Empting Waste during the Planning and Design Stage of Building and Waste Reduction Strategies. Sustainability 2022, 14, 3410. [Google Scholar] [CrossRef]
- Quiñones, R.; Llatas, C.; Montes, M.V.; Cortés, I. A multiplatform BIM-integrated construction waste quantification model during design phase. The case of the structural system in a Spanish building. Recycling 2021, 6, 62. [Google Scholar] [CrossRef]
- Llatas, C. A model for quantifying construction waste in projects according to the European waste list. Waste Manag. 2011, 31, 1261–1276. [Google Scholar] [CrossRef] [PubMed]
- Llatas, C.; Osmani, M. Development and validation of a building design waste reduction model. Waste Manag. 2016, 56, 318–336. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Waste Classification and the European List of Waste. 2000. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02000D0532-20150601 (accessed on 1 July 2022).
- European Commission. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste. Off. J. Eur. Union. 2008, 9, 3–30. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098 (accessed on 1 July 2022).
- European Union. Commission Decision of 3 May 2000 Replacing Decision 94/3/EC Establishing a List of Wastes Pursuant to Article 1(a) of Council Directive 75/442/EEC on Waste and Council Decision 94/904/EC Establishing a List of Hazardous Waste Pursuant to Article 1(4) of. Published Online 2015. Available online: https://eurlex.europa.eu/eli/dec/2000/532/2015-06-01 (accessed on 1 July 2022).
- Autodesk. 2021. Available online: https://www.autodesk.eu/products/revit-lt/overview (accessed on 13 August 2022).
- Llatas, C. Project: −RCDs=+ECO Eficiencia. Reducción de Residuos en el Diseño y Construcción de Viviendas en Andalucía (SUBJA09-031). 2009. Available online: https://www.juntadeandalucia.es/organismos/fomentoinfraestructurasyordenaciondelterritorio/areas/vivienda-rehabilitacion/planes-instrumentos/paginas/proyecto-rcds.html (accessed on 1 July 2022).
- Consejería de Fomento y Vivienda. Base de Costes de la Construcción de Andalucía. 2021. Available online: https://www.juntadeandalucia.es/organismos/fomentoinfraestructurasyordenaciondelterritorio/areas/vivienda-rehabilitacion/planes-instrumentos/paginas/vivienda-bcca.html (accessed on 1 July 2022).
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Pratt, M.J. Extension of ISO 10303, the STEP standard, for the exchange of procedural shape models. In Proceedings of the Shape Modeling Applications, Genova, Italy, 7–9 June 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 317–326. [Google Scholar] [CrossRef]
- Autodesk. White Paper Building Information Modeling. 2003. Available online: http://www.laiserin.com/features/bim/autodesk_bim.pdf (accessed on 1 July 2022).
- Spanish BIM Commission. 2021. Available online: https://cbim.mitma.es/comision-bim (accessed on 1 July 2022).
- Architects’ Council of Europe. The Architectural Professsion in Europe 2018–A Sector Study. 2019. Available online: https://www.ace-cae.eu/activities/publications/sector-study-2018/ (accessed on 1 July 2022).
- Talarico, G. Revit API Docs. 2021. Available online: https://www.revitapidocs.com/ (accessed on 1 July 2022).
- EMVISESA. 2022. Available online: https://catedra.us.es/catedraemvisesa/ (accessed on 1 July 2022).
- Código Técnico de la Edificación. Ministerio de Transporte Movilidad y Agenda Urbana Gobierno de España. 2020. Available online: https://www.codigotecnico.org/ (accessed on 1 July 2022).
- Ministerio de Transportes Movilidad y Agenda Urbana. Real Decreto 470/2021, de 29 de junio, por el que se aprueba el Código Estructural. Bol. Del Estado 2021, 190, 97664–99452. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2021-13681 (accessed on 1 July 2022).
- BIM Forum. Level of Development (LOD) Specification Part I & Commentary. Bim-Bep 2020, 254. Available online: https://bimforum.org/resource/%ef%bf%bc%ef%bf%bclevel-of-development-specification/ (accessed on 1 July 2022).
- España. Jefatura del Estado. Real Decreto 105/2008, de 1 de febrero, por el que se regula la producción y gestión de los residuos de construcción y demolición. Boletín del Estado 2008, 2486. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2008-2486#:~:text=Ayuda-,Real%20Decreto%20105%2F2008%2C%20de%201%20de%20febrero%2C%20por,de%2013%2F02%2F2008 (accessed on 1 July 2022).
- CGATE, CSCAE. National Ratios Generation of Waste Study from Construction and Demolition 2020. 2020. Available online: https://www.cgate.es/pdf/Libro-Ratios.pdf (accessed on 1 July 2022).
- Monier, V.; Hestin, M.; Trarieux, M.; Mimid, S.; Domröse, L.; Van Acoleyen, M.; Hjerp, P.; Mudgal, S. Study on the management of construction and demolition waste in the EU. Contract 07.0307/2009/540863/SER/G2. Final Report for the European Commission. European Commission. 2011. Available online: https://www.btbab.com/wp-content/uploads/documentos/legislacion/UE-BIO_Construction_and_demolition_waste_final_report_09022011.pdf (accessed on 1 July 2022).
- España. Jefatura del Estado. Ley 9/2017, de 8 de noviembre, de Contratos del Sector Público, por la que se transponen al ordenamiento jurídico español las Directivas del Parlamento Europeo y del Consejo 2014/23/UE y 2014/24/UE, de 26 de febrero de 2014. Boletín del Estado 2017, 272, 1–268. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2017-12902 (accessed on 1 July 2022).
Reference in Literature | Phase | Waste Type Studied | Integration in BIM | Location |
---|---|---|---|---|
Porwal, A.; Hewage, K. (2012) [27] | Design | CW (only structural reinforcement) | Completely implemented | Canada |
Cheng, J.C.P.; Ma, L.Y.H. (2013) [24] | Construction | DRW | Partially implemented | Hong Kong |
Akinade, O.O. (2017) [33] | Design | CW | Completely implemented in Revit | United Kingdom |
Kim Y.C. et al. (2017) [25] | Design | DW | Partially implemented in Archicad | South Korea |
Lu W. et al. (2017) [34] | Design | CW | Completely implemented in Revit | Hong Kong |
Guerra, B. et al. (2019) [28] | Design | CW (concrete and drywall) | Completely implemented in Revit | |
Nagalli, A. et al. (2021) [32] | Planning | CW | Partially implemented in Revit | Brazil |
Su, S. et al. (2021) [26] | Design | DW | Partially implemented in Revit | China |
Volume (m3) of Packaging Waste, Remains, and Soil per Building Element (c) | |||||||||||||
Packaging waste | Remains waste | Soil | |||||||||||
Type of waste (m³) in accordance with the LoW (b) | 15 01 | 07 | 17 01 | 17 02 | 17 04 | 17 09 | 17 05 | ||||||
Packaging waste | organic chemical processes | concrete, bricks, tiles, and ceramics | wood, glass, and plastic | metals | mixed | soil | |||||||
U | BCCA (a) code | Building /Sitework element | 15 01 02 plastic packaging | 15 01 03 wooden packaging | 15 01 04 metallic packaging | 15 01 06 mixed packaging | 07 07 01 | 17 01 01 | 17 02 01 wood | 17 02 03 plastic | 17 04 05 iron | 17 09 04 mixed | 17 05 04 |
aqueous washing liquid | concrete | soil and stones | |||||||||||
m3 | 02AVV00003 | Site clearing | 1.100000 | ||||||||||
m³ | 03HRL80090 | Concrete ground slab | 0.022000 | 0.000050 | 0.000221 | ||||||||
m³ | 03HRZ80010 | Foundation | 0.022000 | 0.000050 | 0.000221 | ||||||||
m³ | 03HRM80080 | Foundation wall | 0.001018 | 0.000010 | 0.000017 | 0.022000 | 0.003944 | 0.000193 | 0.000262 | ||||
m³ | 05HRL80020 | Concrete deck | 0.002867 | 0.000029 | 0.000049 | 0.022000 | 0.008330 | 0.000378 | 0.000308 | ||||
m³ | 05HRJ80110 | Dropped beam | 0.003045 | 0.000030 | 0.000041 | 0.022000 | 0.008893 | 0.000078 | 0.000310 | ||||
m² | 05WCH80110N | Waffle slab (25+5 cm) | 0.000554 | 0.004619 | 0.000468 | 0.000056 | 0.000008 | 0.004070 | 0.001020 | 0.004385 | 0.000055 | 0.000095 | |
m² | 05WCH80110 | Waffle slab (30 + 5 cm) | 0.000609 | 0.005081 | 0.000515 | 0.000062 | 0.000009 | 0.004477 | 0.001122 | 0.004823 | 0.000061 | 0.000105 | |
m³ | 05HRJ80020 | Beam embedded floor | 0.002907 | 0.000029 | 0.000039 | 0.022000 | 0.008488 | 0.000078 | 0.000306 | ||||
m² | 05FWW90003 | Collaborating sheet metal slab | 0.004528 | 0.000837 | 0.000054 | ||||||||
Kg | 05ACS00000 | Steel beam | 0.000001 | 0.000000 | |||||||||
m³ | 05HRP80020 | Concrete column | 0.019147 | 0.000191 | 0.000344 | 0.022000 | 0.000990 | 0.000233 | |||||
Kg | 05ACS00000 | Steel column | 0.000001 | 0.000000 | |||||||||
m³ | 05HRM80050 | Concrete wall | 0.019147 | 0.000191 | 0.000344 | 0.022000 | 0.000146 | 0.000225 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiñones, R.; Llatas, C.; Montes, M.V.; Cortés, I. Quantification of Construction Waste in Early Design Stages Using Bim-Based Tool. Recycling 2022, 7, 63. https://doi.org/10.3390/recycling7050063
Quiñones R, Llatas C, Montes MV, Cortés I. Quantification of Construction Waste in Early Design Stages Using Bim-Based Tool. Recycling. 2022; 7(5):63. https://doi.org/10.3390/recycling7050063
Chicago/Turabian StyleQuiñones, Rocío, Carmen Llatas, Maria Victoria Montes, and Isidro Cortés. 2022. "Quantification of Construction Waste in Early Design Stages Using Bim-Based Tool" Recycling 7, no. 5: 63. https://doi.org/10.3390/recycling7050063
APA StyleQuiñones, R., Llatas, C., Montes, M. V., & Cortés, I. (2022). Quantification of Construction Waste in Early Design Stages Using Bim-Based Tool. Recycling, 7(5), 63. https://doi.org/10.3390/recycling7050063