Modelling and Simulation of Building Material Flows: Assessing the Potential for Concrete Recycling in the German Construction Sector
Abstract
:1. Introduction
1.1. Resource Efficiency
1.2. Resource Consumption in the German Construction Sector
1.3. Research Focus
- (1)
- What is the potential for recycling ‘from building construction to building construction’, and what resource conservation potential results from this?
- (2)
- Can the demand for RAC for the construction of new residential buildings be met in the future?
- (3)
- How much natural raw materials can be saved by using more RC concrete in the future?
2. Methods and Data
2.1. Modelling with System Dynamics
2.2. Model Aim and Structure
2.3. Data and Assumptions
2.4. Scenarios
- Recycling (RC) scenario;
- Secondary Input (SI) scenario;
- Resource Saving (RS) scenario.
3. Results
3.1. Key Drivers
3.2. Recycled Aggregates for Concrete
3.3. Savings in Sand and Gravel
3.4. Future Oversupply of Recycled Aggregates
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- OECD. Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- EC. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; The European Green Deal. 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 21 February 2022).
- Abad-Segura, E.; de la Fuente, A.B.; González-Zamar, M.-D.; Belmonte-Ureña, L.J. Effects of Circular Economy Policies on the Environment and Sustainable Growth: Worldwide Research. Sustainability 2020, 12, 5792. [Google Scholar] [CrossRef]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1. 21 October 2015. Available online: https://www.refworld.org/docid/57b6e3e44.html (accessed on 21 February 2022).
- Oberle, B.; Bringezu, S.; Hatfeld-Dodds, S.; Hellweg, S.; Schandl, H.; Clement, J.; Cabernard, L.; Che, N.; Chen, D.; Droz-Georget, H.; et al. Global Resources Outlook 2019: Natural Resources for the Future We Want; A Report of the International Resource Panel; United Nations Environment Programme: Nairobi, Kenya, 2019; Available online: https://www.resourcepanel.org/reports/global-resources-outlook (accessed on 21 February 2022).
- Taušová, M.; Čulková, K.; Tauš, P.; Domaracká, L.; Seňová, A. Evaluation of the Effective Material Use from the View of EU Environmental Policy Goals. Energies 2021, 14, 4759. [Google Scholar] [CrossRef]
- Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety. German Resource Efficiency Programme II, Programme for the Sustainable Use and Conservation of Natural Resources. 2016. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Pools/Broschueren/german_resource_efficiency_programme_ii_bf.pdf (accessed on 21 February 2022).
- Arora, M.; Raspall, F.; Cheah, L.; Silva, A. Buildings and the circular economy: Estimating urban mining, recovery and reuse potential of building components. Resour. Conserv. Recycl. 2020, 154, 104581. [Google Scholar] [CrossRef]
- Schiller, G.; Müller, F.; Ortlepp, R. Mapping the anthropogenic stock in Germany: Metabolic evidence for a circular economy. Resour. Conserv. Recycl. 2017, 123, 93–107. [Google Scholar] [CrossRef]
- Destatis. Bautätigkeit und Wohnungen [Construction Activity and Housing]. Fachserie 5, Reihe 3. 2019. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Wohnen/Publikationen/Downloads-Wohnen/bestand-wohnungen-2050300187004.pdf?__blob=publicationFile (accessed on 21 February 2022).
- Destatis. Bevölkerung im Wandel. Annahmen und Ergebnisse der 14. koordninierten Bevölkerungsvorausberechnung [Population in Transition. Assumptions and Results of the 14th Coordinated Population Projection]. 2019. Available online: https://www.destatis.de/DE/Presse/Pressekonferenzen/2019/Bevoelkerung/pressebroschuere-bevoelkerung.pdf?__blob=publicationFile (accessed on 21 February 2022).
- BBS. Mineralische Bauabfälle Monitoring 2016. Bericht zum Aufkommen und zum Verbleib mineralischer Bauabfälle im Jahr 2016 [Mineral Construction Waste Monitoring 2016. Report on the Generation and Fate of Mineral Construction Waste in 2016]. 2018. Available online: https://www.baustoffindustrie.de/fileadmin/user_upload/bbs/Dateien/Downloadarchiv/Umwelt/11_KWB_Monitoring-Bericht.pdf (accessed on 21 February 2022).
- Lanau, M.; Liu, G.; Kral, U.; Wiedenhofer, D.; Keijzer, E.; Yu, C.; Ehlert, C. Taking Stock of Built Environment Stock Studies: Progress and Prospects. Environ. Sci. Technol. 2019, 53, 8499–8515. [Google Scholar] [CrossRef]
- Gagg, C.R. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng. Fail. Anal. 2014, 40, 114–140. [Google Scholar] [CrossRef]
- Mostert, C.; Sameer, H.; Glanz, D.; Bringezu, S. Urban mining for sustainable cities: Environmental assessment of recycled concrete. IOP Conf. Ser. Earth Environ. Sci. 2020, 588, 052021. [Google Scholar] [CrossRef]
- Kakkos, E.; Heisel, F.; Hebel, D.E.; Hischier, R. Towards Urban Mining—Estimating the Potential Environmental Benefits by Applying an Alternative Construction Practice. A Case Study from Switzerland. Sustainability 2020, 12, 5041. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, M.; Yang, X.; Miranda-Xicotencatl, B.; Sprecher, B.; Di Maio, F.; Zhong, X.; Tukker, A. Upgrading construction and demolition waste management from downcycling to recycling in the Netherlands. J. Clean. Prod. 2020, 266, 121718. [Google Scholar] [CrossRef]
- Bertino, G.; Kisser, J.; Zeilinger, J.; Langergraber, G.; Fischer, T.; Österreicher, D. Fundamentals of Building Deconstruction as a Circular Economy Strategy for the Reuse of Construction Materials. Appl. Sci. 2021, 11, 939. [Google Scholar] [CrossRef]
- EC. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste. 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN (accessed on 21 February 2022).
- Mostert, C.; Sameer, H.; Glanz, D.; Bringezu, S. Climate and resource footprint assessment and visualization of recycled concrete for circular economy. Resour. Conserv. Recycl. 2021, 174, 105767. [Google Scholar] [CrossRef]
- Azúa, G.; González, M.; Arroyo, P.; Kurama, Y. Recycled coarse aggregates from precast plant and building demolitions: Environmental and economic modeling through stochastic simulations. J. Clean. Prod. 2019, 210, 1425–1434. [Google Scholar] [CrossRef]
- Zhao, W.; Ren, H.; Rotter, V.S. A system dynamics model for evaluating the alternative of type in construction and demolition waste recycling center—The case of Chongqing, China. Resour. Conserv. Recycl. 2011, 55, 933–944. [Google Scholar] [CrossRef]
- Yang, D.; Dang, M.; Sun, L.; Han, F.; Shi, F.; Zhang, H.; Zhang, H. A System Dynamics Model for Urban Residential Building Stock towards Sustainability: The Case of Jinan, China. Int. J. Environ. Res. Public Health 2021, 18, 9520. [Google Scholar] [CrossRef]
- EC. Commission Decision of 18 December 2014 Amending Decision 2000/532/EC on the List of Waste Pursuant to Directive. 2014. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014D0955&from=EN (accessed on 21 February 2022).
- Schiller, G.; Deilmann, C.; Reichenbach, J.; Gruhler, K.; Röhm, P.; Baumann, J.; Günther, M. Ermittlung von Ressourcenschonungspotenzialen bei der Verwertung von Bauabfällen und Erarbeitung von Empfehlungen zu deren Nutzung [Determining Resource Conservation Potentials in the Recovery of Construction Waste and Formulating Recommendations on Their Use]. Umweltbundesamt, Texte, 56/2010. 2010. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/4040.pdf (accessed on 21 February 2022).
- Azar, A.T. System dynamics as a useful technique for complex systems. Int. J. Ind. Syst. Eng. 2012, 10, 4. [Google Scholar] [CrossRef]
- Bossel, H. Modeling and Simulation; A K Peters: New York, NY, USA, 1994. [Google Scholar] [CrossRef]
- Maria, A. Introduction to modeling and simulation. In Proceedings of the 29th Conference on Winter Simulation (WSC’97), Atlanta, GA, USA, 7–10 December 1997; pp. 7–13. [Google Scholar] [CrossRef]
- Deilmann, C.; Effenberger, K.-H.; Banse, J. Housing stock shrinkage: Vacancy and demolition trends in Germany. Build. Res. Inf. 2009, 37, 660–668. [Google Scholar] [CrossRef]
- Destatis. Bautätigkeit und Wohnungen [Construction Activity and Housing]. Fachserie 5, Reihe 1. 2019. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Bauen/Publikationen/Downloads-Bautaetigkeit/bautaetigkeit-2050100187004.pdf?__blob=publicationFile (accessed on 21 February 2022).
- Deilmann, C.; Reichenbach, J.; Krauß, N.; Gruhler, K. Materialströme im Hochbau, Potenziale für eine Kreislaufwirtschaft [Material Flows in Building Construction, Potentials for a Circular Economy]. BBSR, Zukunft Bauen: Forschung für die Praxis, 06. 2016. Available online: https://www.bbsr.bund.de/BBSR/DE/veroeffentlichungen/zukunft-bauen-fp/2017/band-06-dl.pdf;jsessionid=690B0CED77266127CA9973CDB565132C.live11294?__blob=publicationFile&v=1 (accessed on 21 February 2022).
- Verian, K.P.; Ashraf, W.; Cao, Y. Properties of recycled concrete aggregate and their influence in new concrete production. Resour. Conserv. Recycl. 2018, 133, 30–49. [Google Scholar] [CrossRef]
- DafStb. DAfStb-Richtlinie Beton nach DIN EN 206-1 und DIN 1045-2 mit Rezyklierten Gesteinskörnungen nach DIN EN 12620 [DAfStb-Guideline Concrete According to DIN EN 206-1 and DIN 1045-2 with Recycled Aggregates According to DIN EN 12620]. Deutscher Ausschuss für Stahlbeton e. V. 2019. Available online: http://www.dafstb.de/application/DAfStb-Richtlinie_Anforderungen_Ausgangsstoffe_Beton_2019-08-15.pdf (accessed on 21 February 2022).
- Marinković, S.; Radonjanin, V.; Malešev, M.; Ignjatović, I. Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag. 2010, 30, 2255. [Google Scholar] [CrossRef]
- Kazmi, S.M.S.; Munir, M.J.; Wu, Y.-F. Application of waste tire rubber and recycled aggregates in concrete products: A new compression casting approach. Resour. Conserv. Recycl. 2021, 167, 105353. [Google Scholar] [CrossRef]
- Fang, X.; Zhan, B.; Poon, C.S. Enhancement of recycled aggregates and concrete by combined treatment of spraying Ca2+ rich wastewater and flow-through carbonation. Constr. Build. Mater. 2021, 277, 122202. [Google Scholar] [CrossRef]
- Leibniz Institute of Ecological Urban and Regional Development. Entwicklung der Bautätigkeit [Development of Construction Activity]. 2021. Available online: http://ioer-bdat.de/bauwerksdaten/entwicklung-bautaetigkeit (accessed on 21 February 2022).
- Bundesanstalt für Geowissenschaften und Rohstoffe. Commodity TopNews 62, Kies—Der Wichtigste Heimische Baustoff! [Gravel—The Most Important Domestic Building Material!]. 2020. Available online: https://www.bgr.bund.de/DE/Gemeinsames/Produkte/Downloads/Commodity_Top_News/Rohstoffwirtschaft/62_kies.pdf;jsessionid=76D7FAE4BB876227AD2BF87189DFD678.2_cid321?__blob=publicationFile&v=5 (accessed on 21 February 2022).
- Stürmer, S.; Kulle, C. Untersuchung von Mauerwerksabbruch (Verputztes Mauerwerk aus Realen Abbruchgebäuden) und Ableitung von Kriterien für die Anwendung in Betonen mit Rezyklierter Gesteinskörnung (RC-Beton mit Typ 2 Körnung) für den Ressourcenschonenden Hochbau [Investigation of Masonry Demolition (Plastered Masonry from Demolition Buildings) and Derivation of Criteria for the Application in Concretes with Recycled Aggregate (RC Concrete with Type 2 Aggregate) for Resource-Saving Building Construction]. 2017. Available online: https://www.ifeu.de/fileadmin/uploads/2017-10-17-Abschlussbericht-RC-Beton.pdf (accessed on 21 February 2022).
- Knappe, F.; Reinhardt, J. Substitution von Primärrohstoffen im Straßen und Wegebau Durch Mineralische Abfälle und Bodenaushub; Stoffströme und Potenziale unter Berücksichtigung von Neu-, Aus- und Rückbau Sowie der Instandsetzung [Substitution of Primary Raw Materials in Road and Path Construction by Mineral Waste and Excavated Soil; Material Flows and Potentials Taking into Account New Construction, Expansion and Deconstruction as Well as Repair]. Umweltbundesamt. 2015. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Pools/Forschungsdatenbank/fkz_3712_33_324_primaerrohstoffe_strassenbau_bf.pdf (accessed on 21 February 2022).
- Umweltbundesamt. Deponien Gestern und Heute [Landfills Yesterday and Today]. 2016. Available online: https://www.umweltbundesamt.de/themen/abfall-ressourcen/entsorgung/deponierung-lagerung (accessed on 21 February 2022).
- Schiller, G.; Gruhler, K.; Ortlepp, R. Quantification of anthropogenic metabolism using spatially differentiated continuous MFA. Chang. Adapt. Soc.-Ecol. Syst. 2017, 3, 119–132. [Google Scholar] [CrossRef] [Green Version]
Parameter | Data | Source |
---|---|---|
Housing stock (initial value) | 41,000,000 housing units [HU] | [10,30] |
Construction (initial value) | 251,000 housing units [HU/yr] | [10,30] |
Deconstruction (initial value) | 21,000 housing units [HU/yr] | [10,30] |
Concrete recycling rate (initial value) | 1.5 percent [%] | Own calculation [31] |
Change in concrete recycling rate | +1.5 percent per year [%/yr] | Own calculation [31] |
Change in construction rate | −2.8 percent per year [%/yr] | Own calculation [25] |
Change in deconstruction rate | +17.7 percent per year [%/yr] | Own calculation [25] |
Material intensity of concrete for new buildings | 146 tons per housing unit [t/HU] | Own calculation [25] |
Material intensity of concrete and bricks from old buildings | 152 tons per housing unit [t/HU] | Own calculation [25] |
Maximum secondary input rate | 45 percent [%] | [33] |
Maximum concrete recycling rate | 48 percent [%] | [25] |
Reserve for sand and gravel | 730 million tons [Mt] | Own calculation |
Scenario | Parameters | Values |
---|---|---|
Recycling (RC) | maximum concrete recycling rate | 48% |
maximum secondary input rate | 45% | |
reserve for sand and gravel | 730 Mt | |
Secondary Input (SI) | maximum concrete recycling rate | 54% |
maximum secondary input rate | 70% | |
reserve for sand and gravel | 730 Mt | |
Resource Saving (RS) | maximum concrete recycling rate | 54% |
maximum secondary input rate | 100% | |
reserve for sand and gravel | 530 Mt |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostert, C.; Weber, C.; Bringezu, S. Modelling and Simulation of Building Material Flows: Assessing the Potential for Concrete Recycling in the German Construction Sector. Recycling 2022, 7, 13. https://doi.org/10.3390/recycling7020013
Mostert C, Weber C, Bringezu S. Modelling and Simulation of Building Material Flows: Assessing the Potential for Concrete Recycling in the German Construction Sector. Recycling. 2022; 7(2):13. https://doi.org/10.3390/recycling7020013
Chicago/Turabian StyleMostert, Clemens, Christian Weber, and Stefan Bringezu. 2022. "Modelling and Simulation of Building Material Flows: Assessing the Potential for Concrete Recycling in the German Construction Sector" Recycling 7, no. 2: 13. https://doi.org/10.3390/recycling7020013
APA StyleMostert, C., Weber, C., & Bringezu, S. (2022). Modelling and Simulation of Building Material Flows: Assessing the Potential for Concrete Recycling in the German Construction Sector. Recycling, 7(2), 13. https://doi.org/10.3390/recycling7020013