Strength and Microstructure of Coffee Silverskin Blended Mortar
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.1.1. Coffee Silverskin (CSS)
2.1.2. Ordinary Portland Cement
2.1.3. Superplasticizer
2.1.4. Fine Aggregates
2.2. Experimental Tests
2.2.1. Workability
2.2.2. Setting Time
2.2.3. Water Absorption
2.2.4. Compressive Strength
2.3. Characterization and Morphology of the Specimens
2.4. Sample Preparation
2.4.1. Sample Designation
2.4.2. Mix Design
2.4.3. Mortar Mixing Procedure
3. Discussion of Results
3.1. Characteristic of Coffee Silverskin
3.2. Workability of Coffee-Silverskin-Blended Mortar
3.3. Effect of Coffee Silverskin on the Setting of the Blended Mortar
3.4. Effect of Coffee Silverskin on the Compressive Strength of the Blended Mortar
3.5. Effect of Coffee Silverskin on the Bond Vibration in the Blended Mortar
3.6. Effect of Coffee Silverskin on Water Absorption of Blended Mortar
4. Conclusions
- (1)
- CSS decreases the workability and setting time in the blended mortar, but early setting does not accelerate the rate of strength development.
- (2)
- The optimum value of CSS/(OPC + CSS) ratio to produce the maximum 28-day compressive strength mortar was 1%.
- (3)
- The maximum 3-day (20 MPa) and 28-day (38.5 MPa) strengths of coffee-blended mortar were 25.4% and 7.2%, respectively, less than the maximum strength obtained in the OPC mortar.
- (4)
- X-ray diffraction identified CSH, anhydrite, CaNaPO4, calcite and portlandite in CBM.
- (5)
- CBM has lower Ca/K and Ca/C and higher Ca/Si in comparison with OPC, as observed through the energy dispersive spectroscopy (EDS) results.
- (6)
- CSS induced microcracks into the matrix of CBM microstructure thereby leading to lower compressive strength in comparison with OPC binder.
- (7)
- CSS increased water absorption of OPC mortar from 7.93 to 8.96% when cement was partially replaced by 0.5 wt and 5 wt%, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jadhav, R.; Sen, T.K.; Deshprabhu, S. Coffee as a cement retarder. In Proceedings of the SPE Middle East Oil & Gas Show and Conference, Manama, Bahrain, 6–9 March 2017; pp. 308–317. [Google Scholar] [CrossRef]
- De Almeida, A.C.; da Silva, M.A.L.; de Abreu, Q.C.; da Silva Martins, A.L.; Ribeiro, S.P.; de Souza Siqueira Pereira, C. Evaluation of Partial Sand Replacement by Coffee Husks in Concrete Production. J. Environ. Sci. Eng. B 2019, 8, 129–133. [Google Scholar] [CrossRef]
- Wondemagegnehu, E.B.; Gupta, N.K.; Habtu, E. Coffee parchment as potential biofuel for cement industries of Ethiopia. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 44, 5004–5015. [Google Scholar] [CrossRef]
- International Coffee Organization (ICO). Coffee Market Report; International Coffee Organization: London, UK, 2021. [Google Scholar]
- Narita, Y.; Inouye, K. Review on utilization and composition of coffee silverskin. Food Res. Int. 2014, 61, 16–22. [Google Scholar] [CrossRef]
- Cruz, R. Coffee By-Products: Sustainable Agro-Industrial Recovery and Impact on Vegetables Quality. Master’s Thesis, Universidade Do Porto, Porto, Portugal, 2014. [Google Scholar]
- Anisah, A.; Nugroho, M.; Handoyo, S.S.; Musalamah, S.; Maulana, A.; Ramadhan, M.A.; Sambowo, K.A.; Sumarsono, R.A. Furnace temperature of coffee grounds as organic waste-based cementitious material in concrete. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1098, 22087. [Google Scholar] [CrossRef]
- Blinová, L.; Sirotiak, M.; Bartošová, A.; Soldán, M. Review: Utilization of Waste from Coffee Production. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol. 2017, 25, 91–101. [Google Scholar] [CrossRef]
- Górska, A.; Brzezińska, R.; Wirkowska-Wojdyła, M.; Bryś, J.; Domian, E.; Ostrowska-Ligęza, E. Application of thermal methods to analyze the properties of coffee silverskin and oil extracted from the studied roasting by-product. Appl. Sci. 2020, 10, 8790. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Hejna, A. Coffee Silverskin as a Potential Bio-Based Antioxidant for Polymer Materials: Brief Review. Proceedings 2021, 69, 20. [Google Scholar] [CrossRef]
- Atabani, A.E.; Al-Muhtaseb, A.H.; Kumar, G.; Saratale, G.D.; Aslam, M.; Khan, H.A.; Said, Z.; Mahmoud, E. Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery. Fuel 2019, 254, 115640. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Carneiro, L.M.; Silva, J.P.A.; Roberto, I.C.; Teixeira, J.A. A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydr. Polym. 2011, 83, 368–374. [Google Scholar] [CrossRef]
- Wenkui, W.D.; Wengui, L.; Tao, P.Z. A comprehensive review on performance of cementitious and geopolymeric concretes with recycled waste glass as powder, sand or cullet. Resour. Conserv. Recycl. 2021, 172, 105664. [Google Scholar]
- Kumar, A. Extraction of caustic potash from coffee husk: Process optimization through response surface methodology. Int. J. Chem. Sci. 2013, 11, 1261–1269. [Google Scholar]
- De Castro, E.D.; Villela, L.S.; Mendes, L.M.; Mendes, R.F.; Ribeiro, A.G.C.; Guimarães Junior, J.B.; Rabelo, G.F. Analysis of the Coffee Peel Application Over the Soil-Cement Bricks Properties Análise Da Aplicação De Casca De Café Nas Propriedades De Tijolos De Solo-Cimento. Coffee Sci. 2019, 14, 12–23. [Google Scholar] [CrossRef]
- Reta, Y.; Mahto, S. Experimental Investigation on Coffee Husk Ash as a Partial Replacement of Cement for C-25 concrete. Cikitusi J. Multidiscip. Res. 2019, 6, 152–158. [Google Scholar]
- Ambali, F.; Demissew, A.; Fufa, F.; Assefa, S. Partial Replacement of Cement by Coffee Husk Ash for C-25 Concrete Production. J. Civ. Eng. Sci. Technol. 2019, 10, 12–21. [Google Scholar] [CrossRef]
- la Scalia, G.; Saeli, M.; Miglietta, P.P.; Micale, R. Coffee biowaste valorization within circular economy: An evaluation method of spent coffee grounds potentials for mortar production. Int. J. Life Cycle Assess. 2021, 26, 1805–1815. [Google Scholar] [CrossRef]
- Kua, T.A.; Arulrajah, A.; Horpibulsuk, S.; Du, Y.J.; Shen, S.L. Strength assessment of spent coffee grounds-geopolymer cement utilizing slag and fly ash precursors. Constr. Build. Mater. 2016, 115, 565–575. [Google Scholar] [CrossRef]
- Kristanto, G.A.; Wijaya, H. Assessment of spent coffee ground (SCG) and coffee silverskin (CS) as refuse derived fuel (RDF). IOP Conf. Ser. Earth Environ. Sci. 2018, 195, 12056. [Google Scholar] [CrossRef]
- ASTM C150-07; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2007.
- ASTM C 157; Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete. ASTM International: West Conshohocken, PA, USA, 2009. [CrossRef]
- ASTM C1437-20; Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C191-21; Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C1403-15; Standard Test Method for Rate of Water Absorption of Masonry Mortars. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C109/C109M-20; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2020.
- Doebelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef]
- ASTM C192/C192M; Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International: West Conshohocken, PA, USA, 2016; pp. 1–8.
- Kemsley, E.K.; Ruault, S.; Wilson, R.H. Discrimination between Coffea arabica and Coffea canephora variant robusta beans using infrared spectroscopy. Food Chem. 1995, 54, 321–326. [Google Scholar] [CrossRef]
- Chan, G.K.L.; Witkowski, A.; Gantz, D.L.; Zhang, T.O.; Zanni, M.T.; Jayaraman, S.; Cavigiolio, G. Myeloperoxidase-mediated methionine oxidation promotes an amyloidogenic outcome for apolipoprotein A-I. J. Biol. Chem. 2015, 290, 10958–10971. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.S.; Salva, T.J.; Ferreira, M.M.C. Chemometric studies for quality control of processed brazilian coffees using drifts. J. Food Qual. 2010, 33, 212–227. [Google Scholar] [CrossRef]
- Figueiró, S.D.; Góes, J.C.; Moreira, R.A.; Sombra, A.S.B. On the physico-chemical and dielectric properties of glutaraldehyde crosslinked galactomannan-collagen films. Carbohydr. Polym. 2004, 56, 313–320. [Google Scholar] [CrossRef]
- Xuan, S.H.; Lee, K.S.; Jeong, H.J.; Park, Y.M.; Ha, J.H.; Park, S.N. Cosmeceutical activities of ethanol extract and its ethyl acetate fraction from coffee silverskin. Biomater. Res. 2019, 23, 2. [Google Scholar] [CrossRef] [PubMed]
- Nasti, R.; Galeazzi, A.; Marzorati, S.; Zaccheria, F.; Ravasio, N.; Bozzano, G.L.; Manenti, F.; Verotta, L. Valorisation of Coffee Roasting By-Products: Recovery of Silverskin Fat by Supercritical CO2 Extraction. Waste Biomass Valorization 2021, 12, 6021–6033. [Google Scholar] [CrossRef]
- Mota, D.A.; Barbosa, M.D.S.; Schneider, J.K.; Lima, Á.S.; Pereira, M.M.; Krause, L.C.; Soares, C.M.F. Potential Use of Crude Coffee Silverskin Oil in Integrated Bioprocess for Fatty Acids Production. J. Am. Oil Chem. Soc. 2021, 98, 519–529. [Google Scholar] [CrossRef]
- Bishop, J.L.; Lane, M.D.; Dyar, M.D.; King, S.J.; Brown, A.J.; Swayze, G.A. Spectral properties of Ca-sulfates: Gypsum, bassanite, and anhydrite. Am. Mineral. 2014, 99, 2105–2115. [Google Scholar] [CrossRef]
- Schneider, U.; Alonso, M.C.; Pimienta, P.; Jansson, R. Physical properties and behaviour of high-performance concrete at high temperatures. In Structures in Fire: Proceedings of the Sixth International Conference, East Lansing, MI, USA, 2–4 June 2010; DEstech Publications: Lancaster, PA, USA, 2010; pp. 800–808. [Google Scholar]
- Beltran-Medina, E.A.; Guatemala-Morales, G.M.; Corona-Gonzá, R.I.; Padilla-Camberos, E.; Mondragó, P.M. Evaluation of the analytical conditions for the determination of chlorogenic acid in coffee silverskin. Chem. Anal. Chem. 2019, 1–7. [Google Scholar] [CrossRef]
- Iriondo-DeHond, A.; Ramírez, B.; Escobar, F.V.; del Castillo, M.D. Antioxidant properties of high molecular weight compounds from coffee roasting and brewing byproducts. Bioact. Compd. Health Dis. 2019, 2, 48–63. [Google Scholar] [CrossRef]
Oxides (%) | Cement | CSS |
---|---|---|
SiO2 | 20.2 | 2.72 |
Al2O3 | 4.6 | 5.09 |
Fe2O3 | 2.9 | 5.48 |
CaO | 62.5 | 29.61 |
MgO | 3.2 | 0.00 |
Na2O | 0.6 | 0.00 |
K2O | 0.6 | 56.11 |
SO3 | 2.6 | 0.38 |
P2O5 | 0.2 | 0.02 |
TiO2 | 0.1 | 0.32 |
MnO | 0.0 | 0.28 |
Cr2O | 2.4 | 0.00 |
SiO2 + Al2O3 + Fe2O3 | 27.7 | 13.3 |
Specific gravity (water) | 3.1 | 0.35 |
Specific surface area (m2/kg) | 329.5 | 3215.30 |
LOI (wt%) | 2.8 | 1.30 |
Sample | Total Binder kg/m3 | Coffee Weight (wt%) | Cement Content (%) | Sand/Binder Ratio (wt) | Water/Binder Ratio (wt) | SP (% of Binder) |
---|---|---|---|---|---|---|
Cm100-xCx | 350 | x | 100-x | 2.75 | 0.40 | 0.5 |
Sample | Coffee Content (by wt%) | Coffee Content (by vol%) | Cement Kg/m3 | Coffee Kg/m3 | Sand Kg/m3 | Water Kg/m3 | SP Kg/m3 |
---|---|---|---|---|---|---|---|
Cm100C0 | 0.0% | 0.0% | 350.00 | 0.00 | 962.50 | 138.25 | 17.5 |
Cm99.5C0.5 | 0.5% | 4.6% | 348.25 | 1.75 | 962.50 | 138.25 | 17.5 |
Cm99C1.0 | 1.0% | 9.2% | 346.50 | 3.50 | 962.50 | 138.25 | 17.5 |
Cm98.5C1.5 | 1.5% | 13.9% | 344.75 | 5.25 | 962.50 | 138.25 | 17.5 |
Cm98C2.0 | 2.0% | 18.6% | 343.00 | 7.00 | 962.50 | 138.25 | 17.5 |
Cm97C3.0 | 3.0% | 28.2% | 339.50 | 10.50 | 962.50 | 138.25 | 17.5 |
Cm96C4.0 | 4.0% | 37.2% | 336.00 | 14.00 | 962.50 | 138.25 | 17.5 |
Cm95C5.0 | 5.0% | 46.5% | 332.51 | 17.49 | 962.50 | 138.25 | 17.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yusuf, M.O.; Mohammed, Z.M.A.; Adewumi, A.A.; Shaban, M.T.; AlBaqawi, M.O.M.; Mohamed, H.D. Strength and Microstructure of Coffee Silverskin Blended Mortar. Recycling 2022, 7, 59. https://doi.org/10.3390/recycling7040059
Yusuf MO, Mohammed ZMA, Adewumi AA, Shaban MT, AlBaqawi MOM, Mohamed HD. Strength and Microstructure of Coffee Silverskin Blended Mortar. Recycling. 2022; 7(4):59. https://doi.org/10.3390/recycling7040059
Chicago/Turabian StyleYusuf, Moruf Olalekan, Zeyad M. A. Mohammed, Adeshina A. Adewumi, Mutasem Taisir Shaban, Meshrif Omar Meshrif AlBaqawi, and Hatim Dafalla Mohamed. 2022. "Strength and Microstructure of Coffee Silverskin Blended Mortar" Recycling 7, no. 4: 59. https://doi.org/10.3390/recycling7040059
APA StyleYusuf, M. O., Mohammed, Z. M. A., Adewumi, A. A., Shaban, M. T., AlBaqawi, M. O. M., & Mohamed, H. D. (2022). Strength and Microstructure of Coffee Silverskin Blended Mortar. Recycling, 7(4), 59. https://doi.org/10.3390/recycling7040059