Use of a Design of Experiments (DOE) for Studying the Substitution of Natural River Sand (NRS) by Gold Mine Tailings (GMT) in Concrete Manufacturing
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Method
2.2.1. Identification of Factors and Responses
- The quantity (mass) of cement;
- The quantity (mass) of gravel;
- The quantity (mass) of the GMT + NRS mixture.
2.2.2. Definition of the Experimental Domain
2.2.3. Coded Matrix and Matrix of Experiments
2.2.4. Mixing and Manufacture of Specimens
2.2.5. Compression Tests
2.2.6. Experimental Design Response Modeling
3. Results and Discussion
3.1. Responses of the DOE
3.2. Analysis of the Individual Contribution of Each Concrete Constituent
4. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aubertin, M.; Bussière, B. Meeting Environmental Challenges for Mine Waste Management. Geotech. News 2001, 19, 21–26. [Google Scholar]
- Smouni, A.; Ater, M.; Auguy, F.; Laplaze, L.; Mzibri, M.E.; Berhada, F.; Filali-Maltouf, A.; Doumas, P. Évaluation de La Contamination Par Les Éléments-Traces Métalliques Dans Une Zone Minière Du Maroc Oriental. Cah. Agric. 2010, 19, 273–279. [Google Scholar] [CrossRef]
- Andrade, S.; Moffett, J.; Correa, J.A. Distribution of dissolved species and suspended particulate copper in an intertidal ecosystem affected by copper mine tailings in Northern Chile. Mar. Chem. 2006, 10, 203–212. [Google Scholar] [CrossRef]
- Goh, D. L’exploitation Artisanale De L’or En Côte D’ivoire: La Persistance D’une Activite Illegale. Eur. Sci. J. ESJ 2016, 12, 18. [Google Scholar] [CrossRef] [Green Version]
- Aubertin, M.; Bussière, B.; Bernier, L.; Chapuis, R.; Julien, M.; Belem, T.; Simon, R.; Mbonimpa, M.; Benzaazoua, M.; Li, L. La Gestion Des Rejets Miniers Dans Un Contexte de Développement Durable et de Protection de l’environnement. In Proceedings of the Annual Conference of the Canadian Society for Civil Engineering, Montréal, QC, Canada, 5–8 June 2002. [Google Scholar]
- Gratton, P. Guide de Gestion Des Parcs à Résidus Miniers. Assoc. Minière Du Can. Version 2019, 3, 104. [Google Scholar]
- Charbonneau, P. Analyses Des Pratiques de Valorisation Des Rejets Miniers. Master’s Thesis, Université de Sherbrooke, Sherbrooke, QC, Canada, 2014. [Google Scholar]
- Khellal, S.; Messara, C.; Bouzidi, N. Caractérisations et Valorisation Du Rejet de Marne Issu d’exploitation de Fer d’El-Ouenza. Master’s Thesis, Université de Béjaïa, Béjaïa, Algeria, 2014. [Google Scholar]
- Almeida, J.; Ribeiro, A.; Silva, A.S.; Faria, P. Overview of mining residues incorporation in construction materials and bar-riers for full-scale application. J. Build. Eng. 2020, 29, 101215. [Google Scholar] [CrossRef]
- Mabroum, S.S.; Moukannaa, A.; El Machi, Y.; Taha, M.B.; Hakkou, R. Mine Wastes Based Geopolymers: A Critical Review. Clean. Eng. Technol. 2020, 1, 100014. [Google Scholar] [CrossRef]
- Ince, C. Reusing gold-mine tailings in cement mortars: Mechanical properties and socio-economic developments for the Lefke-Xeros area of Cyprus. J. Clean. Prod. 2019, 238, 117871. [Google Scholar] [CrossRef]
- Taha, Y. Valorisation des Rejets Miniers dans la Fabrication de Briques Cuites: Evaluations Technique et Environnementale. Ph.D. Thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 2017. [Google Scholar]
- Preethi, A.V.; Rajendra, S.; Navneeth, P.K.L. Studies on Gold Ore Tailings as Partial Replacement of Fine Aggregates in Concrete. Int. J. Latest. Technol. Eng. Manag. Appl. Sci. 2017, 6, 30–32. [Google Scholar]
- Reddy, B.R.; Satyanarayanan, K.S.; Jagannatha, H. Use of Gold Mine Tailings in Production of Concrete-A Feasibility Study. BDL 2016, 9, 197–202. [Google Scholar]
- Vignesh, S.; Reddy, B.R.; Nachiar, S.S. Effect of Partial Replacement of Natural Sand with Gold Mine Tailings on Some Properties of Masonry Mortars. Int. J. Eng. Res. Technol. 2015, 4, 583–586. [Google Scholar] [CrossRef]
- Widojoko, L.; Hardjasaputra, H.; Susilowati, S. Study of Gold Mine Tailings Utilization as Fine Aggregate Material for Producing Shotcrete Based on Concept of Green Technology. In International Conference on Engineering and Technology Development (ICETD); Mustofa Usman: Jakarta, Indonesia, 2014; pp. 124–133. [Google Scholar]
- Parthasarathi, N.; Ramalinga Reddy, B.M.; Satyanarayanan, K.S. Effect on Workability of Concrete due to Partial Replacement of Natural Sand with Gold Mine Tailings. Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef]
- Ahmed, T.; Elchalakani, M.; Basarir, H.; Karrech, A.; Sadrossadat, E.; Yang, B. Development of ECO-UHPC utilizing gold mine tailings as quartz sand alternative. Clean. Eng. Technol. 2021, 4, 100176. [Google Scholar] [CrossRef]
- Kunt, K.; Yıldırım, M.; Dur, F.; Derun, E.M.; Pişkin, S. Utilization of Bergama Gold Tailings as an Additive in the Mortar. Celal Bayar Üniversitesi Fen Bilim. Derg. 2015, 11, 365–371. [Google Scholar] [CrossRef]
- Lundstedt, T.; Seifert, E.; Abramo, L.; Thelin, B.; Nystrom, A.; Pettersen, J.; Bergman, R. Experimental Design and Optimization. Chemom. Intell. Lab. Syst. 1998, 42, 3–40. [Google Scholar] [CrossRef]
- Balegamire, C.N.; Dable, P.J.-M.; Nkuba, B. Toward the Total Substitution of Natural River Sand (NRS) by Gold Mine Tailings (GMT) in the Manufacturing of Concrete Pavers: Case Study of the Gold Mine Tailings (GMT) of the Artisanal Sector of Misisi (East of the DR Congo). Clean. Eng. Technol. 2022, 7, 100427. [Google Scholar]
- De Larrard, F. Concrete Mixture-Proportioning: A Scientific Approach, Modern Concrete Technoloy Series 9; E & FN SPON: London, UK, 1999. [Google Scholar]
- CSTC/WTCB.be. Fiches Normes Beton—Mortier-Granulats. In SPF Economie, P.M.E.; Classes Moyennes et Energie. 2018, 272. Available online: https://www.cstc.be/media/dbdhbsg0/an_fiches_aide_a_la_specification_des_betons-1.pdf (accessed on 17 December 2021).
- Néville, A. Propriétés Des Betons; Eyrolles: Paris, France, 2000. [Google Scholar]
Factors/Levels | Cement (kg) | Gravel (kg) | NRS + GMT (kg) |
---|---|---|---|
High level (+1) | 15 | 40 | 20 of GMT 0 of NRS |
Low level (−1) | 10 | 25 | 0 of GMT 20 of NRS |
Factors | Coding | Dosage of Tests at the Center Level |
---|---|---|
GMT + NRS | (1 + (−1))/2 | 50% GMT and 50% NRS (20 kg) |
Cement | (1 + (−1))/2 | (Maximum value + minimum value)/2 (12.5 kg) |
Gravel | (1 + (−1))/2 | (Maximum value + minimum value)/2 (32.5 kg) |
Cement | Gravel | NRS + GMT | |
---|---|---|---|
01 | −1 | −1 | −1 |
02 | 1 | −1 | −1 |
03 | −1 | 1 | −1 |
04 | 1 | 1 | −1 |
05 | −1 | −1 | 1 |
06 | 1 | −1 | 1 |
07 | −1 | 1 | 1 |
08 | 1 | 1 | 1 |
09 | 0 | 0 | 0 |
10 | 0 | 0 | 0 |
11 | 0 | 0 | 0 |
Factors/Tests | Cement (kg) | Gravel (kg) | NRS + GMT (kg) |
---|---|---|---|
01 | 10 | 25 | 20 of NRS |
02 | 15 | 25 | 20 of NRS |
03 | 10 | 40 | 20 of NRS |
04 | 15 | 40 | 20 of NRS |
05 | 10 | 25 | 20 of GMT |
06 | 15 | 25 | 20 of GMT |
07 | 10 | 40 | 20 of GMT |
08 | 15 | 40 | 20 of GMT |
09 | 12.5 | 32.5 | 10 of NRS + 10 of GMT |
10 | 12.5 | 32.5 | 10 of NRS + 10 of GMT |
11 | 12.5 | 32.5 | 10 of NRS + 10 of GMT |
GMT + NRS (kg) | Cement (kg) | Gravel (kg) | Water (L) | Breaking Stress (N/mm2) at 7 Days | Breaking Stress (N/mm2) at 14 Days | Breaking Stress (N/mm2) at 28 Days |
---|---|---|---|---|---|---|
20 + 0 | 15 | 40 | 11 | 15.4 | 19.6 | 22.6 |
20 + 0 | 15 | 25 | 10.5 | 17.2 | 18.3 | 20.1 |
20 + 0 | 10 | 40 | 10 | 8.7 | 10.4 | 11 |
20 + 0 | 10 | 25 | 8.8 | 11 | 14.5 | 15.7 |
0 + 20 | 15 | 40 | 7.45 | 16.7 | 22.3 | 31.2 |
0 + 20 | 15 | 25 | 5.2 | 21.9 | 33.4 | 37.2 |
0 + 20 | 10 | 40 | 6 | 13.1 | 15.7 | 20.2 |
0 + 20 | 10 | 25 | 5.3 | 15.4 | 23 | 27.7 |
10 + 10 | 12.5 | 32.5 | 8 | 14.4 | 18 | 22.3 |
10 + 10 | 12.5 | 32.5 | 8 | 16.2 | 22 | 23.7 |
10 + 10 | 12.5 | 32.5 | 8 | 16.6 | 23 | 24 |
Bias 23.21 | GMT+NRS (A) | Cement (B) | Gravel (C) | AB | AC | BC | ABC |
---|---|---|---|---|---|---|---|
−5.86 | 4.56 | −1.96 | −0.56 | 1.41 | 1.08 | 0.71 | |
Weight | 11.73 | 9.12 | 3.92 | 2.82 | 2.17 | 1.42 | 1.12 |
Factors | Coefficient | Weight | Cumulative Weight | % | Cumulative % | Significant? |
---|---|---|---|---|---|---|
NRS/GMT (A) | −5.86 | 11.7 | 11.7 | 36.3 | 36.3 | YES |
Cement (B) | 4.56 | 9.13 | 20.85 | 28.2 | 64.5 | YES |
Gravel (C) | −1.96 | 3.93 | 24.78 | 12.1 | 76.6 | YES |
AC | 1.41 | 2.83 | 27.60 | 8.74 | 85.4 | NO |
BC | 1.09 | 2.18 | 29.78 | 6.73 | 92.1 | NO |
ABC | 0.71 | 1.43 | 31.20 | 4.41 | 96.5 | NO |
AB | −0.56 | 1.13 | 32.33 | 3.48 | 100 | NO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balegamire, C.N.; Dable, P.J.-M.; Kone, K.; Nkuba, B. Use of a Design of Experiments (DOE) for Studying the Substitution of Natural River Sand (NRS) by Gold Mine Tailings (GMT) in Concrete Manufacturing. Recycling 2022, 7, 50. https://doi.org/10.3390/recycling7040050
Balegamire CN, Dable PJ-M, Kone K, Nkuba B. Use of a Design of Experiments (DOE) for Studying the Substitution of Natural River Sand (NRS) by Gold Mine Tailings (GMT) in Concrete Manufacturing. Recycling. 2022; 7(4):50. https://doi.org/10.3390/recycling7040050
Chicago/Turabian StyleBalegamire, Clarisse Njovu, Pierre Jean-Marie Dable, Kouwelton Kone, and Bossissi Nkuba. 2022. "Use of a Design of Experiments (DOE) for Studying the Substitution of Natural River Sand (NRS) by Gold Mine Tailings (GMT) in Concrete Manufacturing" Recycling 7, no. 4: 50. https://doi.org/10.3390/recycling7040050
APA StyleBalegamire, C. N., Dable, P. J. -M., Kone, K., & Nkuba, B. (2022). Use of a Design of Experiments (DOE) for Studying the Substitution of Natural River Sand (NRS) by Gold Mine Tailings (GMT) in Concrete Manufacturing. Recycling, 7(4), 50. https://doi.org/10.3390/recycling7040050