Physicochemical and Biological Contribution of Native Macrophytes in the Constructed Wetlands to Treat Municipal Wastewater: A Pilot-Scale Experiment in a Sub-Tropical Climate Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Pilot Set-Up
2.2. Monitoring and Analyses
2.2.1. Wastewater Monitoring and Analysis
2.2.2. Macrophyte Monitoring and Analysis
2.3. Evaluation of Monitored Data
3. Results and Discussion
3.1. Characteristics of Influent and Effluent Wastewater
3.2. Removal of Solids
3.3. Removal of Organic Matter
3.4. Removal of Nitrogen
3.5. Removal of Phosphorus
3.6. Plants Analysis
3.6.1. Macrophytes’ Growth
3.6.2. Biomass Production and Uptake Capacity
4. Conclusions
- The planted beds demonstrated significantly (p < 0.01) higher removal of TSS (70–78%), BOD5 (66–77%), COD (59–75%), NO3-N (56–64%), NH4-N (41–69%), TN (36–41%), and TP (44–61%) as compared to the unplanted bed, which showed the removal of 48%, 39%, 40%, 33%, 18%, 20%, and 29%, respectively.
- All species showed significant differences (p < 0.05) throughout the study. P. australis and Sagittaria exhibited better performance than Iris. Sagittaria performed better than P. australis in the removal of TSS, NO3-N, and TP, however, for BOD5, COD, NH4-N, and TN, no significant differences (p > 0.05) were found.
- The highest biomass production was found in Sagittaria (9.6 kg DW/m2), followed by P. australis (5.9 kg DW/m2) and Iris (5.4 kg DW/m2). Total N and p accumulation were recorded in the order of Sagittaria (287.2 and 57.4 g/m2) > P. australis (193.3 and 30.7 g/m2) > Iris (104.4 and 22.9 g/m2), respectively. The contributions due to uptake of Sagittaria, P. australis, and Iris to mass N and p removal were 9.3% and 7.6%, 6.3% and 5.1%, and 3.9% and 4.4%, respectively. Macrophyte species demonstrated significant differences (p < 0.01), showing the effectiveness in the production of biomass and nutrient accumulation in the order of Sagittaria > P. australis > Iris.
- This study has revealed that the presence of macrophytes and their choice is an important aspect to obtain higher removal efficiencies in terms of solids, organic matter, and nutrients. It has further revealed that careful selection of species with extensive root networks and large biomasses can also increase the removal of nutrients in HSSF-CWs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jinadasa, K.B.S.N.; Tanaka, N.; Mowjood, M.I.M.; Werellagama, D.R.I.B. Free water surface constructed wetlands for domestic wastewater treatment: A tropical case study. J. Chem. Ecol. 2006, 22, 181–191. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Konnerup, D.; Koottatep, T.; Brix, H. Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia. Ecol. Eng. 2009, 35, 248–257. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Jinadasa, K.B.S.N.; Gersberg, R.M.; Liu, Y.; Ng, W.J.; Tan, S.K. Application of constructed wetlands for wastewater treatment in developing countries-a review of recent developments (2000–2013). J. Environ. Manag. 2014, 141, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. The use of constructed wetlands for nitrogen removal from agricultural drainage: A review. Sci. Agric. Bohem. 2017, 48, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Ji, G. Constructed wetlands, 1991–2011: A review of research development, current trends, and future directions. Sci. Total Environ. 2012, 441, 19–27. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for wastewater treatment. Water Res. 2010, 2, 530–549. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.; Suthar, S. Performance assessment of horizontal and vertical surface flow constructed wetland system in wastewater treatment using multivariate principal component analysis. Ecol. Eng. 2018, 116, 121–126. [Google Scholar] [CrossRef]
- Jing, S.R.; Ling, J.F.; Wang, T.W.; Lee, D.Y. Microcosm wetlands for wastewater treatment with different hydraulic loading rates and macrophytes. J. Environ. Qual. 2002, 31, 690–696. [Google Scholar] [CrossRef]
- Vymazal, J.; Kropfelova, L. Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic. Ecol. Eng. 2005, 25, 606–621. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, H.; Bañuelos, G.; Yan, B.; Liang, Y.; Yu, X.; Cheng, X.; Chen, L. Effects of vegetation and temperature on nutrient removal and microbiology in horizontal subsurface flow constructed wetlands for treatment of domestic sewage. Water Air Soil Pollut. 2017, 228, 95. [Google Scholar] [CrossRef]
- Angassa, K.; Leta, S.; Mulat, W.; Kloos, H.; Meers, E. Evaluation of pilot-scale constructed wetlands with Phragmites karka for phytoremediation of municipal wastewater and biomass production in Ethiopia. Environ. Process. 2019, 6, 65–84. [Google Scholar] [CrossRef]
- Button, M.; Nivala, J.; Weber, K.P.; Aubron, T.; Müller, R.A. Microbial community metabolic function in subsurface flow constructed wetlands of different designs. Ecol. Eng. 2015, 80, 162–171. [Google Scholar] [CrossRef]
- Toscano, A.; Marzo, A.; Milani, M.; Cirelli, G.L.; Barbagallo, S. Comparison of removal efficiencies in mediterranean pilot constructed wetlands vegetated with different macrophyte species. Ecol. Eng. 2015, 75, 155–160. [Google Scholar] [CrossRef]
- Camacho, J.V.; Martínez, A.D.L.; Gómez, R.G.; Sanz, J.M. A comparative study of five horizontal subsurface flow constructed wetlands using different plant species for domestic wastewater treatment. Environ. Technol. 2007, 28, 1333–1343. [Google Scholar] [CrossRef]
- Shelef, O.; Gross, A.; Rachmilevitch, S. Role of plants in a constructed wetland: Current and new perspectives. Water 2013, 5, 405–419. [Google Scholar] [CrossRef]
- Karathanasis, A.D.; Potter, C.L.; Coyne, M.S. Vegetation effect on fecal bacteria BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecol. Eng. 2003, 20, 157–169. [Google Scholar] [CrossRef]
- Vacca, G.; Wand, H.; Nikolausz, M.; Kuschk, P.; Kästner, M. Effect of macrophytes and filter materials on bacteria removal in pilot-scale constructed wetlands. Water Res. 2005, 39, 1361–1373. [Google Scholar] [CrossRef]
- Headley, T.; Nivala, J.; Kassa, K.; Olsson, L.; Wallace, S.; Brix, H.; Afferden, M.V.; Müller, R. Escherichia coli removal and internal dynamics in subsurface flow ecotechnologies: Effects of design and macrophytes. Ecol. Eng. 2013, 61, 564–574. [Google Scholar] [CrossRef]
- Carranza-Diaz, O.; Schultze-Nobre, L.; Moeder, M.; Nivala, J.; Kuschk, P.; Koeser, H. Removal of selected organic micropollutants in planted and unplanted pilot-scale horizontal flow constructed wetlands under conditions of high organic load. Ecol. Eng. 2014, 71, 234–245. [Google Scholar] [CrossRef]
- Tanner, C. Macrophytes as ecosystem engineers in subsurface-flow treatment wet-lands. Water Sci. Technol. 2001, 44, 9–17. [Google Scholar] [CrossRef]
- Lima, M.X.; Carvalho, K.Q.; Passig, F.H.; Borges, A.C.; Filippe, T.C.; Azevedo, J.C.R.; Nagalli, A. Performance of different substrates in constructed wetlands planted with E. crassipes treating low-strength sewage under subtropical conditions. Sci. Total Environ. 2018, 630, 1365–1373. [Google Scholar] [CrossRef] [PubMed]
- Calheiros, C.S.C.; Quitério, P.V.B.; Silva, G.; Crispim, L.F.C.; Brix, H.; Moura, S.C.; Castro, P.M.L. Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater. J. Environ. Manag. 2012, 95, 66–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carballeira, T.; Ruiz, I.; Soto, M. Effect of macrophytes and surface loading rate on the treatment efficiency of shallow subsurface constructed wetlands. Ecol. Eng. 2016, 90, 203–214. [Google Scholar] [CrossRef]
- Maltais-Landry, G.; Maranger, R.; Brisson, J.; Chazarenc, F. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands. Water Res. 2009, 43, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Leto, C.; Tuttolomondo, T.; La Bella, S.; Leone, R.; Licata, M. Effects of macrophyte species in a horizontal subsurface flow constructed wetland-phytoremediation of treated urban wastewater with Cyperus alternifolius L. and Typha latifolia L. in the west of Sicily (Italy). Ecol. Eng. 2013, 61, 282–291. [Google Scholar] [CrossRef]
- CGWB. Central Ground Water Board Report on “Aquifer Mapping and Management Plan of Aligarh District Uttar Pradesh” Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India. 2017. Available online: http://cgwb.gov.in/AQM/NAQUIM_REPORT/UP/Aligarh.pdf (accessed on 10 September 2021).
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Li, X.; Guo, R. Comparison of nitrogen removal in floating treatment wetlands constructed with Phragmites australis and Acorus calamus in a cold temperate zone. Water Air Soil Pollut. 2017, 228, 132. [Google Scholar] [CrossRef]
- Lindner, R.C. Rapid analytical methods for some of the common inorganic constitutes of macrophyte tissues. Macrophyte Physiol. 1994, 19, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Fiske, C.H.; Subbarow, Y.J. The colorimetric determination of phosphorus. Biol. Chem. 1925, 66, 375–400. [Google Scholar] [CrossRef]
- Kadlec, R.H. Status of Treatment Wetlands North America in Proceeding Conference of the Use of Aquatic Macrophytes for Wastewater Treatment in Constructed Wetlands; Dias, V., Vymazal, J., Eds.; ICN and INAG: Lisbon, Portugal, 2003; pp. 363–401. [Google Scholar]
- Tanaka, N.; Jinadasa, K.B.S.N.; Werellagama, D.R.I.B.; Mowjood, M.I.M.; Ng, W.J. Constructed tropical wetlands with integrated submergent-emergent macrophytes for sustainable water quality management. J. Environ. Sci. Health Part A 2013, 41, 2221–2236. [Google Scholar] [CrossRef]
- Nguyen, X.C.; Chang, S.W.; Nguyen, T.L.; Ngo, H.H.; Kumar, G.; Banu, J.R.; Vu, M.C.; Le, H.S.; Nguyen, D.D. A hybrid constructed wetland for organic-material and nutrient removal from sewage: Process performance and multi-kinetic models. J. Environ. Manag. 2018, 222, 378–384. [Google Scholar] [CrossRef]
- Wu, Y.; Han, R.; Yang, X.; Zhang, Y.; Zhang, R. Long-term performance of an integrated constructed wetland for advanced treatment of mixed wastewater. Ecol. Eng. 2017, 99, 91–98. [Google Scholar] [CrossRef]
- Katsenovich, Y.P.; Hummel-Batista, A.; Ravinet, A.J.; Miller, J.F. Performance evaluation of constructed wetlands in a tropical region. Ecol. Eng. 2009, 35, 1529–1537. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; El-Khateeb, M.A.; Regelsberger, M.; El-Sheikh, R.; Shehata, M. Integrated system for the treatment of blackwater and greywater via UASB and constructed wetland in Egypt. Desalin. Water Treat. 2009, 8, 272–278. [Google Scholar] [CrossRef]
- Zurita, F.; Belmont, M.A.; Anda, J.D.; White, J.R. Seeking a way to promote the use of constructed wetlands for domestic wastewater treatment in developing countries. Water Sci. Technol. 2011, 63, 654–659. [Google Scholar] [CrossRef]
- Fountoulakis, M.S.; Daskalakis, G.; Papadaki, A.; Kalogerakis, N.; Manios, T. Use of Halophytes in pilot-scale horizontal flow constructed wetland treating domestic wastewater. Environ. Sci. Pollut. Res. 2017, 24, 16682–16689. [Google Scholar] [CrossRef]
- Cakir, R.; Gidirislioglu, A.; Cebi, U. A study on the effects of different hydraulic loading rates (HLR) on pollutant removal efficiency of subsurface horizontal flow constructed wetlands used for treatment of domestic wastewaters. J. Environ. Manag. 2015, 164, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Plants used in constructed wetland with horizontal subsurface flow: A review. Hydrobiologia 2011, 674, 133–156. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef]
- Vymazal, J. Horizontal subsurface flow and hybrid constructed wetland systems for wastewater treatment. Ecol. Eng. 2005, 25, 478–490. [Google Scholar] [CrossRef]
- Aalam, T.; Khalil, N. Performance of horizontal sub-surface flow constructed wetlands with different flow patterns using dual media for low-strength municipal wastewater: A case of pilot scale experiment in a tropical climate region. J. Environ. Sci. Health Part A 2019, 54, 1245–1253. [Google Scholar] [CrossRef]
- Li, J.; Wen, Y.; Zhou, Q.; Xingjie, Z.; Li, X.; Yang, S.; Lin, T. Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface-flow constructed wetlands. Bioresour. Technol. 2008, 99, 4990–4996. [Google Scholar] [CrossRef] [PubMed]
- Jóźwiakowski, K.; Bugajski, P.; Kurek, K.; De Carvalho, M.D.F.N.; Almeida, M.A.A.; Siwiec, T.; Borowski, G.; Czekała, W.; Dach, J.; Gajewska, M. The efficiency and technological reliability of biogenic compounds removal during long-term operation of a one-stage subsurface horizontal flow constructed wetland. Sep. Purif. Technol. 2018, 202, 216–226. [Google Scholar] [CrossRef]
- Angassa, K.; Leta, S.; Mulat, W. Organic matter and nutrient removal performance of horizontal subsurface flow constructed wetlands planted with Phragmites Karka and Vetiveria Zizanioide for treating municipal wastewater. Environ. Process. 2017, 5, 115–130. [Google Scholar] [CrossRef]
- Ennabili, A.; Ater, M.; Radoux, M. Biomass production and NPK retention in macrophytes from wetlands of the Tingitan Peninsula. Aquat. Bot. 1998, 62, 45–56. [Google Scholar] [CrossRef]
- Abou-Elela, S.I.; Golinielli, G.; Abou-Taleba, E.M.; Hellal, M.S. Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecol. Eng. 2013, 61, 460–468. [Google Scholar] [CrossRef]
- Vymazal, J.; Kropfelova, L. Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow; Springer: Dordrecht, The Netherlands, 2008; Volume 14. [Google Scholar]
- Raboni, M.; Gavasci, R.; Urbini, G. UASB followed by sub-surface horizontal flow phytodepuration for the treatment of the sewage generated by a small rural community. Sustainability 2014, 6, 6998–7012. [Google Scholar] [CrossRef] [Green Version]
- Kadlec, R.; Knight, R. Treatment Wetlands; Chemical Rubber Company Press: Boca Raton, FL, USA; Lewis Publishers: Boca Raton, FL, USA, 1996. [Google Scholar]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Zhang, W.J.; Yang, P.; Yang, X.Y.; Chen, Z.; Wang, D.S. Insights into the respective role of acidification and oxidation for enhancing anaerobic digested sludge dewatering performance with Fenton process. Bioresour. Technol. 2015, 181, 247–253. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for treatment of industrial wastewaters: A review. Ecol. Eng. 2014, 73, 724–751. [Google Scholar] [CrossRef]
- Williams, R.F.; Avery, L.; Winward, G.; Jeffrey, P.; Smith, C.S.; Liu, S.; Memon, F.A.; Jefferson, B. Constructed wetlands for urban greywater recycling. Ijep 2008, 33, 93–109. [Google Scholar] [CrossRef]
- Oopkaup, K.; Truu, M.; Nolvak, H.; Ligi, T.; Preem, J.K.; Mander, U.; Truu, J. Dynamics of Bacterial Community Abundance and Structure in Horizontal Subsurface Flow Wetland. Water 2016, 8, 457. [Google Scholar] [CrossRef] [Green Version]
- Avila, C.; Garfí, M.; Garcia, J. Three-stage hybrid constructed wetland system for wastewater treatment and reuse in warm climate regions. Ecol. Eng. 2013, 61, 43–49. [Google Scholar] [CrossRef]
Parameter | Influent | WI | W2 | W3 | W4 | ||||
---|---|---|---|---|---|---|---|---|---|
Effluent | RE % | Effluent | RE % | Effluent | RE % | Effluent | RE % | ||
TSS | 259.1 ± 49.75 * (148–331) # | 55.84 ± 13.13 (37–101) | 78 | 41.7 ± 15.23 (10–87) | 83 | 73.79 ± 13.92 (48–96) | 70 | 130.73 ± 19.95 (85–189) | 48 |
BOD5 | 51.07 ± 5.23 (38.7–68.6) | 11.61 ± 5.07 (3.2–28.27) | 77 | 11.81 ± 5.08 (4.55–27.65) | 77 | 17.34 ± 5.109 (8.45–31.92) | 66 | 30.68 ± 8.08 (20.11–52.69) | 39 |
COD | 123.4 ± 13.76 (94–161) | 31.38 ± 6.66 (16–49) | 74 | 30.12 ± 7.41 (14–49) | 75 | 50.21 ± 7.75) (35–69) | 59 | 73.13 ± 15.51 (42–108) | 40 |
NO3-N | 1.74 ± 0.42 (0.88–2.79) | 0.68 ± 0.25 (0.24–1.38) | 61 | 0.62 ± 0.25 (0.10–1.34) | 64 | 0.77 ± 0.28 (0.23–1.36) | 56 | 1.17 ± 0.37 (0.41–2.12) | 33 |
NH4+-N | 15.84 ± 3.84 (6.9–23.6) | 4.97 ± 1.74 (1.5–10.3) | 66 | 4.58 ± 1.85 (1.1–10.7) | 69 | 8.97 ± 1.91 (4.3–15.4) | 41 | 12.95 ± 3.10 (5.6–20.8) | 18 |
TN | 25.16 ± 4.14 (16.3–36) | 14.54 ± 3.56 (6.6–23.7) | 41 | 14.70 ± 4.04 (5.2–25.10) | 41 | 16.00 ± 4.35 (6.6–27.4) | 36 | 19.96 ± 3.90 (11.60–31.10) | 20 |
TP | 4.20 ± 0.93 (2.13–6.48) | 2.07 ± 0.53 (1.09–3.23) | 50 | 1.63 ± 0.52 (0.69–3.00) | 61 | 2.34 ± 0.61 (1.02–3.78) | 44 | 2.96 ± 0.71 (1.36–4.39) | 29 |
pH | 7.68 ± 0.67 (6.28–9.76) | 7.58 ± 0.63 (6.1–9.58) | - | 7.68 ± 0.62 (6.12–9.21) | - | 7.75 ± 0.62 (6.52–9.89) | - | 7.75 ± 0.62 (6.60–9.93) | - |
DO | 1.40 ± 0.41 (0.74–3.41) | 1.45 ± 0.49 (0.56–3.42) | - | 1.46 ± 0.53 (0.58–3.46) | - | 1.45 ± 0.48 (0.63–3.28) | - | 1.28 ± 0.45 (0.34–3.25) | - |
T | 29.01 ± 5.98 (11.39–41.78) | 28.66 ± 6.87 (9.90–41.34) | - | 28.50 ± 6.93 (7.10–41.56) | - | 28.52 ± 6.91 (7.10–41.56) | - | 28.86 ± 6.25 (11.39–41.79) | - |
Pollutant | ANOVA Test (p-Value) | ||||||
---|---|---|---|---|---|---|---|
p vs. S | p vs. I | S vs. I | p, S and I | p vs. C | S vs. C | I vs. C | |
TSS | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
BOD5 | 0.7639 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
COD | 0.2491 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
NO3-N | 0.0490 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
NH4-N | 0.1865 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
TN | 0.9088 | 0.0138 | 0.0200 | 0.0208 | 0.0000 | 0.0000 | 0.0000 |
TP | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Parameter | Wetland Bed | Influent (g/m2) | Effluent (g/m2) | Aboveground Biomass | Belowground Biomass | Total N (g/m2) | Others (g/m2) | Macrophytes Uptake (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DM | C | N | DM | C | N | |||||||
TN | W1 | 7113.19 | 4183.98 | 4268.63 | 34.47 | 147.14 | 1618.10 | 27.28 | 44.14 | 193.31 | 2737.90 | 6.3 |
W2 | 7113.19 | 4211.68 | 5467.42 | 31.69 | 173.26 | 3783.37 | 29.95 | 113.31 | 287.17 | 2614.34 | 9.3 | |
W3 | 7113.19 | 4572.52 | 1911.61 | 21.32 | 40.74 | 3458.91 | 18.43 | 63.75 | 104.39 | 2436.28 | 3.9 | |
TP | W1 | 1171.26 | 584.81 | 4268.63 | 5.26 | 22.45 | 1618.10 | 4.89 | 7.91 | 30.68 | 555.77 | 5.1 |
W2 | 1171.26 | 456.09 | 5467.42 | 6.38 | 34.88 | 3783.37 | 5.97 | 22.59 | 57.43 | 657.74 | 7.6 | |
W3 | 1171.26 | 655.32 | 1911.61 | 4.39 | 5.23 | 3458.91 | 4.13 | 14.29 | 22.85 | 493.09 | 4.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aalam, T.; Arias, C.A.; Khalil, N. Physicochemical and Biological Contribution of Native Macrophytes in the Constructed Wetlands to Treat Municipal Wastewater: A Pilot-Scale Experiment in a Sub-Tropical Climate Region. Recycling 2022, 7, 8. https://doi.org/10.3390/recycling7010008
Aalam T, Arias CA, Khalil N. Physicochemical and Biological Contribution of Native Macrophytes in the Constructed Wetlands to Treat Municipal Wastewater: A Pilot-Scale Experiment in a Sub-Tropical Climate Region. Recycling. 2022; 7(1):8. https://doi.org/10.3390/recycling7010008
Chicago/Turabian StyleAalam, Tofeeq, Carlos Alberto Arias, and Nadeem Khalil. 2022. "Physicochemical and Biological Contribution of Native Macrophytes in the Constructed Wetlands to Treat Municipal Wastewater: A Pilot-Scale Experiment in a Sub-Tropical Climate Region" Recycling 7, no. 1: 8. https://doi.org/10.3390/recycling7010008
APA StyleAalam, T., Arias, C. A., & Khalil, N. (2022). Physicochemical and Biological Contribution of Native Macrophytes in the Constructed Wetlands to Treat Municipal Wastewater: A Pilot-Scale Experiment in a Sub-Tropical Climate Region. Recycling, 7(1), 8. https://doi.org/10.3390/recycling7010008