Biodegradation of Hemicellulose-Cellulose-Starch-Based Bioplastics and Microbial Polyesters
Abstract
:1. Introduction
- Plastics are polymeric matrices comprised of organic polymers of high molecular weight and other substances, such as fillers, colors, and additives [6]. In general, the synthetic route is predominant in the synthesis of the material.
- Bioplastic refers to materials that are biodegradable, bio-based, or both. Although the term bioplastic is generally used to distinguish polymers derived from fossil resources, it is worth mentioning that bioplastics may come from petroleum [6]. The prefix “bio” of bioplastic does not necessarily mean this material is environmentally friendly [6].
- Biomass is a source of natural organic carbon that may originate from animals or vegetables raised/cultivated by humans or that spontaneously emerge in terrestrial and marine environments [10].
2. Problems Related to Plastics
3. Biodegradation Process
3.1. Factors That Influence Biodegradation
3.2. Assessment and Biodegradation Quantification
3.3. Biodegradation of Bio-Based Polymers Bioplastics
3.3.1. Biodegradation of Plant-Based Polymers Bioplastics
3.3.2. Biodegradation/Enzymatic Degradation of Plant-Based Polymers Bioplastics in Relation to Derivatization
3.3.3. Biodegradation of Microbe-Based Polymers Bioplastics
Bioplastic Type | Polymer Type | CONB | BPR | PAB | TS (MPa) | E (%) | Reference |
---|---|---|---|---|---|---|---|
PHB nanofiber | Polyester | Soil, 30 °C and 80% humidity | 100% in 21 days | Weight loss | … | … | [112] |
PHB/Starch | Polyester | Sludge, 35 °C, anaerobic | 93.8% in 190 days | Biogas quantification | … | … | [113] |
PHB | Polyester | Compost, 55 °C and 70% humidity | Approx. 80% in 28 days | CO2 quantification | 1015 | … | [114] |
PHA | Polyester | Seawater | 100% in 1.5 to 3.5 years | Literature review | … | … | [115] |
PHA | Polyester | Soil, 12–15 cm depth and 35% humidity | 30% in 60 days | Weight loss | 16.2 | 600.3 | [116] |
PHA/Rice husk | Polyester/Fibers | Soil, of 12–15 cm depth and 35% humidity | >90% in 60 days | Weight loss | 7.5 | <400 | [116] |
PHA | Polyester | Soil, 20 °C and 60% humidity | 48.5% in 280 days | CO2 quantification | … | … | [117] |
PHBV/Starch | Polyester/Polysaccharide | Liquid medium | 100% in 31 days | CO2 quantification | 21.01 | 10.85 | [118] |
PHBV/NPK | Polyester/Fertilizer | Soil, 25–30 °C and 65% humidity | 68.66% in 112 days | Weight loss | … | … | [119] |
PHBV/Starch | Polyester/ Polysaccharide | Soil, 25 °C and 20% humidity | >60% in 150 days | Weight loss | ~7 | ~3.2 | [120] |
Starch | Polysaccharide | Soil, 3.5 cm depth and 65% humidity | 30% in 5 days | Weight loss | 1.88 | 0.45 | [70] |
Starch | Polysaccharide | Marine water with sediment | Approx. 69% in 236 days | BOD | 4.7 * | 211 | [121] |
Starch | Polysaccharide | Microorganisms in a plate, 25 °C and 75% humidity | 100% in 30 days | Weight loss | 8.6 | 52 | [69] |
Starch/Cellulose | Polysaccharide/Modified | Microorganisms in plate, 25 °C and 75% humidity | 100% in 60 days | Weight loss | 14.7 | 50 | [69] |
Cellulose | Polysaccharide | Soil | 100% in 105 days | Weight loss | 45 | 6.1 | [68] |
Cellulose/Starch | Polysaccharide | Soil/ humus, 25 °C and 75% humidity | 24.2 to 39.3% in 35 days | Weight loss | 5.6 to 35.0 | 13.1 to 21.7 | [69] |
Hemicellulose/ Gelatine | Polysaccharide/Partially hydrolyzed protein | Soil/manure | 100% in less than 15 days | Weight loss | … | … | [71] |
PLA/Starch | Poly(lactic acid)/ Polysaccharide | Compost and 58 °C | 79.7% in 90 days | Weight loss | … | … | [122] |
3.4. Effect of the Bio-Based Polymer Addition on the Biodegradation Rate of PHAs Bioplastics
4. Conclusions
Funding
Conflicts of Interest
References
- Singh, A.A.; Afrin, S.; Karim, Z. Green Composites: Versatile Material for Future. Green Energy Technol. 2017, 29–44. [Google Scholar] [CrossRef]
- Nagalakshmaiah, M.; El Kissi, N.; Dufresne, A. Ionic Compatibilization of Cellulose Nanocrystals with Quaternary Ammonium Salt and Their Melt Extrusion with Polypropylene. ACS Appl. Mater. Interfaces 2016, 8, 8755–8764. [Google Scholar] [CrossRef]
- Mariano, M.; Pilate, F.; De Oliveira, F.B.; Khelifa, F.; Dubois, P.; Raquez, J.M.; Dufresne, A. Preparation of Cellulose Nanocrystal-Reinforced Poly(lactic acid) Nanocomposites through Noncovalent Modification with PLLA-Based Surfactants. ACS Omega 2017, 2, 2678–2688. [Google Scholar] [CrossRef] [Green Version]
- Nagalakshmaiah, M.; Nechyporchuk, O.; El Kissi, N.; Dufresne, A. Melt extrusion of polystyrene reinforced with cellulose nanocrystals modified using poly[(styrene)-co-(2-ethylhexyl acrylate)] latex particles. Eur. Polym. J. 2017, 91, 297–306. [Google Scholar] [CrossRef]
- Nagalakshmaiah, M.; Afrin, S.; Malladi, R.P.; Elkoun, S.; Robert, M.; Ansari, M.A.; Svedberg, A.; Karim, Z. Biocomposites: Present trends and challenges for the future. Green Compos. Automot. Appl. 2019, 197–215. [Google Scholar] [CrossRef]
- Lackner, M. Bioplastics-biobased plastics as renewable and/or biodegradable alternatives to petroplasticsle. Kirk-Othmer Encycl. Chem. Technol. 2015, 6, 1–41. [Google Scholar] [CrossRef]
- Nazareth, M.; Marques, M.R.C.; Leite, M.C.A.; Castro, Í.B. Commercial plastics claiming biodegradable status: Is this also accurate for marine environments? J. Hazard. Mater. 2019, 366, 714–722. [Google Scholar] [CrossRef]
- Harding, K.G.; Gounden, T.; Pretorius, S. “Biodegradable” Plastics: A Myth of Marketing? Procedia Manuf. 2017, 7, 106–110. [Google Scholar] [CrossRef]
- Iwata, T. Biodegradable and bio-based polymers: Future prospects of eco-friendly plastics. Angew. Chemie Int. Ed. 2015, 54, 3210–3215. [Google Scholar] [CrossRef] [PubMed]
- Bonechi, C.; Consumi, M.; Donati, A.; Leone, G.; Magnani, A.; Tamasi, G.; Rossi, C. Biomass: An Overview, Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen; Woodhead Publishing: Cambridge, UK, 2017; pp. 3–42. [Google Scholar] [CrossRef]
- Kabir, E.; Kaur, R.; Lee, J.; Kim, K.H.; Kwon, E.E. Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. J. Clean. Prod. 2020, 258, 120536. [Google Scholar] [CrossRef]
- Crawford, C.B.; Quinn, B. Physiochemical properties and degradation. Microplastic Pollut. 2017, 57–100. [Google Scholar] [CrossRef]
- Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J.E. Polymer biodegradation: Mechanisms and estimation techniques—A review. Chemosphere 2008, 73, 429–442. [Google Scholar] [CrossRef]
- Fairbrother, A.; Hsueh, H.-C.; Kim, J.H.; Jacobs, D.; Perry, L.; Goodwin, D.; White, C.; Watson, S.; Sung, L.-P. Temperature and light intensity effects on photodegradation of high-density polyethylene. Polym. Degrad. Stab. 2019, 165, 153–160. [Google Scholar] [CrossRef]
- Niaounakis, M. Properties. In Biopolymers: Applications and Trends; Elsevier Science: Amsterdam, The Netherlands, 2015; pp. 91–138. [Google Scholar]
- Bátori, V.; Åkesson, D.; Zamani, A.; Taherzadeh, M.J.; Sárvári Horváth, I. Anaerobic degradation of bioplastics: A review. Waste Manag. 2018, 80, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Crutzen, P.J. The anthropocene. Earth Syst. Sci. Anthr. 2006, 13–18. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Ji, Q.; Zhang, Y.-G.; Liu, D.; Grossnickle, D.M.; Luo, Z.-X. Plastic waste inputs from land into the ocean. Science. 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; Aitken, J.; Marthouse, R.; Hajbane, S.; Cunsolo, S.; Schwarz, A.; Levivier, A.; et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Goldstein, M.; Goodwin, D. Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre. PeerJ. 2013, 1, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Sá, L.C.; Luís, L.G.; Guilhermino, L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 2015, 196, 359–362. [Google Scholar] [CrossRef]
- Canesi, L.; Ciacci, C.; Bergami, E.; Monopoli, M.P.; Dawson, K.A.; Papa, S.; Canonico, B.; Corsi, I. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Mar. Environ. Res. 2015, 111, 34–40. [Google Scholar] [CrossRef]
- Gregory, M.R. Environmental implications of plastic debris in marine settings—Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2013–2025. [Google Scholar] [CrossRef]
- Pathak, V.M.; Navneet. Review on the current status of polymer degradation: A microbial approach. Bioresour. Bioprocess. 2017, 4, 15. [Google Scholar] [CrossRef]
- Palmisano, A.C.; Pettigrew, C.A. Biodegradability of Plastics. Bioscience 1992, 42, 680–685. [Google Scholar] [CrossRef]
- De Paoli, M.A. Degradação e Estabilização de Polímeros. Artliber 2008, 1, 286. [Google Scholar]
- Crispim, C.A.; Gaylarde, C.C. Cyanobacteria and biodeterioration of cultural heritage: A review. Microb. Ecol. 2005, 49, 1–9. [Google Scholar] [CrossRef]
- Capitelli, F.; Principi, P.; Sorlini, C. Biodeterioration of modern materials in contemporary collections: Can biotechnology help? Trends Biotechnol. 2006, 24, 350–354. [Google Scholar] [CrossRef]
- Bonhomme, S.; Cuer, A.; Delort, A.M.; Lemaire, J.; Sancelme, M.; Scott, G. Environmental biodegradation of polyethylene. Polym. Degrad. Stab. 2003, 81, 441–452. [Google Scholar] [CrossRef]
- Flemming, H.C. Relevance of biofilms for the biodeterioration of surfaces of polymeric materials. Polym. Degrad. Stab. 1998, 59, 309–315. [Google Scholar] [CrossRef]
- Warscheid, T.; Braams, J. Biodeterioration of stone: A review. Int. Biodeter. Biodegr. 2000, 46, 343–368. [Google Scholar] [CrossRef]
- Zanardini, E.; Abbruscato, P.; Ghedini, N.; Realini, M.; Sorlini, C. Influence of atmospheric pollutants on the biodeterioration of stone. Int. Biodeterior. Biodegrad. 2000, 45, 35–42. [Google Scholar] [CrossRef]
- Rubio, C.; Ott, C.; Amiel, C.; Dupont-Moral, I.; Travert, J.; Mariey, L. Sulfato/thiosulfato reducing bacteria characterization by FT-IR spectroscopy: A new approach to biocorrosion control. J. Microbiol. Methods 2006, 64, 287–296. [Google Scholar] [CrossRef]
- Lugauskas, A.; Levinskaite, L.; Peĉiulyte, D. Micromycetes as deterioration agents of polymeric materials. Int. Biodeterior. Biodegrad. 2003, 52, 233–242. [Google Scholar] [CrossRef]
- Pelmont, J. Biodégradations et métabolismes. Les bactéries pour les technologies de l’environnement. EDP. Sciences 2005, 1, 798. [Google Scholar]
- Abou Zeid, D.-M. Anaerobic Biodegradation of Natural and Synthetic Polyesters. Ph.D. Dissertation, Technischen Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany, 2001. [Google Scholar]
- Belal, E.S. Investigations on Biodegradation of Polyesters by Isolated Mesophilic Microbes. Ph.D. Dissertation, Technischen Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany, 2003. [Google Scholar]
- Freitas, C.; Carmona, E.; Brienzo, M. Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioact. Carbohydr. Diet. Fibre. 2019, 18, 100–184. [Google Scholar] [CrossRef]
- Terrone, C.C.; Nascimento, J.M.F.; Terrasan, C.R.F.; Brienzo, M.; Carmona, E.C. Salt-tolerant α-arabinofuranosidase from a new specie Aspergillus hortai CRM1919: Production in acid conditions, purification, characterization and application on xylan hydrolysis. Biocatal. Agric. Biotechnol. 2020, 23, 101460. [Google Scholar] [CrossRef]
- Pérez, J.; Muñoz-Dorado, J.; De La Rubia, T.; Martínez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int. Microbiol. 2002, 5, 53–63. [Google Scholar] [CrossRef]
- Costa, C.Z.; Albuquerque, M.C.C.; Brum, M.; Castro, A. Microbial and enzymatic degradation of polymers: A review. Quim. Nova. 2015, 38, 259–267. [Google Scholar] [CrossRef]
- Mueller, R.J. Biological degradation of synthetic polyesters-Enzymes as potential catalysts for polyester recycling. Process Biochem. 2006, 41, 2124–2128. [Google Scholar] [CrossRef]
- Premraj, R.; Doble, M. Biodegradation of Polymers. Indian J. Biotechnol. 2005, 4, 186–193. [Google Scholar]
- Kumar, S.; Maiti, P. Controlled biodegradation of polymers using nanoparticles and its application. RSC Adv. 2016, 6, 67449–67480. [Google Scholar] [CrossRef]
- Krzan, A.; Hemjinda, S.; Miertus, S.; Corti, A.; Chiellini, E. Standardization and certification in the area of environmentally degradable plastics. Polym. Degrad. Stab. 2006, 91, 2819–2833. [Google Scholar] [CrossRef]
- Rani-Borges, B.; Faria, A.U.; De Campos, A.; Gonçalves, S.P.C.; Martins-Franchetti, S.M. Biodegradation of additive PHBV/PP-co-PE films buried in soil. Polimeros 2016, 26, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Priyanka, N.; Archana, T. Biodegradability of Polythene and Plastic by the Help of Microorganism: A Way for Brighter Future. J. Environ. Anal. Toxicol 2011, 1, 111. [Google Scholar] [CrossRef]
- Gunatillake, P.A.; Adhikari, R. Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 2003, 5, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Proikakis, C.S.; Mamouzelos, N.J.; Tarantili, P.A.; Andreopoulos, A.G. Swelling and hydrolytic degradation of poly(d,l-lactic acid) in aqueous solutions. Polym. Degrad. Stab. 2006, 91, 614–619. [Google Scholar] [CrossRef]
- ASTM D5338-15. Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions, Incorporating Thermophilic Temperatures; ASTM Int.: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ISO 14855-2. Determination of the Ultimate Aerobic Biodegradability of Plastic Materials under Controlled Composting Conditions—Method by Analysis of Evolved Carbon Dioxide—Part 2: Gravimetric Measurement of Carbon Dioxide Evolved in a Laboratory-Scale Test; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- ISO 17556:2003. Determination of the Ultimate Aerobic Biodegradability in Soil by Measuring the Oxygen Demand in a Respirometer or the Amount of Carbono Dioxide Evolved; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- Pavel, S.; Khatun, A.; Haque, M.M. Nexus Among Bio-plastic, Circularity, Circular Value Chain & Circular Economy. SSRN Electron. J 2020, 47. [Google Scholar] [CrossRef]
- ASTM D5511-02. Standard Test Method for Determining Anaerobic Biodegradation of Plastic Materials under High-Solids Anaerobic-digestion Conditions; ASTM Int.: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Zhao, J.H.; Wang, X.Q.; Zeng, J.; Yang, G.; Shi, F.H.; Yan, Q. Biodegradation of poly(butylene succinate-co-butylene adipate) by Aspergillus versicolor. Polym. Degrad. Stab. 2005, 90, 173–179. [Google Scholar] [CrossRef]
- Tsuji, H.; Echizen, Y.; Nishimura, Y. Photodegradation of biodegradable polyesters: A comprehensive study on poly(l-lactide) and poly(ε-caprolactone). Polym. Degrad. Stab. 2006, 91, 1128–1137. [Google Scholar] [CrossRef]
- Medina Jaramillo, C.; Gutiérrez, T.J.; Goyanes, S.; Bernal, C.; Famá, L. Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydr. Polymers. 2016, 151, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Balaguer, M.P.; Villanova, J.; Cesar, G.; Gavara, R.; Hernandez-Munoz, P. Compostable properties of antimicrobial bioplastics based on cinnamaldehyde cross-linked gliadins. Chem. Eng. J. 2015, 262, 447. [Google Scholar] [CrossRef]
- Piñeros-Hernandez, D.; Medina-Jaramillo, C.; López-Córdoba, A.; Goyanes, S. Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocoll. 2017, 63, 488–495. [Google Scholar] [CrossRef]
- Aburto, J.; Alric, I.; Thiebaud, S.; Borredon, E.; Bikiaris, D.; Prinos, J.; Panayiotou, C. Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. J. Appl. Polym. Sci. 1999, 74, 1440–1451. [Google Scholar] [CrossRef]
- Lindström, A.; Albertsson, A.C.; Hakkarainen, M. Quantitative determination of degradation products an effective means to study early stages of degradation in linear and branched poly(butylene adipate) and poly(butylene succinate). Polym. Degrad. Stab. 2004, 83, 487–493. [Google Scholar] [CrossRef]
- Yang, J.; Ching, Y.C.; Chuah, C.H. Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review. Polymers 2019, 11, 751. [Google Scholar] [CrossRef] [Green Version]
- Farhat, W.; Venditti, R.; Ayoub, A.; Prochazka, F.; Fernández-de-Alba, C.; Mignard, N.; Taha, M.; Becquart, F. Towards thermoplastic hemicellulose: Chemistry and characteristics of poly-(ε-caprolactone) grafting onto hemicellulose backbones. Mater. Des. 2018, 153, 298–307. [Google Scholar] [CrossRef]
- Ochi, S. Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1879–1883. [Google Scholar] [CrossRef]
- Bilo, F.; Pandini, S.; Sartore, L.; Depero, L.E.; Gargiulo, G.; Bonassi, A.; Federici, S.; Bontempi, E. A sustainable bioplastic obtained from rice straw. J. Clean. Prod. 2018, 200, 357–368. [Google Scholar] [CrossRef]
- Fitch-Vargas, P.R.; Camacho-Hernández, I.L.; Martínez-Bustos, F.; Islas-Rubio, A.R.; Carrillo-Cañedo, K.I.; Calderón-Castro, A.; Jacobo-Valenzuela, N.; Carrillo-López, A.; Delgado-Nieblas, C.I.; Aguilar-Palazuelos, E. Mechanical, physical and microstructural properties of acetylated starch-based biocomposites reinforced with acetylated sugarcane fiber. Carbohydr. Polym. 2019, 219, 378–386. [Google Scholar] [CrossRef]
- Babaee, M.; Jonoobi, M.; Hamzeh, Y.; Ashori, A. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr. Polym. 2015, 132, 1–8. [Google Scholar] [CrossRef]
- Oluwasina, O.O.; Olaleye, F.K.; Olusegun, S.J.; Oluwasina Olayinka, O.; Mohallem, N.D.S. Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. Int. J. Biol. Macromol. 2019, 135, 282–293. [Google Scholar] [CrossRef]
- Lucena, C.A.A.; Da Costa, S.C.; Eleamen, G.R.D.A.; Mendonça, E.A.D.M.; Oliveira, E.E. Desenvolvimento de biofilmes à base de xilana e xilana/gelatina para produção de embalagens biodegradáveis. Polimeros 2017, 27, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Ren, J.; Li, W.; Sun, R.; Liu, S. Properties of polyvinyl alcohol/xylan composite films with citric acid. Carbohydr. Polym. 2014, 103, 94–99. [Google Scholar] [CrossRef]
- Schmatz, A.A.; Tyhoda, L.; Brienzo, M. Sugarcane biomass influenced by lignin. Biofuels Bioprod. Bioref. 2020, 14, 469–480. [Google Scholar] [CrossRef]
- Melati, R.B.; Shimizu, F.L.; Oliveira, G.; Pagnocca, F.C.; de Souza, W.; Sant’Anna, C.; Brienzo, M. Key Factors Affecting the Recalcitrance and Conversion Process of Biomass. Bioenergy Res. 2019, 12. [Google Scholar] [CrossRef]
- Figueiredo, P.; Lintinen, K.; Hirvonen, J.T.; Kostiainen, M.A.; Santos, H.A. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 2018, 93, 233–269. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994; p. 2. [Google Scholar]
- Campagner, M.R.; Da Silva Moris, V.A.; Pitombo, L.M.; Do Carmo, J.B.; De Paiva, J.M.F. Polymeric films based on starch and lignosulfonates: Preparation, properties and evaluation of biodegradation. Polimeros 2014, 24, 740–751. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Mohanty, S.; Nayak, S.K. Influence of addition of vapor grown carbon fibers on mechanical, thermal and biodegradation properties of lignin nanoparticle filled bio-poly(trimethylene terephthalate) hybrid nanocomposites. RSC Adv. 2015, 5, 56028–56036. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K.; Gupta, R.K. Review: Raw Natural Fiber-Based Polymer Composites. Int. J. Polym. Anal. Charact. 2014, 19, 256–271. [Google Scholar] [CrossRef]
- Agrawal, A.; Kaushik, N.; Biswas, S. Derivatives and Applications of Lignin–An Insight. Sci. Tech. J. 2014, 1, 30–36. [Google Scholar]
- Arnling Bååth, J.; Martínez-Abad, A.; Berglund, J.; Larsbrink, J.; Vilaplana, F.; Olsson, L. Mannanase hydrolysis of spruce galactoglucomannan focusing on the influence of acetylation on enzymatic mannan degradation. Biotechnol. Biofuels. 2018, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Polman, E.M.N.; Gruter, G.J.M.; Parsons, J.R.; Tietema, A. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Sci. Total Environ. 2021, 753, 141953. [Google Scholar] [CrossRef] [PubMed]
- Rivard, C.; Moens, L.; Roberts, K.; Brigham, J.; Kelley, S. Starch esters as biodegradable plastics: Effects of ester group chain length and degree of substitution on anaerobic biodegradation. Enzyme Microb. Technol. 1995, 17, 848–852. [Google Scholar] [CrossRef]
- Tserki, V.; Matzinos, P.; Kokkou, S.; Panayiotou, C. Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Compos. Part A Appl. Sci. Manuf. 2005, 36, 965–974. [Google Scholar] [CrossRef]
- Tserki, V.; Matzinos, P.; Panayiotou, C. Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1231–1238. [Google Scholar] [CrossRef]
- Glasser, W.G.; Ravindran, G.; Jain, R.K.; Samaranayake, G.; Todd, J. Comparative Enzyme Biodegradability of Xylan, Cellulose, and Starch Derivatives†. Biotechnol. Prog. 1995, 11, 552–557. [Google Scholar] [CrossRef]
- Mitchell, D.; Grohmann, K.; Himmel, M.; Dale, B.; Schroeder, H. Effect of the degree of acetylation on the enzymatic digestion of acetylated xylans. J. Wood Chem. Technol. 1990, 10, 111–121. [Google Scholar] [CrossRef]
- Alekhina, M.; Mikkonen, K.S.; Alén, R.; Tenkanen, M.; Sixta, H. Carboxymethylation of alkali extracted xylan for preparation of bio-based packaging films. Carbohydr. Polym. 2014, 100, 89–96. [Google Scholar] [CrossRef]
- Geng, W.; Venditti, R.A.; Pawlak, J.J.; Pal, L.; Ford, E. Carboxymethylation of hemicellulose isolated from poplar (Populus grandidentata) and its potential in water-soluble oxygen barrier films. Cellulose 2020, 27, 3359–3377. [Google Scholar] [CrossRef]
- Heikkinen, S.L.; Mikkonen, K.S.; Pirkkalainen, K.; Serimaa, R.; Joly, C.; Tenkanen, M. Specific enzymatic tailoring of wheat arabinoxylan reveals the role of substitution on xylan film properties. Carbohydr. Polym. 2013, 92, 733–740. [Google Scholar] [CrossRef]
- Höije, A.; Stememalm, E.; Heikkinen, S.; Tenkanen, M.; Gatenholm, P. Material properties of films from enzymatically tailored arabinoxylans. Biomacromolecules 2008, 9, 2042–2047. [Google Scholar] [CrossRef]
- Kjeldsen, A.; Price, M.; Lilley, C.; Guzniczak, E.; Archer, I. A Review of Standards for Biodegradable Plastics. Ind. Biotechnol. Innov. Cent. IBioIC 2018, 33. [Google Scholar]
- Meereboer, K.W.; Misra, M.; Mohanty, A.K. Review of recent advances in the biodegradability of polyhydroxyalkanaoate (PHA) bioplastics and their composites. Green Chem. 2020, 22, 5519–5558. [Google Scholar] [CrossRef]
- Suzuki, M.; Tachibana, Y.; Kasuya, K. Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments. Polym. J. 2020, 53, 47–66. [Google Scholar] [CrossRef]
- Volovaa, T.G.; Boyandina, A.N.; Prudnikovab, S.V. Biodegradation of polyhydroxyalkanoates in natural soils. J. Sib. Fed. Univ. Biol. 2015, 2, 152–167. [Google Scholar] [CrossRef]
- Weng, Y.X.; Wang, X.L.; Wang, Y.Z. Biodegradation behavior of PHAs with different chemical structures under controlled composting conditions. Polym. Test. 2011, 30, 372–380. [Google Scholar] [CrossRef]
- Wang, Y.W.; Mo, W.; Yao, H.; Wu, Q.; Chen, J.; Chen, G.Q. Biodegradation studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Polym. Degrad. Stab. 2004, 85, 815–821. [Google Scholar] [CrossRef]
- Weng, Y.X.; Wang, L.; Zhang, M.; Wang, X.L.; Wang, Y.Z. Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil environments. Polym. Test. 2013, 32, 60–70. [Google Scholar] [CrossRef]
- Morohoshi, T.; Ogata, K.; Okura, T.; Sato, S. Molecular characterization of the bacterial community in biofilms for degradation of poly (3-Hydroxybutyrate-co-3-Hydroxyhexanoate) films in seawater. Microbes Environ. 2018, 33. [Google Scholar] [CrossRef] [Green Version]
- Shruti, V.C.; Kutralam-Muniasamy, G. Bioplastics missing link in the era of microplastics. Sci. Total Environ. 2019, 697, 134139. [Google Scholar] [CrossRef]
- Gironi, F.; Piemonte, V. Bioplastics and petroleum-based plastics: Strengths and weaknesses. Energ. Sources Part A 2011, 33, 1949–1959. [Google Scholar] [CrossRef]
- Narancic, T.; Verstichel, S.; Reddy Chaganti, S.; Morales-Gamez, L.; Kenny, S.T.; De Wilde, B.; Babu Padamati, R.; O’Connor, K.E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol. 2018, 52, 10441–10452. [Google Scholar] [CrossRef] [PubMed]
- Kourmentza, C.; Plácido, J.; Venetsaneas, N.; Burniol-Figols, A.; Varrone, C.; Gavala, H.N.; Reis, M.A.M. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017, 4, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, G.; Hill, D.J.; Kowalczuk, M.; Johnston, B.; Adamus, G.; Irorere, V.; Radecka, I. Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int. J. Mol. Sci. 2016, 17, 1157. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, J.I.; Ramsay, B.A.; Ramsay, J.A.; Chavarie, C. Biosynthesis of poly-βhydroxyalkanoates from pentoses by Pseudomonas pseudoflava. Appl. Environ. Microbiol. 1990, 6, 3133–3138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, M.S.G.; Rocha, R.C.S.; Zanotto, S.P.; Gomez, J.G.C.; Silva, L.F. Screening of bacteria to produce polyhydroxyalkanoates from xylose. World J. Microbiol. Biotechnol. 2009, 25, 1751–1756. [Google Scholar] [CrossRef]
- Lee, H.S.; Cho, D.; Han, S.O. Effect of natural fiber surface treatments on the interfacial and mechanical properties of henequen/polypropylene biocomposites. Macromol. Res. 2008, 16, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Nduko, J.M.; Suzuki, W.; Matsumoto, K.; Kobayashi, H.; Ooi, T.; Fukuoka, A.; Taguchi, S. Polyhydroxyalkanoates production from cellulose hydrolysate in Escherichia coli LS5218 with superior resistance to 5-hydroxymethylfurfural. J. Biosci. Bioeng. 2012, 113, 70–72. [Google Scholar] [CrossRef] [Green Version]
- Cesário, M.T.; Raposo, R.S.; de Almeida, M.C.M.D.; van Keulen, F.; Ferreira, B.S.; da Fonseca, M.M.R. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnol. 2014, 31, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Jones, F. A Promessa dos Bioplásticos. FAPESP. Available online: https://revistapesquisa.fapesp.br/a-promessa-dos-bioplasticos/ (accessed on 20 June 2020).
- Chen, G. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 2009, 38, 2434–2446. [Google Scholar] [CrossRef]
- Altaee, N.; El-Hiti, G.A.; Fahdil, A.; Sudesh, K.; Yousif, E. Biodegradation of different formulations of polyhydroxybutyrate films in soil. Springerplus 2016, 5, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez-Wing, M.T.; Stevens, B.E.; Theegala, C.S.; Negulescu, I.I.; Rusch, K.A. Anaerobic biodegradation of polyhydroxybutyrate in municipal sewage sludge. J. Environ. Eng. 2010, 136, 709–718. [Google Scholar] [CrossRef]
- Tabasi, R.Y.; Ajji, A. Selective degradation of biodegradable blends in simulated laboratory composting. Polym. Degrad. Stab. 2015, 120, 435–442. [Google Scholar] [CrossRef]
- Dilkes-Hoffman, L.S.; Lant, P.A.; Laycock, B.; Pratt, S. The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study. Mar. Pollut. Bull. 2019, 142, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.S. Preparation and Characterization of Polyhydroxyalkanoate Bioplastic-Based Green Renewable Composites from Rice Husk. J. Polym. Environ. 2014, 22, 384–392. [Google Scholar] [CrossRef]
- Gómez, E.F.; Michel, F.C. Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polym. Degrad. Stab. 2013, 98, 2583–2591. [Google Scholar] [CrossRef]
- Coelho, N.S.; Almeida, Y.M.B.; Vinhas, G.M. A biodegradabilidade da blenda de poli(β-Hidroxibutirato-co-Valerato)/amido anfótero na presença de microrganismos. Polímeros 2008, 18, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Harmaen, A.S.; Khalina, A.; Ali, H.M.; Azowa, I.N. Thermal, Morphological, and Biodegradability Properties of Bioplastic Fertilizer Composites Made of Oil Palm Biomass, Fertilizer, and Poly(hydroxybutyrate-co-valerate). Int. J. Polym. Sci. 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, N.F.; Andrade, C.T. Properties of melt-processed poly (hydroxybutyrate-co-hydroxyvalerate)/starch 1:1 blend nanocomposites. Polimeros 2013, 23, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Tosin, M.; Weber, M.; Siotto, M.; Lott, C.; Innocenti, F.D. Laboratory test methods to determine the degradation of plastics in marine environmental conditions. Front. Microbiol. 2012, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sarasa, J.; Gracia, J.M.; Javierre, C. Study of the biodisintegration of a bioplastic material waste. Bioresour. Technol. 2009, 100, 3764–3768. [Google Scholar] [CrossRef]
- Allen, W.R. Structural applications for flexible packaging: Innovations in pouch forms and uses. Polym. Plast. Technol. Eng. 1986, 25, 295–320. [Google Scholar] [CrossRef]
- Briston, J.H. Plastic Films, 3rd ed.; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Hansen, N.M.L.; Blomfeldt, T.O.J.; Hedenqvist, M.S.; Plackett, D.V. Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan. Cellulose 2012, 19, 2015–2031. [Google Scholar] [CrossRef]
- Sánchez-Safont, E.; Arrillaga, A.; Anakabe, J.; Cabedo, L.; Gamez-Perez, J. Toughness Enhancement of PHBV/TPU/Cellulose Compounds with Reactive Additives for Compostable Injected Parts in Industrial Applications. Int. J. Mol. Sci. 2018, 19, 2102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albuquerque, R.M.; Meira, H.M.; Silva, I.D.L.; Galdino, C.J.S.; Almeida, F.C.G.; Amorim, J.D.P.; Vinhas, G.M.; Costa, A.F.S.; Sarubbo, L.A. Production of a bacterial cellulose/poly(3-hydroxybutyrate) blend activated with clove essential oil for food packaging. Polym. Polym. Compos. 2020. [Google Scholar] [CrossRef]
- Dangtungee, R.; Tengsuthiwat, J.; Boonyasopon, P.; Siengchin, S. Sisal natural fiber/clay-reinforced poly(hydroxybutyrate-co-hydroxyvalerate) hybrid composites. J. Thermoplast. Compos. Mater. 2014, 28, 6–879. [Google Scholar] [CrossRef]
- Joyyi, L.; Ahmad Thirmizir, M.Z.; Salim, M.S.; Han, L.; Murugan, P.; Kasuya Ki Maurer, F.H.J.; Zainal Arifin, M.I.; Sudesh, K. Composite properties and biodegradation of biologically recovered poly(3HB-co-3HHx) reinforced with short kenaf fibers. Polym. Degrad. Stab. 2017, 137, 100–108. [Google Scholar] [CrossRef]
- Batista, K.C.; Silva, D.A.K.; Coelho, L.A.F.; Pezzin, S.H.; Pezzin, A.P.T. Soil Biodegradation of PHBV/Peach Palm Particles Biocomposites. J. Polym. Environ. 2010, 18, 346–354. [Google Scholar] [CrossRef]
- Rosa, D.S.; Rodrigues, T.C.; Graças Fassina Guedes, C.; Calil, M.R. Effect of thermal aging on the biodegradation of PCL, PHB-V, and their blends with starch in soil compost. J. Appl. Polym. Sci. 2003, 89, 3539–3546. [Google Scholar] [CrossRef]
- Kratsch, H.A.; Schrader, J.A.; McCabe, K.G.; Srinivasan, G.; Grewell, D.; Graves, W.R. Performance and biodegradation in soil of novel horticulture containers made from bioplastics and biocomposites. Hort. Technol. 2015, 25, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Cheng, G.; Ma, S.; Cai, Z.; Zhang, L. Crystallization behavior, mechanical properties, and environmental biodegradability of poly(?-hydroxybutyrate)/cellulose acetate butyrate blends. J. Appl. Polym. Sci. 2003, 89, 2116–2122. [Google Scholar] [CrossRef]
- Datta, R.; Kelkar, A.; Baraniya, D.; Molaei, A.; Moulick, A.; Meena, R.S.; Formanek, P. Enzymatic degradation of lignin in soil: A review. Sustainability 2017, 9, 1163. [Google Scholar] [CrossRef] [Green Version]
- Santacruz-Juarez, E.; Buendia-Corona, R.E.; Ramírez, R.E.; Sanchez, S. Fungal enzymes for the degradation of polyethylene: Molecular docking simulation and biodegradation pathway proposal. J. Hazard. Mater. 2021, 411, 125118. [Google Scholar] [CrossRef]
- Chio, C.; Sain, M.; Qin, W. Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sust. Energ. Rev. 2019, 107, 232–249. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abe, M.M.; Branciforti, M.C.; Brienzo, M. Biodegradation of Hemicellulose-Cellulose-Starch-Based Bioplastics and Microbial Polyesters. Recycling 2021, 6, 22. https://doi.org/10.3390/recycling6010022
Abe MM, Branciforti MC, Brienzo M. Biodegradation of Hemicellulose-Cellulose-Starch-Based Bioplastics and Microbial Polyesters. Recycling. 2021; 6(1):22. https://doi.org/10.3390/recycling6010022
Chicago/Turabian StyleAbe, Mateus Manabu, Marcia Cristina Branciforti, and Michel Brienzo. 2021. "Biodegradation of Hemicellulose-Cellulose-Starch-Based Bioplastics and Microbial Polyesters" Recycling 6, no. 1: 22. https://doi.org/10.3390/recycling6010022
APA StyleAbe, M. M., Branciforti, M. C., & Brienzo, M. (2021). Biodegradation of Hemicellulose-Cellulose-Starch-Based Bioplastics and Microbial Polyesters. Recycling, 6(1), 22. https://doi.org/10.3390/recycling6010022