Thermochemical Conversion of Olive Oil Industry Waste: Circular Economy through Energy Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection and Preparation
2.2. Determination of Elemental Composition
2.3. Thermogravimetric Analysis (TGA)
2.4. Determination of Heating Value
3. Results and Discussion
3.1. Elemental Analysis
3.2. Thermogravimetric Analysis
3.3. Heating Value
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Visioli, F.; Bellosta, S.; Galli, C. Oleuropein, the bitter principle of olives, enhances nitric oxide production by mouse macrophages. Life Sci. 1998, 62, 541–546. [Google Scholar] [CrossRef]
- Czekaj, M.; Hernández, P.; Fonseca, A.; Rivera, M.; Żmija, K.; Żmija, D. Uncovering Production Flows from Small Farms: Results from Poland and Portugal Case Studies. Rocz. Nauk. Stowarzyszenia Ekon. Rol. I Agrobiz. 2019, 21, 49–61. [Google Scholar] [CrossRef]
- Martins, N.; Jiménez-Morillo, N.T.; Freitas, F.; Garcia, R.; da Silva, M.G.; Cabrita, M.J. Revisiting 3D van Krevelen diagrams as a tool for the visualization of volatile profile of varietal olive oils from Alentejo region, Portugal. Talanta 2020, 207, 120276. [Google Scholar] [CrossRef]
- Azbar, N.; Bayram, A.; Filibeli, A.; Muezzinoglu, A.; Sengul, F.; Ozer, A. A review of waste management options in olive oil production. Crit. Rev. Environ. Sci. Technol. 2004, 34, 209–247. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Casazza, A.A.; Perego, P. Valorization of olive oil solid waste using high pressure–high temperature reactor. Food Chem. 2011, 128, 704–710. [Google Scholar] [CrossRef]
- Haddadin, M.S.; Abdulrahim, S.M.; Al-Khawaldeh, G.Y.; Robinson, R.K. Solid state fermentation of waste pomace from olive processing. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 1999, 74, 613–618. [Google Scholar] [CrossRef]
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, M. An overview on olive mill wastes and their valorisation methods. Waste Manag. 2006, 26, 960–969. [Google Scholar] [CrossRef]
- Cucci, G.; Lacolla, G.; Caranfa, L. Improvement of soil properties by application of olive oil waste. Agron. Sustain. Dev. 2008, 28, 521–526. [Google Scholar] [CrossRef] [Green Version]
- López-Piñeiro, A.; Albarrán, A.; Nunes, J.R.; Barreto, C. Short and medium-term effects of two-phase olive mill waste application on olive grove production and soil properties under semiarid Mediterranean conditions. Bioresour. Technol. 2008, 99, 7982–7987. [Google Scholar] [CrossRef]
- Tsantila, N.; Karantonis, H.C.; Perrea, D.N.; Theocharis, S.E.; Iliopoulos, D.G.; Antonopoulou, S.; Demopoulos, C.A. Antithrombotic and antiatherosclerotic properties of olive oil and olive pomace polar extracts in rabbits. Mediat. Inflamm. 2007, 2007, 36204. [Google Scholar] [CrossRef] [Green Version]
- Morillo, J.; Antizar-Ladislao, B.; Monteoliva-Sánchez, M.; Ramos-Cormenzana, A.; Russell, N. Bioremediation and biovalorisation of olive-mill wastes. Appl. Microbiol. Biotechnol. 2009, 82, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Ayed, L.; Asses, N.; Chammem, N.; Othman, N.B.; Hamdi, M. Advanced oxidation process and biological treatments for table olive processing wastewaters: Constraints and a novel approach to integrated recycling process: A review. Biodegradation 2017, 28, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Fiol, N.; Villaescusa, I.; Martínez, M.; Miralles, N.; Poch, J.; Serarols, J. Sorption of Pb (II), Ni (II), Cu (II) and Cd (II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 2006, 50, 132–140. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef]
- Nunes, L.J. A Case Study about Biomass Torrefaction on an Industrial Scale: Solutions to Problems Related to Self-Heating, Difficulties in Pelletizing, and Excessive Wear of Production Equipment. Appl. Sci. 2020, 10, 2546. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.; Matias, J.; Catalão, J. Torrefied Biomass Pellets: An alternative fuel for coal power plants. In Proceedings of the 2016 13th International Conference on the European Energy Market (EEM), Porto, Portugal, 6–9 June 2016; pp. 1–5. [Google Scholar]
- Brachi, P.; Chirone, R.; Miccio, M.; Ruoppolo, G. Fluidized bed torrefaction of biomass pellets: A comparison between oxidative and inert atmosphere. Powder Technol. 2019, 357, 97–107. [Google Scholar] [CrossRef]
- Barskov, S.; Zappi, M.; Buchireddy, P.; Dufreche, S.; Guillory, J.; Gang, D.; Hernandez, R.; Bajpai, R.; Baudier, J.; Cooper, R. Torrefaction of biomass: A review of production methods for biocoal from cultured and waste linocellulosic feedstocks. Renew. Energy 2019, 142, 624–642. [Google Scholar] [CrossRef]
- Guizani, C.; Haddad, K.; Jeguirim, M.; Colin, B.; Limousy, L. Combustion characteristics and kinetics of torrefied olive pomace. Energy 2016, 107, 453–463. [Google Scholar] [CrossRef]
- Cellatoğlu, N.; İlkan, M. Effects of torrefaction on carbonization characteristics of solid olive mill residue. BioResources 2016, 11, 6286–6298. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.M.C.; Godina, R.; Matias, J.C.d.O.; Nunes, L.J.R. Future perspectives of biomass torrefaction: Review of the current state-of-the-art and research development. Sustainability 2018, 10, 2323. [Google Scholar] [CrossRef] [Green Version]
- Sá, L.C.; Loureiro, L.M.; Nunes, L.J.; Mendes, A.M. Torrefaction as a pretreatment technology for chlorine elimination from biomass: A case study using Eucalyptus globulus Labill. Resources 2020, 9, 54. [Google Scholar] [CrossRef]
- Parikh, J.; Channiwala, S.; Ghosal, G. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 2005, 84, 487–494. [Google Scholar] [CrossRef]
- Miranda, T.; Arranz, J.; Montero, I.; Román, S.; Rojas, C.; Nogales, S. Characterization and combustion of olive pomace and forest residue pellets. Fuel Process. Technol. 2012, 103, 91–96. [Google Scholar] [CrossRef]
- Eliche-Quesada, D.; Leite-Costa, J. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks. Waste Manag. 2016, 48, 323–333. [Google Scholar] [CrossRef]
- Miranda, T.; Nogales, S.; Román, S.; Montero, I.; Arranz, J.I.; Sepúlveda, F.J. Control of several emissions during olive pomace thermal degradation. Int. J. Mol. Sci. 2014, 15, 18349–18361. [Google Scholar] [CrossRef] [Green Version]
- Miranda, T.; Román, S.; Arranz, J.; Rojas, S.; González, J.; Montero, I. Emissions from thermal degradation of pellets with different contents of olive waste and forest residues. Fuel Process. Technol. 2010, 91, 1459–1463. [Google Scholar] [CrossRef]
- Muscolo, A.; Papalia, T.; Settineri, G.; Romeo, F.; Mallamaci, C. Three different methods for turning olive pomace in resource: Benefits of the end products for agricultural purpose. Sci. Total Environ. 2019, 662, 1–7. [Google Scholar] [CrossRef]
- Lanfranchi, M.; Giannetto, C.; De Pascale, A. Economic analysis and energy valorization of by-products of the olive oil process:“Valdemone DOP” extra virgin olive oil. Renew. Sustain. Energy Rev. 2016, 57, 1227–1236. [Google Scholar] [CrossRef]
- Debono, O.; Villot, A. Nitrogen products and reaction pathway of nitrogen compounds during the pyrolysis of various organic wastes. J. Anal. Appl. Pyrolysis 2015, 114, 222–234. [Google Scholar] [CrossRef]
- Wei, L.; Wen, L.; Yang, T.; Zhang, N. Nitrogen transformation during sewage sludge pyrolysis. Energy Fuels 2015, 29, 5088–5094. [Google Scholar] [CrossRef]
- Choi, S.-S.; Ko, J.-E. Analysis of cyclic pyrolysis products formed from amino acid monomer. J. Chromatogr. A 2011, 1218, 8443–8455. [Google Scholar] [CrossRef] [PubMed]
- Bridgeman, T.; Jones, J.; Shield, I.; Williams, P. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 2008, 87, 844–856. [Google Scholar] [CrossRef]
- Bergman, P.C.; Kiel, J.H. Torrefaction for biomass upgrading. In Proceedings of the 14th European Biomass Conference, Paris, France, 17–21 October 2005; pp. 17–21. [Google Scholar]
- Felfli, F.F.; Luengo, C.A.; Beat n, P.A. Wood briquette torrefaction. Energy Sustain. Dev. 2005, 9, 19–22. [Google Scholar] [CrossRef]
- Kabakcı, S.B.; Aydemir, H. Pyrolysis of olive pomace and copyrolysis of olive pomace with refuse derived fuel. Environ. Prog. Sustain. Energy 2014, 33, 649–656. [Google Scholar] [CrossRef]
- Volpe, R.; Messineo, A.; Millan, M.; Volpe, M.; Kandiyoti, R. Assessment of olive wastes as energy source: Pyrolysis, torrefaction and the key role of H loss in thermal breakdown. Energy 2015, 82, 119–127. [Google Scholar] [CrossRef]
- Ounas, A.; Aboulkas, A.; Bacaoui, A.; Yaacoubi, A. Pyrolysis of olive residue and sugar cane bagasse: Non-isothermal thermogravimetric kinetic analysis. Bioresour. Technol. 2011, 102, 11234–11238. [Google Scholar] [CrossRef]
Residence Time (Minutes) | Test at 300 °C | Test at 400 °C | Test at 500 °C |
---|---|---|---|
30 | Room Temperature to 180 °C | Room Temperature to 180 °C | Room Temperature to 180 °C |
60 | 180 °C to 300 °C | 180 °C to 400 °C | 180 °C to 500 °C |
90 | 300 °C | 400 °C | 500 °C |
Time enough to safely open the muffle and collect the material | 300 °C to Room Temperature | 400 °C to Room Temperature | 500 °C to Room Temperature |
Elements | Original Dry Sample | T300 °C | T400 °C | T500 °C |
---|---|---|---|---|
C (%) | 56.2 | 63.9 | 77.3 | 86.7 |
H (%) | 6.8 | 7.2 | 3.8 | 3.4 |
N (%) | 1.2 | 1.6 | 2.5 | 1.2 |
O (%) | 35.8 | 27.3 | 16.4 | 8.7 |
S (%) | <0.01 | <0.01 | <0.01 | <0.01 |
Original Dry Sample | Test at 300 °C | Test at 400 °C | Test at 500 °C | |
---|---|---|---|---|
Fixed Carbon (%) | 18.84 | 26.12 | 75.49 | 82.14 |
Volatiles (%) | 79.85 | 75.59 | 21.08 | 14.36 |
Ashes (%) | 1.31 | 1.30 | 3.45 | 3.51 |
Moisture (%) | 3.51 | 1.52 | 0.91 | 0.57 |
Original Dry Sample | Test at 300 °C | Test at 400 °C | Test at 500 °C | |
---|---|---|---|---|
HHV (MJ.kg−1) | 19.10 | 21.01 | 29.95 | 31.26 |
Mass loss | - | 37% | 76% | 78% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, L.J.R.; Loureiro, L.M.E.F.; Sá, L.C.R.; Silva, H.F.C. Thermochemical Conversion of Olive Oil Industry Waste: Circular Economy through Energy Recovery. Recycling 2020, 5, 12. https://doi.org/10.3390/recycling5020012
Nunes LJR, Loureiro LMEF, Sá LCR, Silva HFC. Thermochemical Conversion of Olive Oil Industry Waste: Circular Economy through Energy Recovery. Recycling. 2020; 5(2):12. https://doi.org/10.3390/recycling5020012
Chicago/Turabian StyleNunes, Leonel J. R., Liliana M. E. F. Loureiro, Letícia C. R. Sá, and Hugo F.C. Silva. 2020. "Thermochemical Conversion of Olive Oil Industry Waste: Circular Economy through Energy Recovery" Recycling 5, no. 2: 12. https://doi.org/10.3390/recycling5020012
APA StyleNunes, L. J. R., Loureiro, L. M. E. F., Sá, L. C. R., & Silva, H. F. C. (2020). Thermochemical Conversion of Olive Oil Industry Waste: Circular Economy through Energy Recovery. Recycling, 5(2), 12. https://doi.org/10.3390/recycling5020012