Setting the Common Ground: A Generic Framework for Material Flow Analysis of Complex Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Austrian P-N System 2010–2015
2.2. European Copper System 2014
2.3. Energy Analysis of Karlskoga Combined Heat and Power Plant in Sweden 2016
3. Results
3.1. The Generic Material Flow Analysis Structure
3.2. Results of Case Study Transformation
4. Discussion
4.1. Transformation Challenges
4.1.1. Definition of By-Products
4.1.2. Allocation of Processes to Subsystems
4.1.3. Insufficient Flow Definition
4.1.4. Implications of Allocation Choices
4.2. Advantages of the Generic Structure
4.3. Limitations
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Blomsma, F.; Brennan, G. The Emergence of Circular Economy: A New Framing Around Prolonging Resource Productivity. J. Ind. Ecol. 2017, 21, 603–614. [Google Scholar] [CrossRef]
- Blok, K.; Hoogzaad, J.; Ramkumar, S.; Ridley, A.; Srivastav, P.; Tan, I.; Terlouw, W.; de Wit, M. Implementing Circular Economy Globally Makes Paris Targets Achievable; Ecofys & Circle Economy: Utrecht, The Netherlands, 2016. [Google Scholar]
- Beasley, J.; Georgeson, R. Advancing Resource Efficiency in Europe: Indicators and Waste Policy Scenarios to Deliver a Resource Efficient and Sustainable Europe; Arditi, S., Ed.; European Environmental Bureau, Seacourt: Brussels, Belgium, 2014. [Google Scholar]
- Schroeder, P.; Anggraeni, K.; Weber, U. The Relevance of Circular Economy Practices to the Sustainable Development Goals. J. Ind. Ecol. 2018, 23, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Zink, T.; Geyer, R. Circular Economy Rebound. J. Ind. Ecol. 2017, 21, 593–602. [Google Scholar] [CrossRef]
- Cullen, J.M. Circular Economy: Theoretical Benchmark or Perpetual Motion Machine? J. Ind. Ecol. 2017, 21, 483–486. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Geyer, R.; Kuczenski, B.; Zink, T.; Henderson, A. Common Misconceptions about Recycling. J. Ind. Ecol. 2016, 20, 1010–1017. [Google Scholar] [CrossRef]
- Hashimoto, S.; Moriguchi, Y. Proposal of six indicators of material cycles for describing society’s metabolism: From the viewpoint of material flow analysis. Resour. Conserv. Recycl. 2004, 40, 185–200. [Google Scholar] [CrossRef]
- Haupt, M.; Vadenbo, C.; Hellweg, S. Do We Have the Right Performance Indicators for the Circular Economy?: Insight into the Swiss Waste Management System. J. Ind. Ecol. 2017, 21, 615–627. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; Ritala, P.; Huotari, P. The Circular Economy: Exploring the Introduction of the Concept Among S&P 500 Firms. J. Ind. Ecol. 2017, 21, 487–490. [Google Scholar]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy – A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular economy - From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Merli, R.; Preziosi, M.; Acampora, A. How do scholars approach the circular economy? A systematic literature review. J. Clean. Prod. 2018, 178, 703–722. [Google Scholar] [CrossRef]
- Murray, A.; Skene, K.; Haynes, K. The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef]
- Elia, V.; Gnoni, M.G.; Tornese, F. Measuring circular economy strategies through index methods: A critical analysis. J. Clean. Prod. 2017, 142, 2741–2751. [Google Scholar] [CrossRef]
- Parchomenko, A.; Nelen, D.; Gillabel, J.; Rechberger, H. Measuring the circular economy - A Multiple Correspondence Analysis of 63 metrics. J. Clean. Prod. 2019, 210, 200–216. [Google Scholar] [CrossRef]
- Pauliuk, S. Critical appraisal of the circular economy standard BS 8001:2017 and a dashboard of quantitative system indicators for its implementation in organizations. Resour. Conserv. Recycl. 2018, 129, 81–92. [Google Scholar] [CrossRef]
- Saidani, M.; Yannou, B.; Leroy, Y.; Cluzel, F.; Kendall, A. A taxonomy of circular economy indicators. J. Clean. Prod. 2019, 207, 542–559. [Google Scholar] [CrossRef]
- Avdiushchenko, A. Toward a circular economy regional monitoring framework for European regions: Conceptual approach. Sustainability 2018, 10, 4398. [Google Scholar] [CrossRef]
- Government of Japan. Fundamental Plan for Establishing a Sound Material-Cycle Society; Ministry of the Environment Government of Japan: Tokyo, Japan, 2013.
- Kovanda, J. Incorporation of recycling flows into economy-wide material flow accounting and analysis: A case study for the Czech Republic. Resour. Conserv. Recycl. 2014, 92, 78–84. [Google Scholar] [CrossRef]
- Núñez-Cacho, P.; Molina-Moreno, V.; Corpas-Iglesias, F.A.; Cortés-García, F.J. Family businesses transitioning to a circular economy model: The case of “Mercadona”. Sustainability 2018, 10, 538. [Google Scholar] [CrossRef]
- Ordóñez, I.; Rexfelt, O.; Hagy, S.; Unkrig, L. Designing Away Waste: A Comparative Analysis of Urban Reuse and Remanufacture Initiatives. Recycling 2019, 4, 15. [Google Scholar] [CrossRef]
- Rahman, S.; Chowdhury, R.B.; D’Costa, N.G.; Milne, N.; Bhuiyan, M.; Sujauddin, M. Determining the potential role of the waste sector in decoupling of phosphorus: A comprehensive review of national scale substance flow analyses. Resour. Conserv. Recycl. 2019, 144, 144–157. [Google Scholar] [CrossRef]
- Geng, Y.; Fu, J.; Sarkis, J.; Xue, B. Towards a national circular economy indicator system in China: An evaluation and critical analysis. J. Clean. Prod. 2012, 23, 216–224. [Google Scholar] [CrossRef]
- Linder, M.; Sarasini, S.; van Loon, P. A Metric for Quantifying Product-Level Circularity. J. Ind. Ecol. 2017, 21, 545–558. [Google Scholar] [CrossRef] [Green Version]
- Fischer-Kowalski, M.; Krausmann, F.; Giljum, S.; Lutter, S.; Mayer, A.; Bringezu, S.; Moriguchi, Y.; Schütz, H.; Schandl, H.; Weisz, H. Methodology and indicators of economy-wide material flow accounting: State of the art and reliability across sources. J. Ind. Ecol. 2011, 15, 855–876. [Google Scholar] [CrossRef]
- Licht, C.; Peiró, L.T.; Villalba, G. Global substance flow analysis of gallium, germanium, and indium: Quantification of extraction, uses, and dissipative losses within their anthropogenic cycles. J. Ind. Ecol. 2015, 19, 890–903. [Google Scholar] [CrossRef]
- Chen, P.C.; Su, H.J.; Ma, H.W. Trace anthropogenic arsenic in Taiwan-substance flow analysis as a tool for environmental risk management. J. Clean. Prod. 2013, 53, 13–21. [Google Scholar] [CrossRef]
- Soulier, M.; Pfaff, M.; Goldmann, D.; Walz, R.; Geng, Y.; Zhang, L.; Tercero Espinoza, L.A. The Chinese copper cycle: Tracing copper through the economy with dynamic substance flow and input-output analysis. J. Clean. Prod. 2018, 195, 435–447. [Google Scholar] [CrossRef]
- Antikainen, R.; Haapanen, R.; Rekolainen, S. Flows of nitrogen and phosphorus in Finland - The forest industry and use of wood fuels. J. Clean. Prod. 2004, 12, 919–934. [Google Scholar] [CrossRef]
- Allesch, A.; Brunner, P.H. Material flow analysis as a decision support tool for waste management: A literature review. J. Ind. Ecol. 2015, 19, 753–764. [Google Scholar] [CrossRef]
- Mathieux, F.; Brissaud, D. End-of-life product-specific material flow analysis. Application to aluminum coming from end-of-life commercial vehicles in Europe. Resour. Conserv. Recycl. 2010, 55, 92–105. [Google Scholar] [CrossRef]
- Habib, K.; Schibye, P.K.; Vestbø, A.P.; Dall, O.; Wenzel, H. Material flow analysis of ndfeb magnets for denmark: A comprehensive waste flow sampling and analysis approach. Environ. Sci. Technol. 2014, 48, 12229–12237. [Google Scholar] [CrossRef] [PubMed]
- Eckelman, M.J.; Daigo, I. Markov chain modeling of the global technological lifetime of copper. Ecol. Econ. 2008, 67, 265–273. [Google Scholar] [CrossRef]
- Haas, W.; Krausmann, F.; Wiedenhofer, D.; Heinz, M. How circular is the global economy?: An assessment of material flows, waste production, and recycling in the European union and the world in 2005. J. Ind. Ecol. 2015, 19, 765–777. [Google Scholar] [CrossRef]
- European Academies Science Advisory Council. Circular Economy: A Commentary from the Perspectives of the Natural and Social Sciences; European Academies Science Advisory Council: Halle (Saale), Germany, 2015. [Google Scholar]
- Matthews, E.; Amann, C.; Bringezu, S.; Fischer-Kowalski, M.; Hüttler, W.; Kleijn, R.; Moriguchi, Y.; Ottke, C.; Rodenburg, E.; Rogich, D.; et al. The Weight of Nations: Material Outflows from Industrial Economies; Hutter, C., Ed.; World Resources Institute: Washington, DC, USA, 2000; ISBN 1569734399. [Google Scholar]
- Eurostat. Economy-Wide Material Flow Accounts and Derived Indicators. A Methodological Guide; Office for Official Publications of the European Communities: Luxembourg, 2001; ISBN 9289404590. [Google Scholar]
- Mayer, A.; Haas, W.; Wiedenhofer, D.; Krausmann, F.; Nuss, P.; Blengini, G.A. Measuring Progress towards a Circular Economy: A Monitoring Framework for Economy-wide Material Loop Closing in the EU28. J. Ind. Ecol. 2018, 23, 62–76. [Google Scholar] [CrossRef] [PubMed]
- Seyhan, D. Country-scale phosphorus balancing as a base for resources conservation. Resour. Conserv. Recycl. 2009, 53, 698–709. [Google Scholar] [CrossRef]
- Chowdhury, R.B.; Moore, G.A.; Weatherley, A.J.; Arora, M. A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales. Resour. Conserv. Recycl. 2014, 83, 213–228. [Google Scholar] [CrossRef]
- Jedelhauser, M.; Binder, C.R. Losses and efficiencies of phosphorus on a national level – A comparison of European substance flow analyses. Resour. Conserv. Recycl. 2015, 105, 294–310. [Google Scholar] [CrossRef]
- Giurco, D.; McLellan, B.; Franks, D.M.; Nansai, K.; Prior, T. Responsible mineral and energy futures: Views at the nexus. J. Clean. Prod. 2014, 84, 322–338. [Google Scholar] [CrossRef]
- Font Vivanco, D.; Wang, R.; Hertwich, E. Nexus Strength: A Novel Metric for Assessing the Global Resource Nexus. J. Ind. Ecol. 2018, 22, 1473–1486. [Google Scholar] [CrossRef]
- Liang, S.; Qu, S.; Zhao, Q.; Zhang, X.; Daigger, G.T.; Newell, J.P.; Miller, S.A.; Johnson, J.X.; Love, N.G.; Zhang, L.; et al. Quantifying the Urban Food-Energy-Water Nexus: The Case of the Detroit Metropolitan Area. Environ. Sci. Technol. 2019, 53, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Saidani, M.; Yannou, B.; Leroy, Y.; Cluzel, F. How to Assess Product Performance in the Circular Economy? Proposed Requirements for the Design of a Circularity Measurement Framework. Recycling 2017, 2, 6. [Google Scholar] [CrossRef]
- Cencic, O.; Kelly, J.D.; Kovacs, A. STAN (2.6 2017). TU Wien, Institute for Water Quality, Resource and Waste Management: Vienna, Austria, 2017. [Google Scholar]
- Tanzer, J.; Zoboli, O.; Zessner, M.; Rechberger, H. Filling two needs with one deed: Potentials to simultaneously improve phosphorus and nitrogen management in Austria as an example for coupled resource management systems. Sci. Total Environ. 2018, 640–641, 640–641. [Google Scholar] [CrossRef]
- Sutton, M.A.; Oenema, O.; Erisman, J.W.; Leip, A.; van Grinsven, H.; Winiwarter, W. Too much of a good thing (Commentary). Nature 2011, 472, 159–161. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Study on the Review of the List of Critical Raw Materials. Critical Raw Materials Factsheets; Publications Office of the European Union: Luxembourg city, Luxembourg, 2017. [Google Scholar]
- Molina-Moreno, V.; Leyva-Díaz, J.C.; Llorens-Montes, F.J.; Cortés-García, F.J. Design of indicators of circular economy as instruments for the evaluation of sustainability and efficiency in wastewater from pig farming industry. Water 2017, 9, 653. [Google Scholar] [CrossRef]
- Soulier, M.; Glöser-Chahoud, S.; Goldmann, D.; Tercero Espinoza, L.A. Dynamic analysis of European copper flows. Resour. Conserv. Recycl. 2018, 129, 143–152. [Google Scholar] [CrossRef]
- Karlsson, J.; Brunzell, L.; Venkatesh, G. Material-flow analysis, energy analysis, and partial environmental-LCA of a district-heating combined heat and power plant in Sweden. Energy 2018, 144, 31–40. [Google Scholar] [CrossRef]
- International Copper Study Group. The World Copper Factbook 2018; International Copper Study Group: Lisbon, Portugal, 2018. [Google Scholar]
- Melse, R.W.; Timmerman, M. Sustainable intensive livestock production demands manure and exhaust air treatment technologies. Bioresour. Technol. 2009, 100, 5506–5511. [Google Scholar] [CrossRef]
- Mehr, J.; Jedelhauser, M.; Binder, C. Transition of the Swiss Phosphorus System towards a Circular Economy—Part 1: Current State and Historical Developments. Sustainability 2018, 10, 1479. [Google Scholar] [CrossRef]
- Braungart, M.; McDonough, W.; Bollinger, A. Cradle-to-cradle design: creating healthy emissions - a strategy for eco-effective product and system design. J. Clean. Prod. 2007, 15, 1337–1348. [Google Scholar] [CrossRef]
- Ajero, M.A.; Armenteras, D.; Barr, J.; Barra, R.; Baste, I.; Dobrowolski, J.; Dronin, N.; El-Sammak, A.; Evans, T.P.; Finlayson, C.M.; et al. GEO5 Global Environment Outlook: Environment for the Future We Want; United Nations Environment Programme, Ed.; Progress Press Ltd: Valletta, Malta, 2012; ISBN 978-92-807-3177-4. [Google Scholar]
- Zoboli, O.; Laner, D.; Zessner, M.; Rechberger, H. Added Values of Time Series in Material Flow Analysis: The Austrian Phosphorus Budget from 1990 to 2011. J. Ind. Ecol. 2015, 20, 1334–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, H.A.; Brod, E.; Hanserud, O.; Müller, D.B.; Brattebø, H.; Haraldsen, T.K. Recycling potential of secondary phosphorus resources as assessed by integrating substance flow analysis and plant-availability. Sci. Total Environ. 2017, 575, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- Bertram, M.; Graedel, T.E.; Rechberger, H.; Spatari, S. The contemporary European copper cycle: waste management subsystem. Ecol. Econ. 2002, 42, 43–57. [Google Scholar] [CrossRef]
- Jayal, A.D.; Badurdeen, F.; Dillon, O.W.; Jawahir, I.S. Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP J. Manuf. Sci. Technol. 2010, 2, 144–152. [Google Scholar] [CrossRef]
- Ashby, W.R. Requisite Variety and Its Implications for the Control of Complex Systems. Cybernetica 1958, 1, 83–99. [Google Scholar]
- Cencic, O. User Manual STAN Version 2.6; TU Wien, Institute for Water Quality, Resource and Waste Management: Vienna, Austria, 2017. [Google Scholar]
- Cencic, O. Nonlinear data reconciliation in material flow analysis with software STAN. Sustain. Environ. Res. 2016, 26, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Kovanda, J.; Van De Sand, I.; Schütz, H.; Bringezu, S. Economy-wide material flow indicators: Overall framework, purposes and uses and comparison of material use and resource intensity of the Czech Republic, Germany and the EU-15. Ecol. Indic. 2012, 17, 88–98. [Google Scholar] [CrossRef]
- Raupova, O.; Kamahara, H.; Goto, N. Assessment of physical economy through economy-wide material flow analysis in developing Uzbekistan. Resour. Conserv. Recycl. 2014, 89, 76–85. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation; Granta Design. Circularity Indicators. An Approach to Measuring Circularity. Methodology; Ellen MacArthur Foundation: Cowes, Isle of Wight, UK, 2015. [Google Scholar]
- Figge, F.; Thorpe, A.S.; Givry, P.; Canning, L.; Franklin-Johnson, E. Longevity and Circularity as Indicators of Eco-Efficient Resource Use in the Circular Economy. Ecol. Econ. 2018, 150, 297–306. [Google Scholar] [CrossRef]
- Huysman, S.; De Schaepmeester, J.; Ragaert, K.; Dewulf, J.; De Meester, S. Performance indicators for a circular economy: A case study on post-industrial plastic waste. Resour. Conserv. Recycl. 2017, 120, 46–54. [Google Scholar] [CrossRef]
- Sobańtka, A.; Zessner, M.; Rechberger, H. The Extension of Statistical Entropy Analysis to Chemical Compounds. Entropy 2012, 14, 2413–2426. [Google Scholar] [CrossRef] [Green Version]
- Dawson, C.J.; Hilton, J. Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy 2011, 36, S14–S22. [Google Scholar] [CrossRef]
- Cavaleiro de Ferreira, A.; Fuso-Nerini, F. A Framework for Implementing and Tracking Circular Economy in Cities: The Case of Porto. Sustainability 2019, 11, 1813. [Google Scholar] [CrossRef]
- Van Deventer, M.J.; Snyman, R. Measuring for sustainability: A multidimensional measurement framework for library and information services. Libri 2004, 54, 1–8. [Google Scholar] [CrossRef]
- Fraccascia, L.; Albino, V.; Garavelli, C.A. Technical efficiency measures of industrial symbiosis networks using enterprise input-output analysis. Int. J. Prod. Econ. 2017, 183, 273–286. [Google Scholar] [CrossRef]
- Molina-Sánchez, E.; Leyva-Díaz, J.C.; Cortés-García, F.J.; Molina-Moreno, V. Proposal of sustainability indicators for the waste management from the paper industry within the circular economy model. Water 2018, 10, 1014. [Google Scholar] [CrossRef]
Indicator | Range | Range under Common Assumptions | Assumptions of the Present Study |
---|---|---|---|
Austrian P-N system | |||
CUR P | 7–0% | 12–54% | 54% |
CUR N | 2–46% | 3–25% | 25% |
ISCr P | 11–301% | 28–236% | 236% |
ISCr N | 4–158% | 5–61% | 61% |
OSCr P | 10–76% | 22–70% | 70% |
OSCr N | 4–61% | 5–38% | 38% |
RR P | 41–90% | 41–85% | 85% |
RR N | 17–98% | 17–69% | 69% |
EU 28 copper system | |||
CUR | 16–27% | 26–27% | 27% |
ISCr | 40–76% | 72–76% | 76% |
OSCr | 34–50% | 48–50% | 50% |
RR | 34–69% | 48–51% | 51% |
Karlskoga CHP | |||
CUR | 39–51% | 39% | |
ISCr | 468–770% | 468% | |
OSCr | 82–89% | 82% | |
RR | 100% | 100% |
Flow | A Priori Input Data | Reconciled Values & Manual Aggregation | Reconciled Values Generic System | |||
---|---|---|---|---|---|---|
N [t] | s [t] | N [t] | s [t] | N [t] | s [t] | |
Atmospheric deposition agriculture | 49,114 | ±14,210 | 47,449 | ±12,407 | 47,449 | ±12,407 |
N-fixation agriculture | 66,159 | ±9599 | 65,320 | ±8899 | 65,320 | ±8899 |
Atmospheric deposition forestry | 58,370 | ±11,744 | 59,951 | ±7585 | 59,951 | ±7585 |
N-fixation forestry | 8569 | ±2718 | 8654 | ±2657 | 8654 | ±2657 |
Atmospheric deposition urban areas | 4719 | ±1449 | 4720 | ±864 | 4720 | ±864 |
Technical N-fixation | 193,400 | ±36,305 | 190,026 | ±20,787 | 190,026 | ±20,787 |
Environmental deposition/ extraction1 | 376,120 | ±33,132 | 376,120 | ±19,162 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanzer, J.; Rechberger, H. Setting the Common Ground: A Generic Framework for Material Flow Analysis of Complex Systems. Recycling 2019, 4, 23. https://doi.org/10.3390/recycling4020023
Tanzer J, Rechberger H. Setting the Common Ground: A Generic Framework for Material Flow Analysis of Complex Systems. Recycling. 2019; 4(2):23. https://doi.org/10.3390/recycling4020023
Chicago/Turabian StyleTanzer, Julia, and Helmut Rechberger. 2019. "Setting the Common Ground: A Generic Framework for Material Flow Analysis of Complex Systems" Recycling 4, no. 2: 23. https://doi.org/10.3390/recycling4020023
APA StyleTanzer, J., & Rechberger, H. (2019). Setting the Common Ground: A Generic Framework for Material Flow Analysis of Complex Systems. Recycling, 4(2), 23. https://doi.org/10.3390/recycling4020023