Municipal Solid Waste as a Renewable Energy Source: Evaluating the Potential for Sustainable Electricity Generation in the Minas Gerais Region in Brazil
Abstract
1. Introduction
2. Results
2.1. Gravimetric Composition of Municipal Solid Waste
2.2. Estimated Waste Generation per Location
2.3. Energy Potential of the Organic Fraction (Landfill)
2.4. Energy Potential of Dry Fractions (Incineration)
2.5. Total Energy Potential and Comparison Between Routes
3. Discussion
3.1. Waste Composition and Generation: Implications for Energy Valorization
3.2. Viability of Biogas Recovery
3.3. Viability of Incineration as a Complementary Route
3.4. Integrated Comparison Between WtE Routes and Regional Potential
3.5. Environmental, Socioeconomic, and Policy Implications
3.6. Study Limitations and Future Perspectives
4. Materials and Methods
4.1. Study Area
4.2. Gravimetric Characterization of Waste
4.3. Estimation of Biogas and Electricity Generation in Controlled Landfills
4.4. Estimation of Electricity Generation via Incineration
| Material | LHV (MJ·kg−1) * | Source |
|---|---|---|
| Plastics (soft and hard) | 17.8–47.5 | [85] |
| Leather | 12.5–21 | [86] |
| Rubber | 30–35 | [87] |
| Styrofoam (expanded polystyrene) | 38–41 | [85,88] |
| Rags and clothes | 15–18 | [89,90] |
| Aseptic packaging | 22 | [91] |
4.5. Landfill Characterization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kafle, S.; Karki, B.K.; Sakhakarmy, M.; Adhikari, S. A Review of Global Municipal Solid Waste Management and Valorization Pathways. Recycling 2025, 10, 113. [Google Scholar] [CrossRef]
- Khan, A.H.; López-Maldonado, E.A.; Khan, N.A.; Villarreal-Gómez, L.J.; Munshi, F.M.; Alsabhan, A.H.; Perveen, K. Current solid waste management strategies and energy recovery in developing countries—State of art review. Chemosphere 2022, 291, 133088. [Google Scholar] [CrossRef]
- Shovon, S.M.; Akash, F.A.; Rahman, W.; Rahman, M.A.; Chakraborty, P.; Hossain, H.M.Z.; Monir, M.U. Strategies of managing solid waste and energy recovery for a developing country—A review. Heliyon 2024, 10, e24736. [Google Scholar] [CrossRef] [PubMed]
- UNEP. Global Waste Management Outlook 2024—Beyond an Age of Waste: Turning Rubbish into a Resource; United Nations Environment Programme: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- ABREMA. Overview of Solid Waste in Brazil 2023; Brazilian Association of Waste and the Environment: Geneva, Switzerland, 2023. [Google Scholar]
- IBGE. Demographic Census 2022; Brazilian Institute of Geography and Statistics—IBGE: Rio de Janeiro, Brazil, 2023.
- Mukherjee, C.; Denney, J.; Mbonimpa, E.G.; Slagley, J.; Bhowmik, R. A review on municipal solid waste-to-energy trends in the USA. Renew. Sustain. Energy Rev. 2020, 119, 109512. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Nhung, T.C.; Ramesh, B.; Srinivasan, S.; Rangasamy, G. A review on biological methodologies in municipal solid waste management and landfilling: Resource and energy recovery. Chemosphere 2022, 309, 136630. [Google Scholar] [CrossRef]
- Traven, L. Sustainable energy generation from municipal solid waste: A brief overview of existing technologies. Case Stud. Chem. Environ. Eng. 2023, 8, 100491. [Google Scholar] [CrossRef]
- Ankathi, S.K.; Chaudhari, U.S.; Handler, R.M.; Shonnard, D.R. Sustainability of Biogas Production from Anaerobic Digestion of Food Waste and Animal Manure. Appl. Microbiol. 2024, 4, 418–438. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, Z.; Ganeshan, P.; Sar, T.; Xu, S.; Rajendran, K.; Sindhu, R.; Binod, P.; Pandey, A.; Zhang, Z.; et al. Anaerobic digestion in global bio-energy production for sustainable bioeconomy: Potential and research challenges. Renew. Sustain. Energy Rev. 2025, 208, 114985. [Google Scholar] [CrossRef]
- Hamidinasab, B.; Nabavi-Pelesaraei, A. Systematic review on environmental impact assessment of incineration technologies. Energy Convers. Manag. X 2025, 26, 101039. [Google Scholar] [CrossRef]
- Li, Z.; Fan, T.W.; Lun, M.S.; Li, Q. Optimization of municipal solid waste incineration for low-NOx emissions through numerical simulation. Sci. Rep. 2024, 14, 19309. [Google Scholar] [CrossRef]
- Lavigne de Lemos, G.; Frank Oliveira Cardoso, M.; De Medeiros Costa, H.K. Biogás e biometano no Brasil: Panorama e perspectivas. Desenvolv. Meio Ambiente 2024, 63, 88929. [Google Scholar] [CrossRef]
- Moraes, C.A.; Santos, L. de L.C. dos; Oliveira, A.C.L. de; Botelho, D.F.; Moltó Berenguer, J.; Renato, N. dos S. Biogas-based electricity production from landfills in places of irregular disposal: Overview for the southeast region of Brazil. Energy 2024, 290, 130161. [Google Scholar] [CrossRef]
- Paulino, R.F.S.; de Oliveira Silva, M.; Tobias da Cruz, T.; dos Santos Rosa, D.; Silveira, J.L. Potential of Biohydrogen Production from Brazilian Sanitary Landfills: Technical and Economic Aspects. SSRN 2024, preprint. [Google Scholar] [CrossRef]
- Pandit, J.; Kumar Sharma, A.; Bhardwaj, S. Energy recovery potential of urban solid waste of Solan district, H.P, India. Nat. Resour. Conserv. Res. 2023, 6, 1945. [Google Scholar] [CrossRef]
- Dos Santos, R.E.; Dos Santos, I.F.S.; Barros, R.M.; Bernal, A.P.; Tiago Filho, G.L.; da Silva, F.D.G.B. Generating electrical energy through urban solid waste in Brazil: An economic and energy comparative analysis. J. Environ. Manag. 2019, 231, 198–206. [Google Scholar] [CrossRef]
- Intergovernamental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Costa, I.M.; Ferreira Dias, M. Evolution on the solid urban waste management in Brazil: A portrait of the Northeast Region. Energy Rep. 2020, 6, 878–884. [Google Scholar] [CrossRef]
- Ferronato, N.; Torretta, V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef]
- Kamran, A.; Chaudhry, M.N.; Batool, S.A. Effects of socio-economic status and seasonal variation on municipal solid waste composition: A baseline study for future planning and development. Environ. Sci. Eur. 2015, 27, 16. [Google Scholar] [CrossRef]
- Rego, R.F.; Moraes, L.R.S.; Dourado, I. Diarrhoea and garbage disposal in Salvador, Brazil. Trans. R. Soc. Trop. Med. Hyg. 2005, 99, 48–54. [Google Scholar] [CrossRef]
- Alzamora, B.R.; de Vasconcelos Barros, R.T.; de Oliveira, L.K.; Gonçalves, S.S. Forecasting and the influence of socioeconomic factors on municipal solid waste generation: A literature review. Environ. Dev. 2022, 44, 100734. [Google Scholar] [CrossRef]
- Lu, M.; Zhou, C.; Wang, C.; Jackson, R.B.; Kempes, C.P. Worldwide scaling of waste generation in urban systems. Nat. Cities 2024, 1, 126–135. [Google Scholar] [CrossRef]
- Liikanen, M.; Havukainen, J.; Viana, E.; Horttanainen, M. Steps towards more environmentally sustainable municipal solid waste management—A life cycle assessment study of São Paulo, Brazil. J. Clean. Prod. 2018, 196, 150–162. [Google Scholar] [CrossRef]
- Silva, T.N.; Freitas, F.S.N.; Candiani, G. Evaluation of surface emissions of gas from large landfills. Eng. Sanitária Ambient. 2013, 18, 95–104. [Google Scholar] [CrossRef]
- Niu, X.-X.; Wang, S.-Z.; Niu, Y.-C.; Wei, L.-F.; Yu, L.-Y. Improvement and optimization for the first order decay model parameters at typical municipal solid waste landfills in China. Adv. Clim. Change Res. 2023, 14, 605–614. [Google Scholar] [CrossRef]
- Heidari-Maleni, A.; Taheri-Garavand, A.; Rezaei, M.; Jahanbakhshi, A. Biogas production and electrical power potential, challenges and barriers from municipal solid waste (MSW) for developing countries: A review study in Iran. J. Agric. Food Res. 2023, 13, 100668. [Google Scholar] [CrossRef]
- Mes, T.Z.D.; Stams, A.J.M.; Reith, J.H.; Zeeman, G. Methane production by anaerobic digestion of wastewater and solid wastes. In Bio-Methane & Bio-Hydrogen: Status and Perspectives of Biological Methane and Hydrogen Production; Dutch Biological Hydrogen Foundation: Petten, The Netherlands, 2003; pp. 58–102. [Google Scholar]
- de Oliveira, D.E.P.; Miranda, A.C.; Junior, M.V.; Santana, J.C.C.; Tambourgi, E.B.; Facchini, F.; Iavagnilio, R.; Pinto, L.F.R. Economic and Environmental Feasibility of Cogeneration from Food Waste: A Case Study in São Paulo City. Sustainability 2024, 16, 2979. [Google Scholar] [CrossRef]
- Alam, S.; Rokonuzzaman, M.; Rahman, K.S.; Haque, A.; Chowdhury, M.S.; Eka Prasetya, T.A. Techno-economic and environmental analysis of organic municipal solid waste for energy production. Heliyon 2024, 10, e31670. [Google Scholar] [CrossRef]
- Goh, K.C.; Kurniawan, T.A.; Mohamed, S.; Zhang, D.; Khan, M.I.; Othman, M.H.D.; Aziz, F.; Anouzla, A.; Onn, C.W. Techno-economic assessment and life cycle analysis of restaurant food waste-to-electricity conversion in Malaysia and Singapore within a circular bioeconomy framework. Biomass Bioenergy 2025, 197, 107771. [Google Scholar] [CrossRef]
- Buendia, E.C.; Tanabe, K.; Kranjc, A.; Baasansuren, J.; Fukuda, M.; Ngarize, S.; Osako, A.; Pyrozhenko, Y.; Shermanau, P.; Federici, S. Solid Waste Disposal. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Waste; IPCC: Geneva, Switzerland, 2019; Volume 5. [Google Scholar]
- Candiani, G.; Viana, E. Emissões fugitivas de metano em aterros sanitários. GEOUSP Espaço Tempo 2018, 21, 845. [Google Scholar] [CrossRef]
- EPA. Landfill Gas Energy Project Development Handbook; US EPA: Washington, DC, USA, 2021.
- IDB. Guidance Note on Landfill Gas Capture and Utilization; IDB: Washington, DC, USA, 2010. [Google Scholar]
- ANEEL (Brazilian Electricity Regulatory Agency). Normative Resolution No. 1,059, of 7 February 2023. Improves the Rules for Connecting and Billing Distributed Microgeneration and Mini-Generation in Electricity Distribution Systems. Official Gazette of the Union (Diário Oficial da União): Brasília, DF, 10 February 2023. Available online: https://www2.aneel.gov.br/cedoc/ren20231059.html (accessed on 17 October 2025).
- Gu, W.; Liu, D.; Wang, C. Energy recovery potential from incineration using municipal solid waste based on multi-scenario analysis in Beijing. Environ. Sci. Pollut. Res. 2021, 28, 27119–27131. [Google Scholar] [CrossRef]
- Shekhar, S.; Garg, M.C.; Verma, V.K.; Jindal, T. Characterising and Analysing the Composition and Characteristics of Municipal Solid Waste (MSW) in Delhi, India. Asian J. Water Environ. Pollut. 2023, 20, 87. [Google Scholar] [CrossRef]
- Adhikari, R.C. Investigation on Solid Waste Management in Developing Countries. J. Res. Dev. 2022, 5, 42–52. [Google Scholar] [CrossRef]
- Hettiarachchi, H.; Meegoda, J.N.; Ryu, S. Organic Waste Buyback as a Viable Method to Enhance Sustainable Municipal Solid Waste Management in Developing Countries. Int. J. Environ. Res. Public Health 2018, 15, 2483. [Google Scholar] [CrossRef]
- Matheson, T. Disposal Is Not Free: Fiscal Instruments to Internalize the Environmental Costs of Solid Waste; Working Paper No. 2019/283; IMF: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Stylianou, E.; Pateraki, C.; Ladakis, D.; Cruz-Fernández, M.; Latorre-Sánchez, M.; Coll, C.; Koutinas, A. Evaluation of organic fractions of municipal solid waste as renewable feedstock for succinic acid production. Biotechnol. Biofuels 2020, 13, 72. [Google Scholar] [CrossRef]
- Eboh, F.C.; Andersson, B.-Å.; Richards, T. Economic evaluation of improvements in a waste-to-energy combined heat and power plant. Waste Manag. 2019, 100, 75–83. [Google Scholar] [CrossRef]
- Dadario, N.; Gabriel Filho, L.R.A.; Cremasco, C.P.; Santos, F.A.d.; Rizk, M.C.; Mollo Neto, M. Waste-to-Energy Recovery from Municipal Solid Waste: Global Scenario and Prospects of Mass Burning Technology in Brazil. Sustainability 2023, 15, 5397. [Google Scholar] [CrossRef]
- Abedin, T.; Pasupuleti, J.; Paw, J.K.S.; Tak, Y.C.; Islam, M.R.; Basher, M.K.; Nur-E-Alam, M. From waste to worth: Advances in energy recovery technologies for solid waste management. Clean Technol. Environ. Policy 2025, 27, 1–27. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, S.; Kumar, A.; Singh, R.; Awwad, F.A.; Khan, M.I.; Ismail, E.A.A. Sustainable energy recovery from municipal solid wastes: An in-depth analysis of waste-to-energy technologies and their environmental implications in India. Energy Explor. Exploit. 2024, 43, 3–28. [Google Scholar] [CrossRef]
- Lombardi, L.; Castaldi, M.J. Energy Recovery from Residual Municipal Solid Waste: State of the Art and Perspectives within the Challenge to Climate Change. Energies 2024, 17, 395. [Google Scholar] [CrossRef]
- CONAMA. Resolução CONAMA nº 316, de 29 de outubro de 2002. In Diário Oficial da União; CONAMA: Brasília, Brazil, 2002. [Google Scholar]
- Ulloa-Murillo, L.M.; Villegas, L.M.; Rodríguez-Ortiz, A.R.; Duque-Acevedo, M.; Cortés-García, F.J. Management of the Organic Fraction of Municipal Solid Waste in the Context of a Sustainable and Circular Model: Analysis of Trends in Latin America and the Caribbean. Int. J. Environ. Res. Public Health 2022, 19, 6041. [Google Scholar] [CrossRef]
- Krnávek, M.; Freisleben, V.; Jegla, Z. Advanced Modular and Integrated Equipment Design for Small-capacity Waste-to-Energy Units. Chem. Eng. Trans. 2021, 88, 937–942. [Google Scholar] [CrossRef]
- Ellyin, C. Small-Scale Waste-to-Energy Technologies: Technical, Economic and Environmental Aspects. Master’s Thesis, Columbia University Earth Engineering Center, New York, NY, USA, 2012. Available online: https://wtert.org/wp-content/uploads/2020/10/Ellyin_Thesis.pdf (accessed on 16 October 2025).
- Xiao, H.; Zhang, D.; Tang, Z.; Li, K.; Guo, H.; Niu, X.; Yi, L. Comparative environmental and economic life cycle assessment of dry and wet anaerobic digestion for treating food waste and biogas digestate. J. Clean. Prod. 2022, 338, 130674. [Google Scholar] [CrossRef]
- de Souza Marotta Alfaia, R.G.; Costa, A.M.; Campos, J.C. Municipal solid waste in Brazil: A review. Waste Manag. Res. J. Sustain. Circ. Econ. 2017, 35, 1195–1209. [Google Scholar] [CrossRef]
- de Souza, S.N.; Horttanainen, M.; Antonelli, J.; Klaus, O.; Lindino, C.A.; Nogueira, C.E. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: Landfill gas, biogas and thermal treatment. Waste Manag. Res. J. Sustain. Circ. Econ. 2014, 32, 1015–1023. [Google Scholar] [CrossRef]
- Eurostat. Municipal Waste Down by Second Consecutive Year; Eurostat: Luxembourg, 2023; Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20250213-1 (accessed on 4 September 2025).
- Jeswani, H.K.; Azapagic, A. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK. Waste Manag. 2016, 50, 346–363. [Google Scholar] [CrossRef]
- Evangelisti, S.; Lettieri, P.; Borello, D.; Clift, R. Life cycle assessment of energy from waste via anaerobic digestion: A UK case study. Waste Manag. 2014, 34, 226–237. [Google Scholar] [CrossRef]
- Nordahl, S.L.; Devkota, J.P.; Amirebrahimi, J.; Smith, S.J.; Breunig, H.M.; Preble, C.V.; Satchwell, A.J.; Jin, L.; Brown, N.J.; Kirchstetter, T.W.; et al. Life-Cycle Greenhouse Gas Emissions and Human Health Trade-Offs of Organic Waste Management Strategies. Environ. Sci. Technol. 2020, 54, 9200–9209. [Google Scholar] [CrossRef] [PubMed]
- Elsebaay, Y.; Ahmed, M.; Elagroudy, S.; Nassour, A. Energy recovery from landfill gas in Egypt. Environ. Dev. Sustain. 2024, 26, 1–23. [Google Scholar] [CrossRef]
- Ouedraogo, A.S.; Kumar, A.; Frazier, R.; Sallam, K.A. Comparative Life Cycle Assessment of Landfilling with Sustainable Waste Management Methods for Municipal Solid Wastes. Environments 2024, 11, 248. [Google Scholar] [CrossRef]
- Mor, S.; Ravindra, K. Municipal solid waste landfills in lower- and middle-income countries: Environmental impacts, challenges and sustainable management practices. Process Saf. Environ. Prot. 2023, 174, 510–530. [Google Scholar] [CrossRef]
- Siddiqua, A.; Hahladakis, J.N.; Al-Attiya, W.A.K.A. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ. Sci. Pollut. Res. 2022, 29, 58514–58536. [Google Scholar] [CrossRef] [PubMed]
- Ministry of the Environment and Climate Change—MMA. National Methane Reduction Program (Metano Zero). Brasília: Ministry of the Environment and Climate Change—MMA. 2022. Available online: https://www.gov.br/mma/pt-br/acesso-a-informacao/acoes-e-programas/programa-projetos-acoes-obras-atividades/programa-nacional-metano-zero (accessed on 16 October 2025).
- Zhang, Z.; Chen, Z.; Zhang, J.; Liu, Y.; Chen, L.; Yang, M.; Osman, A.I.; Farghali, M.; Liu, E.; Hassan, D.; et al. Municipal solid waste management challenges in developing regions: A comprehensive review and future perspectives for Asia and Africa. Sci. Total Environ. 2024, 930, 172794. [Google Scholar] [CrossRef] [PubMed]
- Dutra, R.M.S.; Harue Yamane, L.; Ribeiro Siman, R. Influence of the expansion of the selective collection in the sorting infrastructure of waste pickers’ organizations: A case study of 16 Brazilian cities. Waste Manag. 2018, 77, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Miranda, I.T.P.; Fidelis, R.; de Souza Fidelis, D.A.; Pilatti, L.A.; Picinin, C.T. The Integration of Recycling Cooperatives in the Formal Management of Municipal Solid Waste as a Strategy for the Circular Economy—The Case of Londrina, Brazil. Sustainability 2020, 12, 10513. [Google Scholar] [CrossRef]
- Nogueira, Z.J.L.; Jacobsen Leopoldino, C.; Yamane, L.H.; Ribeiro Siman, R. Waste pickers organizations and municipal selective waste collection: Sustainability indicators. Waste Manag. 2020, 118, 219–231. [Google Scholar] [CrossRef]
- Brahmi, M.; Bruno, B.; Dhayal, K.S.; Esposito, L.; Parziale, A. From manure to megawatts: Navigating the sustainable innovation solution through biogas production from livestock waste for harnessing green energy for green economy. Heliyon 2024, 10, e34504. [Google Scholar] [CrossRef]
- Katuwal, H. Biogas adoption in Nepal: Empirical evidence from a nationwide survey. Heliyon 2022, 8, e10106. [Google Scholar] [CrossRef]
- Fernandes, A.S.A.; Pinheiro, L.S.; do Nascimento, A.B.F.M.; Grin, E.J. An analysis of intermunicipal consortia to provide waste services based on institutional collective action. Rev. Adm. Pública 2020, 54, 501–523. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Der Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Mühlenhoff, S.C.; Herzig, C.; Zöller, N.; Bruns, C. Personal communication as a strategy to improve the quality of household organic waste—Does it work? results from a quasi-experimental study in Northern Hesse, Germany. Waste Manag. 2024, 182, 132–141. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Z.; Zhang, P.; Wu, J.; Wang, Y. The effectiveness of stage-matched interventions in changing waste source separation behaviour: Evidence from a consecutive quasi-experiment. Waste Manag. Res. J. Sustain. Circ. Econ. 2025, 43, 1002–1012. [Google Scholar] [CrossRef]
- da Silva, D.P.; Silvestre, H.C.; Embalo, A.A. Inter-municipal cooperation in Brazil: The case of solid waste consortia. Rev. Adm. Pública 2020, 54, 1239–1259. [Google Scholar] [CrossRef]
- Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Scarlat, N.; Motola, V.; Dallemand, J.F.; Monforti-Ferrario, F.; Mofor, L. Evaluation of energy potential of Municipal Solid Waste from African urban areas. Renew. Sustain. Energy Rev. 2015, 50, 1269–1286. [Google Scholar] [CrossRef]
- Malinauskaite, J.; Jouhara, H.; Czajczyńska, D.; Stanchev, P.; Katsou, E.; Rostkowski, P.; Thorne, R.J.; Colón, J.; Ponsá, S.; Al-Mansour, F.; et al. Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 2017, 141, 2013–2044. [Google Scholar] [CrossRef]
- Lohri, C.R.; Diener, S.; Zabaleta, I.; Mertenat, A.; Zurbrügg, C. Treatment technologies for urban solid biowaste to create value products: A review with focus on low- and middle-income settings. Rev. Environ. Sci. Bio/Technol. 2017, 16, 81–130. [Google Scholar] [CrossRef]
- National Institute of Meteorology (INMET). Available online: https://portal.inmet.gov.br/ (accessed on 4 September 2025).
- ABNT. NBR 10007:2004; Amostragem de Resíduos Sólidos. da Associação Brasileira de Normas Técnicas: São Paulo, Brazil, 2004. [Google Scholar]
- Krause, M.; Thorneloe, S. Landfill Gas Emissions Model (LandGEM) Version 3.1 User Manual and Tool (3.1); U.S. EPA Office of Research and Development: Washington, DC, USA, 2024.
- Pin, B.V.R.; Barros, R.M.; Silva Lora, E.E.; dos Santos, I.F.S. Waste management studies in a Brazilian microregion: GHG emissions balance and LFG energy project economic feasibility analysis. Energy Strategy Rev. 2018, 19, 31–43. [Google Scholar] [CrossRef]
- Romeiro, D.C.; Leme, M.A.G.; Takeda, C.M.; Miguel, M.G. Analysis of Arithmetic Models for Predicting Calorific Values of Landfilled Municipal Solid Waste. In Proceedings of the 9th International Congress on Environmental Geotechnics, Chania, Greece, 5–28 June 2023. [Google Scholar]
- Bahillo, A.; Armesto, L.; Cabanillas, A.; Otero, J. Thermal valorization of footwear leather wastes in bubbling fluidized bed combustion. Waste Manag. 2004, 24, 935–944. [Google Scholar] [CrossRef]
- Lago, R.M.; de Matos Gomes, J.P.; Santos, E.J.M.; de Melo Costa, L.C.; de Carvalho Chaves, L.E. Pyrolysis of waste rubber from the mining sector for fuel production: Pilot-scale studies. Polímeros 2017, 27, 42–47. [Google Scholar] [CrossRef]
- Wang, D.; Tang, Y.-T.; He, J.; Yang, F.; Robinson, D. Generalized models to predict the lower heating value (LHV) of municipal solid waste (MSW). Energy 2021, 216, 119279. [Google Scholar] [CrossRef]
- Athanasopoulos, P.; Zabaniotou, A. Post-consumer textile thermochemical recycling to fuels and biocarbon: A critical review. Sci. Total Environ. 2022, 834, 155387. [Google Scholar] [CrossRef]
- Rogale, D.; Firšt Rogale, S. Energy and Environmental Aspects of the Sustainability of Clothing Production. Sustainability 2024, 16, 9100. [Google Scholar] [CrossRef]
- Klejnowska, K.; Lewandowski, D. Aluminum Recovery from Multimaterial Tetra-Pak Waste Pyrolysis. Civ. Environ. Eng. Rep. 2019, 29, 39–52. [Google Scholar] [CrossRef]
- Leme, M.M.V.; Rocha, M.H.; Lora, E.E.S.; Venturini, O.J.; Lopes, B.M.; Ferreira, C.H. Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil. Resour. Conserv. Recycl. 2014, 87, 8–20. [Google Scholar] [CrossRef]
- Dalmo, F.C.; Simão, N.M.; de Lima, H.Q.; Medina Jimenez, A.C.; Nebra, S.; Martins, G.; Palacios-Bereche, R.; Henrique de Mello Sant’Ana, P. Energy Recovery Overview of Municipal Solid Waste in São Paulo State, Brazil. J. Clean. Prod. 2019, 212, 461–474. [Google Scholar] [CrossRef]
- Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Alao, M.A. Life Cycle Assessment of Waste-to-Energy (WtE) Technologies for Electricity Generation Using Municipal Solid Waste in Nigeria. Appl. Energy. 2017, 201, 200–218. [Google Scholar] [CrossRef]
- Amulen, J.; Kasedde, H.; Serugunda, J.; Lwanyaga, J.D. The Potential of Energy Recovery from Municipal Solid Waste in Kampala City, Uganda by Incineration. Energy Conv. Manag. 2022, 14, 100204. [Google Scholar] [CrossRef]
- Yan, M.; P, A.; Waluyo, J. Challenges for Sustainable Development of Waste to Energy in Developing Countries. Waste Manag. Res. J. Sustain. Circ. Econ. 2020, 38, 229–231. [Google Scholar] [CrossRef]





| Material | Diamantina (%) | Capelinha (%) | Almenara (%) |
|---|---|---|---|
| Organic material | 49.8 | 47.6 | 73.3 |
| Chemical contaminant 2 | 0.1 | 1.3 | 0.3 |
| Biological contaminant 2 | 10.6 | 11.6 | 5.5 |
| Rubble | 3.9 | 0.0 | 0.0 |
| Rags and clothes | 1.3 | 3.6 | 1.4 |
| Miscellaneous | 1.0 | 0.1 | 0.2 |
| Metal | 0.8 | 0.7 | 0.6 |
| Glass | 3.1 | 0.8 | 2.4 |
| Soft plastic | 3.8 | 16.7 | 3.6 |
| Hard plastic | 3.2 | 5.1 | 2.6 |
| Paper and cardboard | 18.4 | 8.4 | 6.2 |
| Leather and rubber | 1.9 | 2.2 | 2.9 |
| Styrofoam | 0.8 | 0.3 | 0.3 |
| Aseptic packaging | 1.1 | 1.7 | 0.1 |
| E-waste (WEEE 1) | 0.3 | 0.0 | 0.4 |
| Total | 100 | 100 | 100 |
| Municipality | Population | Estimated Annual Generation (Tons·Year−1) | Per Capita Generation (kg·Cap−1·Day−1) |
|---|---|---|---|
| Diamantina | 49,353 | 10,950.0 | 0.61 |
| Capelinha | 39,626 | 8212.5 | 0.57 |
| Almenara | 40,364 | 13,260.0 | 0.90 |
| Municipality | Volume of CH4 Captured (106 m3) 1 | Recoverable Electrical Energy (MWh) | Specific Energy (MWh·Ton−1) | CH4 Avoided (Tons) | Avoided Emissions (Tons of CO2-eq) 2 |
|---|---|---|---|---|---|
| Diamantina | 16.33 | 32,940 | 0.200 | 11,710 | 327,880 |
| Capelinha | 10.52 | 21,208 | 0.200 | 7540 | 211,120 |
| Almenara | 23.06 | 46,498 | 0.200 | 16,531 | 462,868 |
| Location | Material | Fraction (%) | Mass (Tons·Year−1) | Energy (MWh·Year−1) |
|---|---|---|---|---|
| Diamantina | Plastics | 7.00 | 766.50 | 834.78 |
| Leather + rubber | 1.90 | 208.05 | 270.18 | |
| Styrofoam | 0.80 | 87.60 | 203.43 | |
| Rags and clothes | 1.30 | 142.35 | 130.49 | |
| c packaging | 1.10 | 120.45 | 161.94 | |
| Capelinha | Plastics | 21.76 | 1787.04 | 1943.90 |
| Leather + rubber | 2.20 | 180.68 | 234.63 | |
| Styrofoam | 0.30 | 24.64 | 57.21 | |
| Rags and clothes | 3.60 | 295.65 | 271.01 | |
| Aseptic packaging | 1.68 | 137.56 | 184.94 | |
| Almenara | Plastics | 6.19 | 820.79 | 892.84 |
| Leather + rubber | 2.94 | 389.84 | 506.26 | |
| Styrofoam | 0.34 | 45.08 | 104.70 | |
| Rags and clothes | 1.41 | 186.97 | 171.39 | |
| Aseptic packaging | 0.14 | 18.56 | 24.96 |
| Municipality | Landfill Potential (MWh·Year−1) | Incineration Potential (MWh·Year−1) | Total (MWh·Year−1) | MWh·ton−1 of MSW | Potential (MWh·Cap−1) | Biogas | Incineration |
|---|---|---|---|---|---|---|---|
| % 1 | |||||||
| Diamantina | 32.94 | 1.60 | 34.54 | 0.35 | 1.01 | 95.4 | 4.6 |
| Capelinha | 21.21 | 2.69 | 23.90 | 0.53 | 1.02 | 88.7 | 11.3 |
| Almenara | 46.50 | 1.70 | 48.20 | 0.33 | 1.49 | 96.5 | 3.5 |
| Regional Total | 100.65 | 5.99 | 106.64 | 0.40 | 1.16 | 94.7 | 5.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.V.; Santos, L.L.d.; Paula, M.S.d.; Amancio, J.M.d.S.; Araujo, J.E.; Baracho, I.P.d.S.; Santos, L.d.C.; da Silva, R.S.; Costa, J.d.O. Municipal Solid Waste as a Renewable Energy Source: Evaluating the Potential for Sustainable Electricity Generation in the Minas Gerais Region in Brazil. Recycling 2025, 10, 205. https://doi.org/10.3390/recycling10060205
Santos AV, Santos LLd, Paula MSd, Amancio JMdS, Araujo JE, Baracho IPdS, Santos LdC, da Silva RS, Costa JdO. Municipal Solid Waste as a Renewable Energy Source: Evaluating the Potential for Sustainable Electricity Generation in the Minas Gerais Region in Brazil. Recycling. 2025; 10(6):205. https://doi.org/10.3390/recycling10060205
Chicago/Turabian StyleSantos, Adma Viana, Lauana Lopes dos Santos, Maurício Santana de Paula, Juliene Maria da Silva Amancio, Julia Eduarda Araujo, Ivana Pires de Sousa Baracho, Lucas da Costa Santos, Ricardo Siqueira da Silva, and Jéfferson de Oliveira Costa. 2025. "Municipal Solid Waste as a Renewable Energy Source: Evaluating the Potential for Sustainable Electricity Generation in the Minas Gerais Region in Brazil" Recycling 10, no. 6: 205. https://doi.org/10.3390/recycling10060205
APA StyleSantos, A. V., Santos, L. L. d., Paula, M. S. d., Amancio, J. M. d. S., Araujo, J. E., Baracho, I. P. d. S., Santos, L. d. C., da Silva, R. S., & Costa, J. d. O. (2025). Municipal Solid Waste as a Renewable Energy Source: Evaluating the Potential for Sustainable Electricity Generation in the Minas Gerais Region in Brazil. Recycling, 10(6), 205. https://doi.org/10.3390/recycling10060205

