Integrated Bioprocesses for Urban Food Waste: Insights into Biological Pathways, Process Integration, and Circular Economy Perspectives
Abstract
1. Introduction
2. Food Waste: What It Is and What Is Done About It
3. How Can Bioprocesses Contribute to Food Waste Management?
- Food Waste as Feedstock for Biofuels and Biochemicals
3.1. Resilient Fermentations: Bioproducts from Simplified Streams
3.2. Tailored Fermentations: Unlocking Complex Products
4. Then, Are Integrated Food Waste Biorefineries Viable?
4.1. Techno-Economic Assessment
4.2. Life Cycle Assessment
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1,3-PDO | 1,3-Propanediol |
CRUDE | Conversion on Raw and Untreated Disposal into Ethanol |
EPI | Environmental Performance Index |
EU | European Union |
FW | Food Waste |
GWP | Global Warming Potential |
IEA | International Energy Agency |
LA | Lactic Acid |
LAB | Lactic Acid Bacteria |
LCA | Life Cycle Assessment |
MSW | Municipal Solid Waste |
OFMSW | Organic Fraction of Municipal Solid Waste |
PHA | Polyhydroxyalkanoate |
SDGs | Sustainable Development Goals |
SSF | Simultaneous Saccharification and Fermentation |
TEA | Techno-Economic Assessment |
TRL | Technological Readiness Level |
UNEP | United Nations Environment Programme |
References
- Food and Agriculture Organization of the United Nations—SDG Indicators Data Portal. Available online: https://www.fao.org/sustainable-development-goals-data-portal/data/indicators/1231-global-food-losses/en (accessed on 26 April 2024).
- Organisation for Economic Co-operation and Development (OECD). Beyond food loss and waste reduction targets: Translating reduction ambitions into policy outcomes. In OECD Food, Agriculture and Fisheries Papers; OECD: Paris, France, 2025; Volume 214. [Google Scholar] [CrossRef]
- United Nations Environment Programme—Food Waste Index Report 2024. Available online: https://www.unep.org/resources/publication/food-waste-index-report-2024 (accessed on 5 May 2024).
- Rolewicz-Kalińska, A.; Lelicińska-Serafin, K.; Manczarski, P. Selection Path for Energy-Efficient Food Waste Management in Urban Areas: Scenario Analysis and Insights from Poland. Energies 2025, 18, 385. [Google Scholar] [CrossRef]
- Mir-Cerdà, A.; Nuñez, O.; Granados, M.; Sentellas, S.; Saurina, J. An overview of the extraction and characterization of bioactive phenolic compounds from agri-food waste within the framework of circular bioeconomy. Trends Anal. Chem. 2023, 161, 116994. [Google Scholar] [CrossRef]
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environ. 2023, 3, 58–75. [Google Scholar] [CrossRef]
- Sousa, M.H.; Silva, A.S.F.; Correia, R.C.; Leite, N.P.; Bueno, C.E.G.; Pinheiro, R.L.S.; Santana, J.S.; Silva, J.L.; Sales, A.T.; Souza, C.C.; et al. Valorizing municipal organic waste to produce biodiesel, biogas, organic fertilizer, and value-added chemicals: An integrated biorefinery approach. Biomass. Convers. Biorefin. 2022, 12, 827–841. [Google Scholar] [CrossRef]
- Bilal, M.; Niu, D.; Wang, Z. Biotechnological Strategies and Perspectives for Food Waste Treatment: The Role of Lactic Acid and Microbial Biomass. Waste Biomass Valorization 2025, 16, 547–569. [Google Scholar] [CrossRef]
- del Mar Contreras, M.; Romero-García, J.M.; López-Linares, J.C.; Romero, I.; Castro, E. Residues from grapevine and wine production as feedstock for a biorefinery. Food Bioprod. Process. 2022, 134, 56–79. [Google Scholar] [CrossRef]
- Arya, P.S.; Yagnik, S.M.; Rajput, K.N.; Panchal, R.R.; Raval, V.H. Valorization of agro-food wastes: Ease of concomitant-enzymes production with application in food and biofuel industries. Bioresour. Technol. 2022, 361, 127738. [Google Scholar] [CrossRef] [PubMed]
- Antonisamy, A.J.; Marimuthu, S.; Malayandi, S.; Rajendran, K.; Lin, Y.-C.; Andaluri, G.; Lee, S.L.; Ponnusamy, V.K. Sustainable approaches on industrial food wastes to value-added products—A review on extraction methods, characterizations, and its biomedical applications. Environ. Res. 2023, 217, 114758. [Google Scholar] [CrossRef]
- Environmental Protection Agency—Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy. Available online: https://www.epa.gov/smm/sustainable-materials-management-non-hazardous-materials-and-waste-management-hierarchy (accessed on 6 March 2025).
- Zhang, X.; Liu, C.; Xen, Y.; Zheng, G.; Chen, Y. Source separation, transportation, pretreatment, and valorization of municipal solid waste: A critical review. Environ. Dev. Sustain. 2022, 24, 11471–11513. [Google Scholar] [CrossRef]
- de Abreu, I.B.S.; Sousa, M.H.; Silva, A.P.; Padilha, C.E.A.; Sales, A.T.; Silva, A.S.A.; Dutra, E.D.; Menezes, R.S.C. Global variability of food waste chemical composition and its consequences on the production of biofuels and chemical compounds. J. Mater. Cycles Waste Manag. 2023, 25, 1309–1324. [Google Scholar] [CrossRef]
- Eičaitė, O.; Baležentis, T. Disentangling the sources and scale of food waste in households: A diary-based analysis in Lithuania. Sustain. Prod. Consum. 2024, 46, 195–207. [Google Scholar] [CrossRef]
- Grant, F.; Di Veroli, J.N.; Rossi, L. Characterization of household food waste in Italy: Three year comparative assessment and evaluation of seasonality effects. Waste Manag. 2023, 164, 171–180. [Google Scholar] [CrossRef]
- Alzate, C.A.C.; Ortiz-Sanchez, M.; Solarte-Toro, J.C. Design strategy of food residues biorefineries based on multifeedstocks analysis for increasing sustainability of value chains. Biochem. Eng. J. 2023, 194, 108857. [Google Scholar] [CrossRef]
- Slopiecka, K.; Liberti, F.; Massoli, S.; Bartocci, P.; Fantozzi, F. Chemical and physical characterization of food waste to improve its use in anaerobic digestion plants. Energy Nexus 2022, 5, 100049. [Google Scholar] [CrossRef]
- Bender, L.E.; Colvero, G.L.; Monteiro, E.L.; Rempel, A.; Colla, L.M. Utilization of food waste for bioethanol production in a circular bioeconomy approach. Biomass Convers. Biorefin. 2024, 15, 8525–8541. [Google Scholar] [CrossRef]
- Cordova-Buiza, F.; Paucar-Caceres, A.; Quispe-Prieto, S.C.; Rivera-Garré, A.P.; Huerta-Tantalean, L.N.; Valle-Paucar, J.E.; León-Panduro, C.V.P.; Burrowes-Cromwell, T. Strengthening Collaborative Food Waste Prevention in Peru: Towards Responsible Consumption and Production. Sustainability 2022, 14, 1050. [Google Scholar] [CrossRef]
- Associação Brasileira de Resíduos e Meio Ambiente—Panorama dos Resíduos Sólidos no Brasil 2024. Available online: https://www.abrema.org.br/panorama/ (accessed on 5 March 2025).
- Lee, E.; Shurson, G.; Oh, S.-H.; Jang, J.-C. The Management of Food Waste Recycling for a Sustainable Future: A Case Study on South Korea. Sustainability 2024, 16, 854. [Google Scholar] [CrossRef]
- Farahdiba, A.U.; Warmadewanthi, I.D.A.A.; Fransiscus, Y.; Rosyidah, E.; Hermana, J.; Yuniarto, A. The present and proposed sustainable food waste treatment technology in Indonesia: A review. Environ. Technol. Innov. 2023, 32, 103256. [Google Scholar] [CrossRef]
- SWITCH-Asia—Reducing Food Waste in China: Experiences from Six Cities. Available online: https://www.switch-asia.eu/news/reducing-food-waste-in-china-experiences-from-six-cities/ (accessed on 25 June 2025).
- Kurniawan, T.A.; Liang, X.; O’Callaghan, E.; Goh, H.; Othman, M.H.D.; Avtar, R.; Kusworo, T.D. Transformation of Solid Waste Management in China: Moving towards Sustainability through Digitalization-Based Circular Economy. Sustainability 2022, 14, 2374. [Google Scholar] [CrossRef]
- Environmental Protection Agency—Advancing Sustainable Materials Management: 2018 Fact Sheet. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/advancing-sustainable-materials-management (accessed on 29 June 2024).
- Department of Forestry, Fishery & the Environment—State of Waste Management: Analysis of 2022 General Waste Quantities. Available online: https://soer.environment.gov.za/soer/CMSWebSite/Content.aspx?menuId=18893,17982,0,Analysisof2022generalwastequantities (accessed on 9 September 2025).
- European Parliament—Sustainable Waste Management: What the EU Is Doing. Available online: https://www.europarl.europa.eu/topics/en/article/20180328STO00751/sustainable-waste-management-what-the-eu-is-doing (accessed on 7 June 2025).
- Eurostat—Waste Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Waste_treatment (accessed on 16 July 2025).
- Block, S.; Emerson, J.W.; Esty, D.C.; de Sherbinin, A.; Wendling, Z.A. 2024 Environmental Performance Index; Yale Center for Environmental Law & Policy: New Haven, CT, USA, 2024; Available online: https://www.epi.yale.edu (accessed on 24 March 2025).
- Annevelink, B.; Chavez, L.G.; van Ree, R.; Gursel, I.V. Global Biorefinery Status Report 2022; International Energy Agency Bioenergy (IEA Bioenergy): Paris, France, 2022. [Google Scholar]
- Solarte-Toro, J.C.; Alzate, C.A.C. Sustainability of Biorefineries: Challenges and Perspectives. Energies 2023, 16, 3786. [Google Scholar] [CrossRef]
- Colombo, B.; Favini, F.; Scaglia, B.; Sciarria, T.P.; D’Imporzano, G.; Pognani, M.; Alekseeva, A.; Eisele, G.; Cosentino, C.; Adani, F. Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnol. Biofuels 2017, 10, 201. [Google Scholar] [CrossRef]
- Bühlmann, C.H.; Mickan, B.S.; Tait, S.; Batstone, D.J.; Bahri, P.A. Waste to Wealth: The power of food-waste anaerobic digestion integrated with lactic acid fermentation. Front. Chem. Eng. 2023, 5, 1285002. [Google Scholar] [CrossRef]
- Patel, A.; Hrůzová, K.; Rova, U.; Christakopoulos, P.; Matsakas, L. Sustainable biorefinery concept for biofuel production through holistic valorization of food waste. Bioresour. Technol. 2019, 294, 122247. [Google Scholar] [CrossRef] [PubMed]
- Vavouraki, A.I.; Volioti, V.; Kornaros, M.E. Optimization of thermo-chemical pretreatment and enzymatic hydrolysis of kitchen wastes. Waste Manag. 2014, 34, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Sanchez, M.; Inocencio-García, P.; Alzate-Ramírez, A.F.; Alzate, C.A.C. Potential and Restrictions of Food-Waste Valorization through Fermentation Processes. Fermentation 2023, 9, 274. [Google Scholar] [CrossRef]
- Saragih, F.N.A.; Priadi, C.R.; Adityosulindro, S.; Abdillah, A.; Islami, B.B. The effectiveness of anaerobic digestion process by thermal pre-treatment on food waste as a substrate. IOP Conf. Ser. Earth Environ. Sci. 2019, 251, 012014. [Google Scholar] [CrossRef]
- Billund Biorefinery—The Termal Hydrolysis: The Energetic Heart. Available online: https://www.billundbiorefinery.com/our-refinery/the-termal-hydrolysis/ (accessed on 11 October 2024).
- Raj, T.; Chandrasekhar, K.; Morya, R.; Pandey, A.K.; Jung, J.; Kumar, D.; Singhania, R.R.; Kim, S. Critical challenges and technological breakthroughs in food waste hydrolysis and detoxification for fuels and chemicals production. Bioresour. Technol. 2022, 360, 127512. [Google Scholar] [CrossRef]
- Szucs, M.; Angulo, M.; Costa, C.; Márquez, M.C. Meat Waste Valorization through Protein Hydrolysis using Different Types of Proteases. Recent Prog. Mater. 2021, 3, 1–19. [Google Scholar] [CrossRef]
- Zabed, H.; Sahu, J.N.; Suely, A.; Boyce, A.N.; Faruq, G. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew. Sustain. Energy Rev. 2017, 71, 475–501. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Feng, K.; Liu, J. Oriented Fermentation of Food Waste towards High-Value Products: A Review. Energies 2020, 13, 5638. [Google Scholar] [CrossRef]
- Dahiya, S.; Kumar, A.N.; Sravan, J.S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresour. Technol. 2018, 248, 2–12. [Google Scholar] [CrossRef]
- Pal, P.; Singh, A.K.; Srivastava, R.K.; Rathore, S.S.; Sahoo, U.K.; Subudhi, S.; Sarangi, P.K.; Prus, P. Circular Bioeconomy in Action: Transforming Food Wastes into Renewable Food Resources. Foods 2024, 13, 3007. [Google Scholar] [CrossRef]
- Alencar, B.R.A.; Silva, S.P.; Silva, T.C.; Valle, D.S.G.M.; Souza, R.B.; Dutra, E.D.; Morais, M.A., Jr.; Menezes, R.S.C. Integrated production of ethanol and 1,3-propanediol from food waste enzymatic hydrolysates in a biorefinery approach. Bioresour. Technol. Rep. 2024, 27, 101934. [Google Scholar] [CrossRef]
- Zhang, C.; Ling, Z.; Huo, S. Anaerobic fermentation of pretreated food waste for butanol production by co-cultures assisted with in-situ extraction. Bioresour. Technol. Rep. 2021, 16, 100852. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Shin, H. Hydrogen fermentation of food waste without inoculum addition. Enzyme Microb. Technol. 2009, 45, 181–187. [Google Scholar] [CrossRef]
- Tang, J.; Wang, X.C.; Hu, Y.; Zhang, Y.; Li, Y. Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula. Bioresour. Technol. 2017, 224, 544–552. [Google Scholar] [CrossRef]
- de Abreu, I.B.S.; Silva, R.K.; Siqueira, J.G.W.; Silva, P.K.N.; Sonego, J.L.S.; de Souza, R.B.; Antonino, A.C.D.; Menezes, R.S.C.; Dutra, E.D. Brazilian Food Waste as a Substrate for Bioethanol Production. Foods 2024, 13, 4032. [Google Scholar] [CrossRef]
- Bhatia, L.; Jha, H.; Sarkar, T.; Sarangi, P.K. Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. Int. J. Environ. Res. Public Health 2023, 20, 2318. [Google Scholar] [CrossRef]
- Kwan, T.H.; Hu, Y.; Lin, C.S.K. Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota. Bioresour. Technol. 2016, 217, 129–136. [Google Scholar] [CrossRef]
- Kwan, T.H.; Hu, Y.; Lin, C.S.K. Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly(lactic acid) production. J. Clean. Prod. 2018, 181, 72–87. [Google Scholar] [CrossRef]
- Thygesen, A.; Tsapekos, P.; Alvarado-Morales, M.; Angelidaki, I. Valorization of municipal organic waste into purified lactic acid. Bioresour. Technol. 2021, 342, 125933. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Cai, C.; Chen, Z.; Lin, C.; Lv, Y.; Ye, X.; Liu, Y.; Dai, X.; Liu, M. Lactic acid production from food waste: Advances in microbial fermentation and separation technologies. Bioresour. Technol. 2024, 414, 131635. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.C.; Pak, D. Feasibility of producing ethanol from food waste. Waste Manag. 2011, 31, 2121–2125. [Google Scholar] [CrossRef]
- Huang, H.; Qureshi, N.; Chen, M.H.; Liu, W.; Singh, V. Ethanol production from food waste at high solids content with vacuum recovery technology. J. Agric. Food Chem. 2015, 63, 2760–2766. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, S.S.; David, A.; Shrestha, N.; Johnson, G.R.; Benjamin, K.M.; Gadhamshetty, V.; Sani, R.K. Simultaneous hydrolysis and fermentation of unprocessed food waste into ethanol using thermophilic anaerobic bacteria. Bioresour. Technol. 2017, 244, 733–740. [Google Scholar] [CrossRef]
- Díez, M.P.; Villanueva-Galindo, E.; Moreno-Andrade, I.; Díaz, E.; de la Rubia, M.A.; Mohedano, A.F.; Perez-Rangel, M. Enhanced hydrogen production from food waste via bioaugmentation with Clostridium and Lactobacillus. Biomass Convers. Bioref. 2025, 1–13. [Google Scholar] [CrossRef]
- Rafieenia, R.; Pivato, A.; Lavagnolo, M.C. Optimization of hydrogen production from food waste using anaerobic mixed cultures pretreated with waste frying oil. Renew. Energy 2019, 139, 1077–1085. [Google Scholar] [CrossRef]
- Moretto, G.; Russo, I.; Bolzonella, D.; Pavan, P.; Majone, M.; Valentino, F. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Water Res. 2020, 170, 115371. [Google Scholar] [CrossRef] [PubMed]
- Kannah, R.Y.; Merrylin, J.; Devi, T.P.; Kavitha, S.; Sivashanmugam, P.; Kumar, G.; Banu, J.R. Food waste valorization: Biofuels and value added product recovery. Bioresour. Technol. Rep. 2020, 11, 100524. [Google Scholar] [CrossRef]
- International Energy Agency—Renewable Energy Progress Tracker. Available online: https://www.iea.org/data-and-statistics/data-tools/renewable-energy-progress-tracker (accessed on 9 February 2024).
- de Souza, R.B.; de Menezes, J.A.S.; de Souza, R.d.F.R.; Dutra, E.D.; de Morais, M.A., Jr. Mineral Composition of the Sugarcane Juice and Its Influence on the Ethanol Fermentation. Appl. Biochem. Biotechnol. 2015, 175, 209–222. [Google Scholar] [CrossRef]
- Martínez-Moreno, R.; Morales, P.; Gonzalez, R.; Mas, A.; Beltran, G. Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source. FEMS Yeast Res. 2012, 12, 477–485. [Google Scholar] [CrossRef]
- Sheikh, R.A.; Al-Bar, O.A.; Soliman, Y.M.A. Biochemical studies on the production of biofuel (bioethanol) from potato peels wastes by Saccharomyces cerevisiae: Effects of fermentation periods and nitrogen source concentration. Biotechnol. Biotechnol. Equip. 2016, 30, 497–505. [Google Scholar] [CrossRef]
- Hao, N.; Pedroni, P.; Colson, G.; Wetzstein, M. The linkage between the U.S. ethanol market and developing countries’ maize prices: A panel SVAR analysis. Agric. Econ. 2017, 48, 629–638. [Google Scholar] [CrossRef]
- Pazur, J.H.; Ando, T. The action of an amyloglucosidase of Aspergillus niger on starch and malto-oligosaccharides. J. Biol. Chem. 1959, 234, 1966–1970. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, M.E.; Hernandez-Landaverde, M.A.; Delgado, J.M.; Ramirez-Gutierrez, C.F.; Ramirez-Cardona, M.; Millan-Malo, B.M.; Londoño-Restrepo, S.M. Crystalline structures of the main components of starch. Curr. Opin. Food Sci. 2021, 37, 107–111. [Google Scholar] [CrossRef]
- Karmee, S.K. Liquid biofuels from food waste: Current trends, prospect and limitation. Renew. Sustain. Energy Rev. 2016, 53, 945–953. [Google Scholar] [CrossRef]
- van Dyk, J.; Görgens, J.F.; van Rensburg, E. Enhanced ethanol production from paper sludge waste under high-solids conditions with industrial and cellulase-producing strains of Saccharomyces cerevisiae. Bioresour. Technol. 2024, 394, 130163. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, S.; Chatterjee, S.; Sarkar, O.; Mohan, V. Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives. Bioresour. Technol. 2021, 321, 124354. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Liu, H.; Liu, W.; Guo, J.; Xian, M. Debottlenecking the biological hydrogen production pathway of dark fermentation: Insight into the impact of strain improvement. Microb. Cell Fact. 2022, 21, 166. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Quiroz, A.-P.; Rodríguez-Morón, S.-A.; Acevedo-Pabón, P.-A.; Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.-E. Evaluation of the Dark Fermentation Process as an Alternative for the Energy Valorization of the Organic Fraction of Municipal Solid Waste (OFMSW) for Bogotá, Colombia. Appl. Sci. 2024, 14, 3437. [Google Scholar] [CrossRef]
- Yu, L.; Cheng, W.; Wang, Q. The enhancement on biohydrogen production by the driving forces from extracellular iron oxide respiration. Bioresour. Technol. 2022, 361, 127679. [Google Scholar] [CrossRef]
- Albuquerque, M.M.; Sartor, G.d.B.; Martinez-Burgos, W.J.; Scapini, T.; Edwiges, T.; Soccol, C.R.; Medeiros, A.B.P. Biohydrogen Produced via Dark Fermentation: A Review. Methane 2024, 3, 500–532. [Google Scholar] [CrossRef]
- Chemanalyst—Decode the Future of Lactic Acid: Lactic Acid Market Analysis. Available online: https://www.chemanalyst.com/industry-report/lactic-acid-market-3078#:~:text=Testimonials%20Disruption%20Tracker-,Description,extensive%20utility%20across%20diverse%20industries (accessed on 6 March 2025).
- Mozzi, F. Lactic Acid Bacteria. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 501–508. [Google Scholar]
- Ojo, A.O.; de Smidt, O. Lactic Acid: A Comprehensive Review of Production to Purification. Processes 2023, 11, 688. [Google Scholar] [CrossRef]
- Haris, N.I.N.; Salleh, S.F.; Nolasco-Hipolito, C.; Husaini, A.A.S.A.; Wondi, M.H.; Harun, N.H.; Raof, N.A. A review on lactic acid production via microbial fermentation from biowaste: Insights on scaling up to industrial process. Biofuel. Bioprod. Biorefin. 2024, 19, 437–452. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Varjani, S.; Kim, S.H.; Wong, J.W.C. Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresour. Technol. 2021, 325, 124684. [Google Scholar] [CrossRef]
- Kourmentza, C.; Plácido, J.; Venetsaneas, N.; Burniol-Figols, A.; Varrone, C.; Gavala, H.N.; Reis, M.A.M. Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering 2017, 4, 55. [Google Scholar] [CrossRef]
- Valentino, F.; Gottardo, M.; Micolucci, F.; Pavan, P.; Bolzonella, D.; Rossetti, S.; Majone, M. Organic Fraction of Municipal Solid Waste Recovery by Conversion into Added-Value Polyhydroxyalkanoates and Biogas. ACS Sustain. Chem. Eng. 2018, 6, 16375–16385. [Google Scholar] [CrossRef]
- Fraia, S.D.; Sharmila, V.G.; Banu, J.R.; Massarotti, N. A comprehensive review on upcycling of food waste into value added products towards a circular economy: Holistic approaches and life cycle assessments. Trends Food Sci. Technol. 2024, 143, 104288. [Google Scholar] [CrossRef]
- Tey, K.Y.; Tan, J.P.; Yeap, S.K.; He, N.; Bukhari, N.A.; Hui, Y.W.; Luthfi, A.A.I.; Manaf, S.F.A. Current analysis on 1,3-propanediol production from glycerol via pure wild strain fermentation. J. Environ. Chem. Eng. 2023, 11, 110998. [Google Scholar] [CrossRef]
- de Santana, J.S.; Silva, J.L.; Dutra, E.D.; Menezes, R.S.C.; Souza, R.B.; Pinheiro, I.O. Production of 1,3-propanediol by Lactobacillus diolivorans from agro-industrial residues and cactus cladode acid hydrolyzate. Appl. Biochem. Biotechnol. 2021, 193, 1585–1601. [Google Scholar] [CrossRef] [PubMed]
- Russmayer, H.; Egermeier, M.; Marx, H.; Leitner, V.; Sauer, M. Entirely oil palm-based production of 1,3-propanediol with Lentilactobacillusdiolivorans. Environ. Technol. Innov. 2023, 29, 103024. [Google Scholar] [CrossRef]
- Ma, K.; Cui, Y.; Zhao, K.; Yang, Y.; Wang, W.; Hu, G.; He, M. d-Lactic acid production from agricultural residues by membrane integrated continuous fermentation coupled with B vitamin supplementation. Biotechnol. Biofuels 2022, 15, 24. [Google Scholar] [CrossRef] [PubMed]
- European Commission—Demonstration of an Integrated Innovative Biorefinery for the Transformation of Municipal Solid Waste (MSW) into New BioBased Products (URBIOFIN). Available online: https://cordis.europa.eu/article/id/442883-transforming-urban-waste-into-new-bioproducts (accessed on 29 May 2025).
- Rajendran, N.; Han, J. Techno-economic analysis of food waste valorization for integrated production of polyhydroxyalkanoates and biofuels. Bioresour. Technol. 2022, 348, 126796. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Kabir, M.; Mehjabin, A.; Oishi, F.T.Z.; Ahmed, S.; Mannan, S.; Mofijur, M.; Almomani, F.; Badruddin, I.A.; Kamangar, S. Waste biorefinery to produce renewable energy: Bioconversion process and circular bioeconomy. Energy Rep. 2023, 10, 3073–3091. [Google Scholar] [CrossRef]
- Muhammad, N.I.S.; Rosentrater, K.A. Techno-Economic Evaluation of Food Waste Fermentation for Value-Added Products. Energies 2020, 13, 436. [Google Scholar] [CrossRef]
- Cristóbal, J.; Caldeira, C.; Corrado, S.; Sala, S. Techno-economic and profitability analysis of food waste biorefineries at European level. Bioresour. Technol. 2018, 259, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Christensen, T.H.; Damgaard, A.; Levis, J.; Zhao, Y.; Björklund, A.; Arena, U.; Barlaz, M.A.; Starostina, V.; Boldrin, A.; Astrup, T.F.; et al. Application of LCA modelling in integrated waste management. Waste Manag. 2020, 118, 313–322. [Google Scholar] [CrossRef]
- Caldeira, C.; Vlysidis, A.; Fiore, G.; de Laurentiis, V.; Vignali, G.; Sala, S. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresour. Technol. 2020, 312, 123575. [Google Scholar] [CrossRef]
- Gaffey, J.; Collins, M.N.; Styles, D. Review of methodological decisions in life cycle assessment (LCA) of biorefinery systems across feedstock categories. J. Environ. Manag. 2024, 358, 120813. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lyu, Y.; Tian, J.; Zhao, J.; Ye, N.; Zhang, Y.; Chen, L. Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment. Renew. Sustain. Energy Rev. 2021, 139, 110716. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Tabatabaei, M.; Tsapekos, P.; Rafiee, S.; Aghbashlo, M.; Lindeneg, S.; Angelidaki, I. Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid. Renew. Sustain. Energy Rev. 2020, 117, 109493. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, Y.; Damgaard, A.; Wang, Q.; Wang, H.; Christensen, T.H.; Lu, W. Quantifying global warming potential of alternative biorefinery systems for producing fuels from Chinese food waste. Waste Manag. 2021, 130, 38–47. [Google Scholar] [CrossRef]
- Brunklaus, B.; Rex, E.; Carlsson, E.; Berlin, J. The future of Swedish food waste: An environmental assessment of existing and prospective valorization techniques. J. Clean. Prod. 2018, 202, 1–10. [Google Scholar] [CrossRef]
- Chen, W.S.; Strik, D.P.B.T.B.; Buisman, C.J.N.; Kroeze, C. Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective. Environ. Sci. Technol. 2017, 51, 7159–7168. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimian, F.; Khoshnevisan, B.; Mohammadi, A.; Karimi, K.; Birkved, M. A biorefinery platform to valorize organic fraction of municipal solid waste to biofuels: An early environmental sustainability guidance based on life cycle assessment. Energy Convers. Manag. 2023, 283, 116905. [Google Scholar] [CrossRef]
Macronutrient | Composition Found in Literature (%) | References |
---|---|---|
Moisture * | 75.9–81.9 | [6,14,17] |
Total Carbohydrates | 14.8–78.0 | |
Starch | 1.6–65.1 | |
Cellulose | 6.6–23.2 | |
Hemicellulose | 3.3–11.3 | |
Lignin | 0.8–17.6 | |
Proteins | 3.2–42.3 | |
Lipids | 2.0–52.9 | |
Ash | 1.0–5.9 |
Product | Process | Yield | Efficiency | Payback | Reference |
---|---|---|---|---|---|
Lactic acid | Fungal hydrolysis + fermentation with Lactobacillus casei | 0.27 g/g FW | 84% | 5.1 (year) | [52,53] |
Simultaneous saccharification and bioconversion by Lactobacillus manihotivorans LMG18011 | 0.10 g/g FW | - | - | [54] | |
Enzymatic hydrolysis + fermentation with Streptococcus sp. | 0.33 g/g FW | - | - | [54] | |
Acidogenic fermentation of sterilized Food Waste slurry inoculated with fresh Food Waste | 0.46 g/g FW | - | - | [55] | |
Ethanol | Enzymatic hydrolysis + fermentation with Saccharomyces cerevisiae | 0.43 g/g dryFW | - | - | [56] |
Simultaneous Saccharification and Fermentation (SSF) with ethanol vacuum recuperation | 0.36 g/g dryFW | 93.6% | - | [57] | |
Fermentation with Thermoanaerobacter mathranii. Process One-pot CRUDE | 0.17 g/g dryFW | 94.0% | - | [58] | |
Acidic hydrolisys (H2SO4 1.5%), +fermentation with S. cerevisae | 0.20 g/g dryFW | 76.3% | - | [50] | |
Hydrogen | Lactate-driven hydrogen-producing pathway with Clostridium and Lactobacillus consortia | 76.7 g/g VS | - | - | [59] |
Fermentation with mixed culture pretreated with waste frying oil | 71.34 g/g VS | - | - | [60] | |
Polyhydroxyalanoates | Acidogenic digestion + fermentation with mixed microbial cultures | 0.22 g/g VS | - | - | [33] |
Acidogenic digestion + fermentation with mixed microbial cultures | 0.08 g/g VS | - | - | [61] | |
Acidogenic digestion + fermentation with mixed microbial cultures | 0.52 g/g VS | - | ~2 (year) | [62] |
Product | Technology | GWP (kgCO2eq) | Credits (Substitutions) | Country | Reference |
---|---|---|---|---|---|
Biodiesel | Transesterification | −90 | Diesel | China | [99] |
Bioethanol | Fermentation | 25 | Gasoline | China | [99] |
Biomethane | Anaerobic digestion + water scrubbing | −134 | Natural gas | China | [99] |
Compost | Composting windrows | 35–40 | Mineral fertilisers | China | [99] |
Succini cacid | Enzymatic hydrolysis, bacterial fermentation, upgrading | 300 | - | Sweden | [100] |
Biogas | Anaerobic digestion | 22 | - | Sweden | [100] |
Succinic acid + cogeneration | Fermentation Anaerobic digestion | −73 | Electricity Mineral fertilisers Succinic acid | Denmark | [95] |
Lactic acid + cogeneration | Fermentation Anaerobic digestion | −173.1 | Electricity Mineral fertilisers Lactic acid | Denmark | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, S.B.; Silva, R.K.; de Abreu, Í.B.S.; de Sousa, M.H.; Dutra, E.D.; Albuquerque, A.A.; de Morais Junior, M.A.; de Souza, R.B. Integrated Bioprocesses for Urban Food Waste: Insights into Biological Pathways, Process Integration, and Circular Economy Perspectives. Recycling 2025, 10, 188. https://doi.org/10.3390/recycling10050188
da Silva SB, Silva RK, de Abreu ÍBS, de Sousa MH, Dutra ED, Albuquerque AA, de Morais Junior MA, de Souza RB. Integrated Bioprocesses for Urban Food Waste: Insights into Biological Pathways, Process Integration, and Circular Economy Perspectives. Recycling. 2025; 10(5):188. https://doi.org/10.3390/recycling10050188
Chicago/Turabian Styleda Silva, Sophia Bezerra, Rayssa Karla Silva, Íthalo Barbosa Silva de Abreu, Maria Helena de Sousa, Emmanuel Damilano Dutra, Allan Almeida Albuquerque, Marcos Antonio de Morais Junior, and Rafael Barros de Souza. 2025. "Integrated Bioprocesses for Urban Food Waste: Insights into Biological Pathways, Process Integration, and Circular Economy Perspectives" Recycling 10, no. 5: 188. https://doi.org/10.3390/recycling10050188
APA Styleda Silva, S. B., Silva, R. K., de Abreu, Í. B. S., de Sousa, M. H., Dutra, E. D., Albuquerque, A. A., de Morais Junior, M. A., & de Souza, R. B. (2025). Integrated Bioprocesses for Urban Food Waste: Insights into Biological Pathways, Process Integration, and Circular Economy Perspectives. Recycling, 10(5), 188. https://doi.org/10.3390/recycling10050188