Unconventional Mining of End-of-Life Aircrafts: A Systematic Review
Abstract
1. Introduction
2. Insight on Aircraft Materials and Their Components
3. Strategy for Disposal and Recovery of End-of-Life Aircrafts
3.1. Disassembling and Wastestreams
3.1.1. Polymer Wastestreams
3.1.2. Composite Wastestreams
3.1.3. Metal Wastestreams
3.2. Recycling Technologies
3.2.1. Thermal Processes
3.2.2. Melting and Forging
3.2.3. Mechanical Processes
3.2.4. Chemical Processes
3.3. Landfill
4. Cost and Environmental Considerations
5. Regulatory Prospectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Commission. Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions. In A new Circular Economy Action Plan For a Cleaner and More Competitive Europe; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Ghadge, A.; Wurtmann, H.; Seuring, S. Managing climate change risks in global supply chains: A review and research agenda. Int. J. Prod. Res. 2020, 58, 44–64. [Google Scholar] [CrossRef]
- European Commission; Directorate-General for Climate Action. Going Climate-Neutral by 2050: A Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate-Neutral EU Economy; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Ritchie, H. What Share of Global CO2 Emissions Come from Aviation? Available online: https://ourworldindata.org/global-aviation-emissions (accessed on 30 October 2024).
- KPMG. Circularity in Flight: The Potential for Aircraft and the Circular Economy; KMPG: Dublin, Ireland, 2024. [Google Scholar]
- RTDS Group. New HORIZON 2020 Project SUSTAINair to Provide Flight Path for Green Deal Transition. Available online: https://cordis.europa.eu/article/id/429554-new-horizon-2020-project-sustainair-to-provide-flight-path-for-green-deal-transition (accessed on 30 October 2024).
- Prentice, B.; DiNota, A.; Dulac, N.; Hayes, L.; Ferguson, I.; Holden, D.; Mishra, U.; Huang, R. Global fleet and MRO martket forecast 2024-2034; Oliver Wyman: New York, NY, USA, 2024. [Google Scholar]
- Zhou, J. InsightIQ: Explore How Retirement Trends Have Evolved with InsightIQ. Available online: https://www.iba.aero/resources/articles/insightiq-explore-how-retirement-trends-have-evolved-with-insightiq/ (accessed on 30 October 2024).
- Oliver Wyman. Projected Size of the Global Aircraft Fleet from 2020 to 2024, with a Forecast for 2034. Available online: https://www.statista.com/statistics/282237/aircraft-fleet-size/ (accessed on 21 August 2025).
- Keivanpour, S.; Kadi, D.A.; Mascle, C. End of life aircrafts recovery and green supply chain (a conceptual framework for addressing opportunities and challenges). Manag. Res. Rev. 2015, 38, 1098–1124. [Google Scholar] [CrossRef]
- Sabaghi, M.; Cai, Y.; Mascle, C.; Baptiste, P. Recycling. Sustainability assessment of dismantling strategies for end-of-life aircraft recycling. Resour. Conserv. Recycl. 2015, 102, 163–169. [Google Scholar] [CrossRef]
- Airbus. PAMELA-Process for Advanced Management of End-of-Life Aircraft. Available online: https://webgate.ec.europa.eu/life/publicWebsite/project/LIFE05-ENV-F-000059/process-for-advanced-management-of-end-of-life-of-aircraft (accessed on 21 August 2025).
- European Commission. Eu Research results. Aircraft Metal Recycling; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- SUSTAINair. Available online: https://www.sustainair.eu/ (accessed on 10 December 2024).
- Airbus. From Aircraft to Bikes, Airbus Is Breaking away to Upcycle Carbon Waste. Available online: https://www.airbus.com/en/newsroom/news/2021-05-from-aircraft-to-bikes-airbus-is-breaking-away-to-upcycle-carbon-waste (accessed on 11 December 2024).
- Boeing. Boeing, ELG Carbon Fibre Find New Life for Airplane Structure Material in Ground-Breaking Partnership. 2018. Available online: https://boeing.mediaroom.com/2018-12-05-Boeing-ELG-Carbon-Fibre-find-new-life-for-airplane-structure-material-in-groundbreaking-partnership (accessed on 21 August 2025).
- The European Union Aviation Safety Agency. Study–Assessment of the Environmental Sustainability Status in the Aviation Maintenance and Production Organisation (M&P) Domain; The European Union Aviation Safety Agency: Cologne, Germany, 2022. [Google Scholar]
- Mascle, C. Product design for rebirth: Application to aircraft life cycle modeling. In Supply Chain Forum: An International Journal; Taylor & Francis: Abingdon, UK, 2013; pp. 70–83. [Google Scholar]
- Immarigeon, J.; Holt, R.; Koul, A.; Zhao, L.; Wallace, W.; Beddoes, J.C. Lightweight materials for aircraft applications. Mater. Charact. 1995, 35, 41–67. [Google Scholar] [CrossRef]
- Baker, A.A. Composite Materials for Aircraft Structures; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2004. [Google Scholar]
- Plan, R. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Hool, A.; Helbig, C.; Wierink, G. Challenges and opportunities of the European critical raw materials act. Miner. Econ. 2024, 37, 661–668. [Google Scholar] [CrossRef]
- Carrara, S.; Bobba, S.; Blagoeva, D.; Dias, P.A.; Cavalli, A.; Georgitzikis, K.; Grohol, M.; Itul, A.; Kuzov, T.; Latunussa, C.E. Supply Chain Analysis and Material Demand Forecast in Strategic Technologies and Sectors in the EU: A Foresight Study; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Bobba, S.; Carrara, S.; Huisman, J.; Mathieux, F.; Pavel, C. Critical Raw Materials for Strategic Technologies and Sectors in the EU. A Foresight Study; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Li, M.; Lu, J. Cobalt in lithium-ion batteries. Science 2020, 367, 979–980. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Sahu, S.K. A comprehensive review on recycling of critical raw materials from spent neodymium iron boron (NdFeB) magnet. Sep. Purif. Technol. 2023, 317, 123527. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries, Rare Earths; European Commision: Brussels, Belgium, 2021.
- Grohol, M.; Veeh, C. Study on the Critical Raw Materials for the EU 2023; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Breuer, U.P. Commercial Aircraft Composite Technology; Springer: Cham, Switzerland, 2016; Volume 115. [Google Scholar]
- Zhang, X.; Boscolo, M.; Figueroa-Gordon, D.; Allegri, G.; Irving, P.E. Fail-safe design of integral metallic aircraft structures reinforced by bonded crack retarders. Eng. Fract. Mech. 2009, 76, 114–133. [Google Scholar] [CrossRef]
- Khalil, Y.F. Eco-efficient lightweight carbon-fiber reinforced polymer for environmentally greener commercial aviation industry. Sustain. Prod. Consum. 2017, 12, 16–26. [Google Scholar] [CrossRef]
- McLaughlin, J.W.; Tobin, E.; O’Higgins, R.M. An investigation of Polyether Imide (PEI) toughening of carbon fibre-reinforced Polyether Ether Ketone (PEEK) laminates. Mater. Des. 2021, 212, 110189. [Google Scholar] [CrossRef]
- Raj, R.J.; Selvam, P.; Pughalendi, M. A review of aluminum alloys in aircraft and aerospace industry. J. Huazhong Univ. Sci. Technol 2021, 1671, 4512. [Google Scholar]
- Singh, P.; Pungotra, H.; Kalsi, N.S. On the characteristics of titanium alloys for the aircraft applications. Mater. Today Proc. 2017, 4, 8971–8982. [Google Scholar] [CrossRef]
- Akca, E.; Gürsel, A. A review on superalloys and IN718 nickel-based INCONEL superalloy. Period. Eng. Nat. Sci. (PEN) 2015, 3, 15–27. [Google Scholar] [CrossRef]
- Johanning, A.; Scholz, D. A First Step Towards the Integration of Life Cycle Assessment into Conceptual Aircraft Design; Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV: Bonn, Germany, 2014. [Google Scholar]
- Woidasky, J.; Klinke, C.; Jeanvré, S. Materials stock of the civilian aircraft fleet. Recycling 2017, 2, 21. [Google Scholar] [CrossRef]
- Hellard, G. Composites in Airbus: A long story of innovations and experiences. In Proceedings of the Airbus Global Investor Forum, Seville, Spain, 21–22 September 2008. [Google Scholar]
- Abalde-Cela, S.; Aldeanueva-Potel, P.; Mateo-Mateo, C.; Rodríguez-Lorenzo, L.; Alvarez-Puebla, R.A.; Liz-Marzán, L.M. Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. J. R. Soc. Interface 2010, 7, S435–S450. [Google Scholar] [CrossRef] [PubMed]
- Boeing Commercial Airplanes. Available online: https://en.wikipedia.org/wiki/Boeing_Commercial_Airplanes (accessed on 22 September 2025).
- Kesarwani, S. Polymer composites in aviation sector. Int. J. Eng. Res 2017, 6, 518–526. [Google Scholar] [CrossRef]
- Airbus. Orders and Deliveries. Available online: https://www.airbus.com/en/products-services/commercial-aircraft/orders-and-deliveries (accessed on 22 September 2025).
- Zhao, D.; Guo, Z.; Xue, J. Research on scrap recycling of retired civil aircraft. IOP Conf. Ser. Earth Environ. Sci. 2021, 657, 012062. [Google Scholar] [CrossRef]
- Ekici, S.; Sohret, Y.; Coban, K.; Altuntas, O.; Karakoc, T.H. Sustainability metrics of a small scale turbojet engine. Int. J. Turbo Jet-Engines 2018, 35, 113–119. [Google Scholar] [CrossRef]
- Boichenko, S.; Ivanchenko, O.; Yakovlieva, A. Moden Trends in Technologies for air Transport Recycling and Utilization; Politechnika Rzeszowska im. Ignacego Lukasiewicza: Rzeszów, Poland, 2017. [Google Scholar]
- Aluminum Times; Mmcpublications: Brighton, UK, 2018; Volume 5, p. 40.
- Hamama, Z. Tear-Downs and End-of-Life Solutions. Available online: https://www.firnas-aero.com/2018/05/04/tear-downs-and-end-of-life-solutions/ (accessed on 18 November 2024).
- Fortune Business Insights. Commercial Aircraft Disassembly, Dismantling and Recycling Market Size, Share & COVID-19 Impact Analysis, by Application (Disassembly & Dismantling, Recycling & Storage, USM, and Rotable Parts), by Aircraft Type (Narrow Body, Wide Body, and Regional Jet), and Regional Forecast, 2023–2033. Available online: https://www.fortunebusinessinsights.com/commercial-aircraft-disassembly-dismantling-and-recycling-market-103584 (accessed on 18 November 2024).
- Yang, C. More opportunities in retired aircraft. Aviat. Maint. Eng. 2018, 324, 15–19. [Google Scholar]
- Wang, Y.; Zou, G.; Liu, C.; Gao, Y. Comparison of fire extinguishing performance of four halon substitutes and Halon 1301. J. Fire Sci. 2021, 39, 370–399. [Google Scholar] [CrossRef]
- Kendig, M.; Jeanjaquet, S.; Addison, R.; Waldrop, J. Role of hexavalent chromium in the inhibition of corrosion of aluminum alloys. Surf. Coat. Technol. 2001, 140, 58–66. [Google Scholar] [CrossRef]
- AFRA-Who We Are? Available online: https://afraassociation.org/about-us/ (accessed on 18 November 2024).
- Aircraft Fleet Recycling Association (AFRA). Recycling Best Management Practice (BMP) for Management of Used Aircraft Parts and Assemblies (rev. 4.0); AFRA: Castle Hill, NSW, Australia, 2018. [Google Scholar]
- Boeing. Boeing and Alenia to Support Italy’s First Composite Industrial Recycling Plant. Available online: https://boeing.mediaroom.com/2008-07-15-Boeing-and-Alenia-to-Support-Italys-First-Composite-Industrial-Recycling-Plant (accessed on 21 August 2025).
- Airbus, S. Process for Advanced Management of End-of-Life of Aircraft (PAMELA); Airbus Academy: Champniers, France, 2008. [Google Scholar]
- Ribeiro, J.S.; de Oliveira Gomes, J. Proposed framework for end-of-life aircraft recycling. Procedia CIRP 2015, 26, 311–316. [Google Scholar] [CrossRef]
- Jiang, H. Trends in Fleet and Aircraft Retirement; The Boeing Company: Renton, WA, USA, 2015. [Google Scholar]
- Elsayed, A.; Roetger, T.; Bann, A. Best practices and standards in aircraft end-of-life and recycling. In Chapter Eight: Towards a Circular Economy; International Civil Aviation Organisation: Montreal, Canada, 2019; pp. 279–284. [Google Scholar]
- Maaß, S. Aircraft Recycling—A Literature Review. 2020. Available online: https://repo.uni-hannover.de/handle/123456789/11639 (accessed on 21 August 2025).
- Müller, T. Aircraft Metals Recycling-Process, Challenges and Opportunities. In Proceedings of the 7th European Aeronautics Days (Aerodays 2015), London, UK, 21 October 2015. [Google Scholar]
- Tarmac Aerosave. Tarmac Aerosave-History. Available online: https://www.tarmacaerosave.aero/history (accessed on 20 November 2024).
- Airbus, Tarmac Aerosave and Chengdu to Launch China’s First Aircraft Lifecycle Center. Available online: https://aircraft.airbus.com/en/newsroom/press-releases/2023-04-airbus-tarmac-aerosave-and-chengdu-to-launch-chinas-first-aircraft (accessed on 21 August 2025).
- Sumers, B. Old Airplane Tires Are Turned into… What? Available online: https://www.cntraveler.com/stories/2016-05-27/old-airplane-tires-are-turned-into-what (accessed on 25 November 2024).
- Yoo, T.W.; Lee, Y.K.; Lim, S.J.; Yoon, H.G.; Kim, W.N. Effects of hybrid fillers on the electromagnetic interference shielding effectiveness of polyamide 6/conductive filler composites. J. Mater. Sci. 2014, 49, 1701–1708. [Google Scholar] [CrossRef]
- Harrison-Obi, C.N. Environmental impact of end of life tyre (ELT) or scrap tyre waste pollution and the need for sustainable waste tyre disposal and transformation mechanism in Nigeria. Nnamdi Azikiwe Univ. J. Int. Law Jurisprud. 2019, 10, 60–70. [Google Scholar]
- Yakovlieva, A.; Boichenko, S.; Kale, U.; Nagy, A. Recent advances in technologies for aircraft scrap tyres recycling and utilization. Transp. Logist. 2018, 18, 41–54. [Google Scholar]
- Malik, J.; Karpate, Y.; Datta, A.; Sharma, S.; Sharpe, B.; Sundar, M.S.; Laferriere, M.; Garg, V. Tire Technologies and Their Impact on Heavy-Duty Vehicle Fuel Efficiency in India; Energy and Resources Institute: New Delhi, India; International Council on Clean Transportation: Washington, DC, USA, 2016. [Google Scholar]
- Phale, A.R. Environmental Impact and Waste Management of Used Tyres in the RSA.; University of Johannesburg: Johannesburg, South Africa, 2005. [Google Scholar]
- Ramos, G.; Alguacil, F.J.; López Gómez, F.A. The recycling of end-of-life tyres. Technol. Rev. 2011, 47, 273–284. [Google Scholar]
- Kumar, S.A. Tyre Retreading by Hot Retreading Process. Int. J. Appl. Sci. Eng. 2016, 4, 61–65. [Google Scholar] [CrossRef]
- Gaidhane, J.; Ullah, I.; Khalatkar, A. Tyre remanufacturing: A brief review. Mater. Today Proc. 2022, 60, 2257–2261. [Google Scholar] [CrossRef]
- Walter, C.; Kemppainen, M. Market Research-Tyre Recycling in Finland and Germany: Case: Humuspehtoori Ltd. Bachelor’s Thesis, Tampere University of Applied Sciences, Tampere, Finland, 2009. [Google Scholar]
- Black, S. Advanced Materials for Aircraft Interiors. Available online: https://www.compositesworld.com/articles/advanced-materials-for-aircraft-interiors (accessed on 25 November 2024).
- Hyvärinen, M.; Pylkkö, M.; Kärki, T. Closed-Loop Recycling and Remanufacturing of Polymeric Aircraft Parts. J. Compos. Sci. 2023, 7, 121. [Google Scholar] [CrossRef]
- Pierobon, M. Under Construction: Composite Materials Replace Traditional Aircraft Materials. Available online: https://www.aviationbusinessnews.com/cabin/composite-materials-aircraft/ (accessed on 25 November 2024).
- Wong, K.; Rudd, C.; Pickering, S.; Liu, X. Composites recycling solutions for the aviation industry. Sci. China Technol. Sci. 2017, 60, 1291–1300. [Google Scholar] [CrossRef]
- Asmatulu, E.; Twomey, J.; Overcash, M. Evaluation of recycling efforts of aircraft companies in Wichita. Resour. Conserv. Recycl. 2013, 80, 36–45. [Google Scholar] [CrossRef]
- Asmatulu, E.; Overcash, M.; Twomey, J. Recycling of Aircraft: State of the Art in 2011. J. Ind. Eng. 2013, 2013, 960581. [Google Scholar] [CrossRef]
- Buggy, M.; Farragher, L.; Madden, W. Recycling of composite materials. J. Mater. Process. Technol. 1995, 55, 448–456. [Google Scholar] [CrossRef]
- Semitekolos, D.; Terzopoulou, S.; Zecchi, S.; Marinis, D.; Farsari, E.; Amanatides, E.; Sajdak, M.; Sobek, S.; Smok, W.; Tański, T.; et al. Performance Restoration of Chemically Recycled Carbon Fibres Through Surface Modification with Sizing. Polymers 2025, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- McLauchlin, A.R.; Ghita, O.R.; Savage, L. Studies on the reprocessability of poly(ether ether ketone) (PEEK). J. Mater. Process. Technol. 2014, 214, 75–80. [Google Scholar] [CrossRef]
- Yi, J.; Yu, B.; Du, L.; Li, C.; Hu, D. Research on the selectable disassembly strategy of mechanical parts based on the generalized CAD model. Int. J. Adv. Manuf. Technol. 2008, 37, 599–604. [Google Scholar] [CrossRef]
- Bartoli, M.; Malucelli, G.; Tagliaferro, A. Overview on Classification of Flame-Retardant Additives for Polymeric Matrix. In Materials and Chemistry of Flame-Retardant Polyurethanes Volume 1: A Fundamental Approach; ACS Publications: Washington, DC, USA, 2021; pp. 59–82. [Google Scholar]
- Gopal, P.; Kavimani, V.; Sudhagar, S. Evolution and recent advancements of composite materials in industrial applications. In Applications of Composite Materials in Engineering; Elsevier: Amsterdam, The Netherlands, 2025; pp. 317–334. [Google Scholar]
- Skoczylas, J.; Samborski, S.; Kłonica, M. The application of composite materials in the aerospace industry. J. Technol. Exploit. Mech. Eng. 2019, 5, 1–6. [Google Scholar] [CrossRef]
- Makarichi, L.; Jutidamrongphan, W.; Techato, K.-a.J.R.; Reviews, S.E. The evolution of waste-to-energy incineration: A review. Renew. Sustain. Energy Rev. 2018, 91, 812–821. [Google Scholar] [CrossRef]
- Sharma, D.K.; Mahant, D.; Upadhyay, G. Manufacturing of metal matrix composites: A state of review. Mater. Today Proc. 2020, 26, 506–519. [Google Scholar] [CrossRef]
- Hooker, J.; Doorbar, P. Metal matrix composites for aeroengines. Mater. Sci. Technol. 2000, 16, 725–731. [Google Scholar] [CrossRef]
- Singerman, S.; Jackson, J.; Lynn, M. Titanium metal matrix composites for aerospace applications. Superalloys 1996, 3, 579–586. [Google Scholar]
- Chawla, K.K.; Chawla, K.K. Metal Matrix Composites; Springer: Cham, Switzerland, 1998. [Google Scholar]
- Yokozeki, T.; Kotsuka, N.; Yoshida, K.; Fujiwara, K.; Sato, T. Damage characterization and numerical modeling of titanium matrix composites subjected to low-velocity impact for landing gear application. Adv. Compos. Mater. 2015, 24, 343–358. [Google Scholar] [CrossRef]
- Xie, M.; Zhan, L.; Ma, B.; Hui, S. Classification of fiber metal laminates (FMLs), adhesion theories and methods for improving interfacial adhesion: A review. Thin-Walled Struct. 2024, 198, 111744. [Google Scholar] [CrossRef]
- Costa, R.D.; Sales-Contini, R.C.; Silva, F.J.; Sebbe, N.; Jesus, A.M. A critical review on fiber metal laminates (FML): From manufacturing to sustainable processing. Metals 2023, 13, 638. [Google Scholar] [CrossRef]
- Asghar, W.; Nasir, M.; Qayyum, F.; Shah, M.; Azeem, M.; Nauman, S.; Khushnood, S. Investigation of fatigue crack growth rate in CARALL, ARALL and GLARE. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 1086–1100. [Google Scholar] [CrossRef]
- van Hengel, C.; Kortbeek, P. Arall and Glare Fml’s: Three Decades of Bridging the Gap Between Theory and Operational Practice. In Proceedings of the ICAF 2009, Bridging the Gap between Theory and Operational Practice: Proceedings of the 25th Symposium of the International Committee on Aeronautical Fatigue, Rotterdam, The Netherlands, 27–29 May 2009; pp. 601–615. [Google Scholar]
- Vlot, A. The birth of Arall (1945–1981). In Glare: History of the Development of a New Aircraft Material; Springer: Cham, Switzerland, 2001; pp. 17–50. [Google Scholar]
- Vlot, A. Taward Glare, fuselages and the US (1988–1997). In Glare: History of the Development of a New Aircraft Material; Springer: Cham, Switzerland, 2001; pp. 85–110. [Google Scholar]
- Edwardson, S.; French, P.; Dearden, G.; Watkins, K.; Cantwell, W. Laser forming of fibre metal laminates. Lasers Eng. 2005, 15, 233–255. [Google Scholar]
- Romli, N.; Rejab, M.; Bachtiar, D.; Siregar, J.; Rani, M.; Harun, W.; Salleh, S.M.; Merzuki, M. The behavior of Aluminium Carbon/Epoxy fibre metal laminate under quasi-static loading. IOP Conf. Ser. Mater. Sci. Eng. 2017, 257, 012046. [Google Scholar] [CrossRef]
- Awi, M.; Abdullah, A.S. A Review on Mechanical Properties and Response of Fibre Metal Laminate under Impact Loading (Experiment). Evergreen 2023, 10, 111–129. [Google Scholar] [CrossRef]
- Trabandt, U.; Wulz, H.G.; Schmid, T. CMC for hot structures and control surfaces of future launchers. Key Eng. Mater. 1999, 164, 445–449. [Google Scholar]
- Zhang, Q.M. Research on ceramic matrix composites (CMC) for aerospace aplications. Adv. Mater. Res. 2011, 284, 324–329. [Google Scholar] [CrossRef]
- Zawada, L.; Lee, S. Evaluation of four CMCs for aerospace turbine engine divergent flaps and seals. In Proceedings of the 19th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures-A; Wiley-American Ceramic Society: Hoboken, NJ, USA, 2009; Volume 16, p. 337. [Google Scholar]
- Dale, D.; Ruschau, A. NASA Hytec CMC Turbine Blade Durability. 2023. Available online: https://ntrs.nasa.gov/citations/20230008139 (accessed on 21 August 2025).
- Misra, A. Composite materials for aerospace propulsion related to air and space transportation. In Lightweight Composite Structures in Transport; Elsevier: Amsterdam, The Netherlands, 2016; pp. 305–327. [Google Scholar]
- Krenkel, W. Carbon fibre reinforced silicon carbide composites (C/SiC, C/C-SiC). In Handbook of Ceramic Composites; Springer: Cham, Switzerland, 2005; pp. 117–148. [Google Scholar]
- Gerenda’s, M.s.; Cadoret, Y.; Wilhelmi, C.; Machry, T.; Knoche, R.; Behrendt, T.; Aumeier, T.; Denis, S.; Göring, J.; Koch, D. Improvement of oxide/oxide CMC and development of combustor and turbine components in the HiPOC program. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: Washington, DC, USA, 2011; pp. 477–490. [Google Scholar]
- Gadow, R.; Jiménez, M. Carbon fiber-reinforced carbon composites for aircraft brakes. Am. Ceram. Soc. Bull 2019, 98, 28–34. [Google Scholar]
- Krenkel, W.; Renz, R. CMCs for friction applications. Ceram. Matrix Compos. 2008, 385–407. [Google Scholar] [CrossRef]
- Liu, X.; Li, L. Design, Fabrication and Testing of CMC Turbine Blisk. In Design, Fabrication and Testing of Aeroengine Ceramic-Matrix Composite Components; Springer: Cham, Switzerland, 2024; pp. 71–94. [Google Scholar]
- Ohnabe, H.; Masaki, S.; Onozuka, M.; Miyahara, K.; Sasa, T. Potential application of ceramic matrix composites to aero-engine components. Compos. Part A Appl. Sci. Manuf. 1999, 30, 489–496. [Google Scholar] [CrossRef]
- Parveez, B.; Kittur, M.; Badruddin, I.A.; Kamangar, S.; Hussien, M.; Umarfarooq, M. Scientific advancements in composite materials for aircraft applications: A review. Polymers 2022, 14, 5007. [Google Scholar] [CrossRef]
- Keller, K.A.; Jefferson, G.; Kerans, R.J. Oxide–oxide composites. In Ceramic Matrix Composites: Materials, Modeling and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 236–272. [Google Scholar] [CrossRef]
- Wehrel, P. Technological Level of CMC Components for Stationary Gas Turbines and Aero-Engines; German Aerospace Center (DLR), Institute of Propulsion Technology: Cologne, Germany, 2022. [Google Scholar]
- Kameda, T.; Sayano, A.; Amiji, N.; Ichikawa, H.; Hamada, H.; Fujita, A.; Uozumi, T. Fabrication and mechanical properties of reaction sintered silicon carbide matrix composite. In Proceedings of the 21st Annual Conference on Composites, Advanced Ceramics, Materials, and Structures—A: Ceramic Engineering and Science Proceedings, Cocoa Beach, FL, USA, 26 March 1997; pp. 419–426. [Google Scholar]
- Spriet, P. CMC applications to gas turbines. In Ceramic Matrix Composites: Materials, Modeling and Technology; Wiley: Hoboken, NJ, USA, 2014; pp. 591–608. [Google Scholar] [CrossRef]
- Wang, P.H.; Zimmermann, N. Composite recycling techniques: A literature review. Juniper Online J. Mater. Sci. 2020, 6, 11–17. [Google Scholar] [CrossRef]
- Kalanchiam, M.; Chinnasamy, M. Advantages of composite materials in aircraft structures, World Acad. Sci. Eng. Technol. 2012, 71, 597–601. [Google Scholar]
- Neelakante Gowda, G.; Varughese, B.; Arumugam, G. 14-seater civil aircraft design with an innovative composite structure. JEC Compos. Mag 2013, 6, 951–952. [Google Scholar]
- Viscardi, M.; Arena, M.; Cerreta, P.; Iaccarino, P. Design and prototyping of a novel composite architecture for a widebody landing gear bay. Mater. Today Proc. 2021, 34, 288–292. [Google Scholar] [CrossRef]
- Arena, M.; Chiariello, A.; Castaldo, M.; Di Palma, L. Vibration response aspects of a main landing gear composite door designed for high-speed rotorcraft. Aerospace 2021, 8, 52. [Google Scholar] [CrossRef]
- Viscardi, M.; Arena, M.; Cerreta, P.; Iaccarino, P.; Imparato, S.I. Manufacturing and validation of a novel composite component for aircraft main landing gear bay. J. Mater. Eng. Perform. 2019, 28, 3292–3300. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, L.; Huang, Y.; Du, J. Recycling of carbon/epoxy composites. J. Appl. Polym. Sci. 2004, 94, 1912–1916. [Google Scholar] [CrossRef]
- Bachmann, J.; Hidalgo, C.; Bricout, S. Environmental analysis of innovative sustainable composites with potential use in aviation sector—A life cycle assessment review. Sci. China Technol. Sci. 2017, 60, 1301–1317. [Google Scholar] [CrossRef]
- Fahrenholtz, W.G.; Hilmas, G.E.; Talmy, I.G.; Zaykoski, J.A. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 2007, 90, 1347–1364. [Google Scholar] [CrossRef]
- Yakovlieva, A.; Boichenko, S.; Kale, U.; Nagy, A. Holistic approaches and advanced technologies in aviation product recycling. Aircr. Eng. Aerosp. Technol. 2021, 93, 1302–1312. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Sutton, M.A.; Mello, M. In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques. IEEE Trans. Nanotechnol. 2007, 6, 4–12. [Google Scholar] [CrossRef]
- Jayakrishna, K.; Kar, V.R.; Sultan, M.T.; Rajesh, M. Materials selection for aerospace components. In Sustainable Composites for Aerospace Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–18. [Google Scholar]
- Zhang, N.; Zhao, R.; He, D.; Ma, Y.; Qiu, J.; Jin, C.; Wang, C. Lightweight and flexible Ni-Co alloy nanoparticle-coated electrospun polymer nanofiber hybrid membranes for high-performance electromagnetic interference shielding. J. Alloys Compd. 2019, 784, 244–255. [Google Scholar] [CrossRef]
- Tang, X.-H.; Tang, Y.; Wang, Y.; Weng, Y.-X.; Wang, M. Interfacial metallization in segregated poly (lactic acid)/poly (ε-caprolactone)/multi-walled carbon nanotubes composites for enhancing electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106116. [Google Scholar] [CrossRef]
- Peng, T.; Xiao, R.; Rong, Z.; Liu, H.; Hu, Q.; Wang, S.; Li, X.; Zhang, J. Polymer nanocomposite-based coatings for corrosion protection. Chem.–Asian J. 2020, 15, 3915–3941. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Q.; Cheng, T.; Zhan, X.; Chen, F. Polyols-infused slippery surfaces based on magnetic Fe3O4-functionalized polymer hybrids for enhanced multifunctional anti-icing and deicing properties. Langmuir 2018, 34, 4052–4058. [Google Scholar] [CrossRef]
- Hou, Y.; Choy, K.L. Durable and robust PVDF-HFP/SiO2/CNTs nanocomposites for anti-icing application: Water repellency, icing delay, and ice adhesion. Prog. Org. Coat. 2022, 163, 106637. [Google Scholar] [CrossRef]
- Rocha, H.; Semprimoschnig, C.; Nunes, J.P. Sensors for process and structural health monitoring of aerospace composites: A review. Eng. Struct. 2021, 237, 112231. [Google Scholar] [CrossRef]
- Qing, X.; Li, W.; Wang, Y.; Sun, H. Piezoelectric transducer-based structural health monitoring for aircraft applications. Sensors 2019, 19, 545. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.J.; Mavris, D.N.; Schrage, D.P. Cost/time analysis for theoretical aircraft production. J. Aircr. 1998, 35, 637–646. [Google Scholar] [CrossRef]
- Guilvezan, G.; Carberry, B. Composite recycling and disposal; an environmental R&D issue. Boeing Environ. Technotes 2003, 8, 4. [Google Scholar]
- Koblen, I.; Talpaš, L.; Jurčák, J. Selected aspects of aviation equipment disposal issue. Review 2012, 102, 1–145. [Google Scholar]
- Witik, R.A.; Teuscher, R.; Michaud, V.; Ludwig, C.; Månson, J.-A.E. Carbon fibre reinforced composite waste: An environmental assessment of recycling, energy recovery and landfilling. Compos. Part A Appl. Sci. Manuf. 2013, 49, 89–99. [Google Scholar] [CrossRef]
- Li, X.; Bai, R.; McKechnie, J. Environmental and financial performance of mechanical recycling of carbon fibre reinforced polymers and comparison with conventional disposal routes. J. Clean. Prod. 2016, 127, 451–460. [Google Scholar] [CrossRef]
- Balaga, U.K.; Gunes, A.; Ozdemir, T.; Blackwell, C.; Davis, M.; Sauerbrunn, S.; Fuessel, L.; Deitzel, J.M.; Heider, D. Optimization of the Recycling Process for Aligned Short Carbon Fiber TuFF Composites. Recycling 2025, 10, 55. [Google Scholar] [CrossRef]
- Ozdemir, T.; Deitzel, J.M.; Crane, R.; Yarlagadda, S.; Blackwell, C.; Davis, M.; Emmerich, R.; Heider, D. Carbon fiber composites recycling technology enabled by the TuFF technology. Recycling 2024, 9, 11. [Google Scholar] [CrossRef]
- Lahive, C.W.; Dempsey, S.H.; Reiber, S.E.; Pal, A.; Stevenson, K.R.; Michener, W.E.; Alt, H.M.; Ramirez, K.J.; Rognerud, E.G.; Lincoln, C.L. Acetolysis for epoxy-amine carbon fibre-reinforced polymer recycling. Nature 2025, 642, 605–612. [Google Scholar] [CrossRef]
- Airbus. Airbus Annual Financial Statement. 2022. Available online: https://www.airbus.com/en/investors/annual-reports (accessed on 25 September 2025).
- Hitchcock, R. A panel discussion with the AFRA. In Proceedings of the AFRA Annual Conference, Las Vegas, NV, USA, 26–28 June 2016. [Google Scholar]
- Aerosave, T. Available online: http://www.tarmacaerosave.aero/index.php?lang=en (accessed on 29 November 2024).
- Zhang, X.; Chen, Y.; Hu, J. Recent advances in the development of aerospace materials. Prog. Aerosp. Sci. 2018, 97, 22–34. [Google Scholar] [CrossRef]
- Dursun, T.; Soutis, C. Recent developments in advanced aircraft aluminium alloys. Mater. Des. (1980–2015) 2014, 56, 862–871. [Google Scholar] [CrossRef]
- Starke, E.A., Jr.; Staley, J.T. Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci. 1996, 32, 131–172. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Smith, C.; Sankar, J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014, 10, 4561–4573. [Google Scholar] [CrossRef] [PubMed]
- Czerwinski, F. Controlling the ignition and flammability of magnesium for aerospace applications. Corros. Sci. 2014, 86, 1–16. [Google Scholar] [CrossRef]
- Veiga, C.; Davim, J.P.; Loureiro, A. Properties and applications of titanium alloys: A brief review. Rev. Adv. Mater. Sci 2012, 32, 133–148. [Google Scholar]
- Davis, J. Aluminum and Aluminum Alloys; ASM International: Novelty, OH, USA, 1993. [Google Scholar]
- Modarress, B.; Ansari, A.; Ansari, A. Environmental degradation and the implementation of the circular economy in commercial aviation. Sustain. J. Rec. 2020, 13, 178–184. [Google Scholar] [CrossRef]
- Directive, E.C. Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE) (recast) Text with EEA relevance. Off. J. Eur. Union L 2012, 197, 38–71. [Google Scholar]
- Cui, J.; Forssberg, E. Mechanical recycling of waste electric and electronic equipment: A review. J. Hazard. Mater. 2003, 99, 243–263. [Google Scholar] [CrossRef]
- Yip, H.; Pickering, S.; Rudd, C. Characterisation of carbon fibres recycled from scrap composites using fluidised bed process. Plast. Rubber Compos. 2002, 31, 278–282. [Google Scholar] [CrossRef]
- Hasan, M.; Haque, R.; Jahirul, M.; Rasul, M. Pyrolysis of plastic waste for sustainable energy Recovery: Technological advancements and environmental impacts. Energy Convers. Manag. 2025, 326, 119511. [Google Scholar] [CrossRef]
- Roychand, R.; Zafar, M.A.; Jacob, M.; Ngo, T. A Comprehensive Review on the Thermochemical Treatment of Plastic Waste to Produce High Value Products for Different Applications. Mater. Circ. Econ. 2025, 7, 1–33. [Google Scholar] [CrossRef]
- Mazhandu, Z.; Muzenda, E.; Belaid, M.; Mamvura, T.; Nhubu, T. Incineration as a potential solution to Africa’s plastic waste challenges: A narrative review. In Proceedings of the International Conference on Energy, Environment and Storage of Energy, Online, 19–21 November 2020; pp. 1–11. [Google Scholar]
- Buekens, A. Incineration Technologies; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Manžuch, Z.; Akelytė, R.; Camboni, M.; Carlander, D.; García, R.P.; Kriščiūnaitė, G.; Baun, A.; Kaegi, R. Study on the Product Lifecycles, Waste Recycling and the Circular Economy for Nanomaterials; European Chemicals Agency: Helsinki, Finland, 2021. [Google Scholar]
- Bojanovský, J.; Máša, V.; Hudák, I.; Skryja, P.; Hopjan, J. Rotary Kiln, a Unit on the Border of the Process and Energy Industry—Current State and Perspectives. Sustainability 2022, 14, 13903. [Google Scholar] [CrossRef]
- Van Caneghem, J.; Brems, A.; Lievens, P.; Block, C.; Billen, P.; Vermeulen, I.; Dewil, R.; Baeyens, J.; Vandecasteele, C. Fluidized bed waste incinerators: Design, operational and environmental issues. Prog. Energy Combust. Sci. 2012, 38, 551–582. [Google Scholar] [CrossRef]
- Heidari, M.; Garnaik, P.P.; Dutta, A. The valorization of plastic via thermal means: Industrial scale combustion methods. Plast. Energy 2019, 295–312. [Google Scholar]
- Jiang, X.; Li, Y.; Yan, J. Hazardous waste incineration in a rotary kiln: A review. Waste Dispos. Sustain. Energy 2019, 1, 3–37. [Google Scholar] [CrossRef]
- Franke, H.-J.; Shimizu, T.; Nishio, A.; Nishikawa, H.; Inagaki, M.; Ibashi, W. Improvement of carbon burn-up during fluidized bed incineration of plastic by using porous bed materials. Energy Fuels 1999, 13, 773–777. [Google Scholar] [CrossRef]
- Pickering, S.; Kelly, R.; Kennerley, J.; Rudd, C.; Fenwick, N. A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites. Compos. Sci. Technol. 2000, 60, 509–523. [Google Scholar] [CrossRef]
- Saxena, S.C.; Jotshi, C.K. Fluidized-bed incineration of waste materials. Prog. Energy Combust. Sci. 1994, 20, 281–324. [Google Scholar] [CrossRef]
- Marsh, G. Reclaiming value from post-use carbon composite. Reinf. Plast. 2008, 52, 36–39. [Google Scholar] [CrossRef]
- Pickering, S.J. Recycling technologies for thermoset composite materials—Current status. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1206–1215. [Google Scholar] [CrossRef]
- Kennerley, J.; Kelly, R.; Fenwick, N.; Pickering, S.; Rudd, C. The characterisation and reuse of glass fibres recycled from scrap composites by the action of a fluidised bed process. Compos. Part A Appl. Sci. Manuf. 1998, 29, 839–845. [Google Scholar] [CrossRef]
- Bartoli, M.; Giorcelli, M.; Tagliaferro, A. Morphology and Mechanical Properties of Epoxy/Synthetic Fiber Composites. In Handbook of Epoxy/Fiber Composites; Springer Nature: Singapore, 2022; pp. 229–251. [Google Scholar]
- Grosso, M.; Motta, A.; Rigamonti, L.J.W.M. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive. Waste Manag. 2010, 30, 1238–1243. [Google Scholar] [CrossRef]
- Derosa, R.; Telfeyan, E.; Mayes, J. Current state of recycling sheet molding compounds and related materials. J. Thermoplast. Compos. Mater. 2005, 18, 219–240. [Google Scholar] [CrossRef]
- Besco, S.; Brisotto, M.; Gianoncelli, A.; Depero, L.E.; Bontempi, E.; Lorenzetti, A.; Modesti, M. Processing and properties of polypropylene-based composites containing inertized fly ash from municipal solid waste incineration. J. Appl. Polym. Sci. 2013, 130, 4157–4164. [Google Scholar] [CrossRef]
- Asmatulu, E.; Twomey, J.; Overcash, M. Recycling of fiber-reinforced composites and direct structural composite recycling concept. J. Compos. Mater. 2014, 48, 593–608. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Alam, M.T.; Krishna, B.B.; Bhaskar, T.; Perkins, G. A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes. Bioresour. Technol. 2020, 312, 123596. [Google Scholar] [CrossRef]
- Nistratov, A.V.; Klimenko, N.N.; Pustynnikov, I.V.; Vu, L.K. Thermal regeneration and reuse of carbon and glass fibers from waste composites. Emerg Sci J 2022, 6, 967–984. [Google Scholar] [CrossRef]
- Yang, Y.; Boom, R.; Irion, B.; Van Heerden, D.-J.; Kuiper, P.; De Wit, H. Recycling of composite materials. Chem. Eng. Process. Process Intensif. 2012, 51, 53–68. [Google Scholar] [CrossRef]
- Ateeq, M. A review on recycling technique and remanufacturing of the carbon fiber from the carbon fiber polymer composite: Processing, challenges, and state-of-arts. Compos. Part C Open Access 2023, 12, 100412. [Google Scholar] [CrossRef]
- Fetting, C. The European green deal. ESDN Rep. 2020, 2, 53. [Google Scholar]
- Maqsood, T.; Dai, J.; Zhang, Y.; Guang, M.; Li, B. Pyrolysis of plastic species: A review of resources and products. J. Anal. Appl. Pyrolysis 2021, 159, 105295. [Google Scholar] [CrossRef]
- Sharuddin, S.D.A.; Abnisa, F.; Daud, W.M.A.W.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Oasmaa, A.; Pihkola, H.; Deviatkin, I.; Tenhunen, A.; Mannila, J.; Minkkinen, H.; Pohjakallio, M.; Laine-Ylijoki, J. Pyrolysis of plastic waste: Opportunities and challenges. J. Anal. Appl. Pyrolysis 2020, 152, 104804. [Google Scholar] [CrossRef]
- Wróblewska-Krepsztul, J.; Rydzkowski, T. Pyrolysis and incineration in polymer waste management system. J. Mech. Energy Eng. 2019, 3, 337–342. [Google Scholar] [CrossRef]
- Dai, L.; Zhou, N.; Lv, Y.; Cheng, Y.; Wang, Y.; Liu, Y.; Cobb, K.; Chen, P.; Lei, H.; Ruan, R. Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Prog. Energy Combust. Sci. 2022, 93, 101021. [Google Scholar] [CrossRef]
- Eze, W.U.; Umunakwe, R.; Obasi, H.C.; Ugbaja, M.I.; Uche, C.C.; Madufor, I.C. Plastics waste management: A review of pyrolysis technology. Clean Technol. Recycl. 2021, 1, 50–69. [Google Scholar] [CrossRef]
- Torsello, D.; Bartoli, M.; Giorcelli, M.; Rovere, M.; Arrigo, R.; Malucelli, G.; Tagliaferro, A.; Ghigo, G. High frequency electromagnetic shielding by biochar-based composites. Nanomaterials 2021, 11, 2383. [Google Scholar] [CrossRef]
- Torsello, D.; Ghigo, G.; Giorcelli, M.; Bartoli, M.; Rovere, M.; Tagliaferro, A. Tuning the microwave electromagnetic properties of biochar-based composites by annealing. Carbon Trends 2021, 4, 100062. [Google Scholar] [CrossRef]
- Animali, L.; Corrado, S.; Mitillo, N.; Tuccimei, P.; Bartoli, M.; Mattei, M.; Giorcelli, M. Characterization and evaluation of commercial biochar for surface water purification. Sustain. Horiz. 2025, 15, 100145. [Google Scholar] [CrossRef]
- Bartoli, M.; Giorcelli, M.; Jagdale, P.; Rovere, M.; Tagliaferro, A. A review of non-soil biochar applications. Materials 2020, 13, 261. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, M.; Giorcelli, M.; Tagliaferro, A. A Comprehensive Overview on Biochar-Based Materials for Catalytic Applications. Catalysts 2023, 13, 1336. [Google Scholar] [CrossRef]
- Bartoli, M.; Troiano, M.; Giudicianni, P.; Amato, D.; Giorcelli, M.; Solimene, R.; Tagliaferro, A. Effect of heating rate and feedstock nature on electrical conductivity of biochar and biochar-based composites. Appl. Energy Combust. Sci. 2022, 12, 100089. [Google Scholar] [CrossRef]
- Bartoli, M.; Rosi, L.; Frediani, F.; Undri, A.; Frediani, P. Depolymerization of polystyrene at reduced pressure through a microwave assisted pyrolysis. J. Anal. Appl. Pyrolysis 2015, 113, 281–287. [Google Scholar] [CrossRef]
- Thamizh Selvan, R.; Vishakh Raja, P.; Mangal, P.; Mohan, N.; Bhowmik, S. Recycling technology of epoxy glass fiber and epoxy carbon fiber composites used in aerospace vehicles. J. Compos. Mater. 2021, 55, 3281–3292. [Google Scholar] [CrossRef]
- Torres-Herrador, F.; Eschenbacher, A.; Coheur, J.; Blondeau, J.; Magin, T.E.; Van Geem, K.M. Decomposition of carbon/phenolic composites for aerospace heatshields: Detailed speciation of phenolic resin pyrolysis products. Aerosp. Sci. Technol. 2021, 119, 107079. [Google Scholar] [CrossRef]
- Fernández, A.; Lopes, C.S.; González, C.; López, F.A. Characterization of Carbon Fibers Recovered by Pyrolysis of Cured Prepregs and Their Reuse in New Composites; InTech Rijeka: Rijeka, Croatia, 2018; Volume 7. [Google Scholar]
- Ma, C.; Sánchez-Rodríguez, D.; Kamo, T. A comprehensive study on the oxidative pyrolysis of epoxy resin from fiber/epoxy composites: Product characteristics and kinetics. J. Hazard. Mater. 2021, 412, 125329. [Google Scholar] [CrossRef]
- Abdou, T.R.; Junior, A.B.; Espinosa, D.C.R.; Tenório, J. Recycling of polymeric composites from industrial waste by pyrolysis: Deep evaluation for carbon fibers reuse. Waste Manag. 2021, 120, 1–9. [Google Scholar] [CrossRef]
- Guo, L.; Xu, L.; Ren, Y.; Shen, Z.; Fu, R.; Xiao, H.; Liu, J. Research on a two-step pyrolysis-oxidation process of carbon fiber-reinforced epoxy resin-based composites and analysis of product properties. J. Environ. Chem. Eng. 2022, 10, 107510. [Google Scholar] [CrossRef]
- Li, H.; Englund, K. Recycling of carbon fiber-reinforced thermoplastic composite wastes from the aerospace industry. J. Compos. Mater. 2017, 51, 1265–1273. [Google Scholar] [CrossRef]
- Aishwarya, K.; Sindhu, N. Microwave assisted pyrolysis of plastic waste. Procedia Technol. 2016, 25, 990–997. [Google Scholar] [CrossRef]
- Miandad, R.; Barakat, M.; Aburiazaiza, A.S.; Rehan, M.; Nizami, A. Catalytic pyrolysis of plastic waste: A review. Process. Saf. Environ. Prot. 2016, 102, 822–838. [Google Scholar] [CrossRef]
- Bartoli, M.; Frediani, M.; Briens, C.; Berruti, F.; Rosi, L. An Overview of Temperature Issues in Microwave-Assisted Pyrolysis. Processes 2019, 7, 658. [Google Scholar] [CrossRef]
- Tyrebirth. Available online: https://www.tyrebirth.com/it/ (accessed on 2 March 2021).
- Giorcelli, M.; Das, O.; Sas, G.; Försth, M.; Bartoli, M. A review of bio-oil production through microwave- assisted pyrolysis. Processes 2021, 9, 561. [Google Scholar] [CrossRef]
- Bartoli, M.; Rosi, L.; Frediani, P.; Frediani, M. Bio-oils from microwave assisted pyrolysis of kraft lignin operating at reduced residual pressure. Fuel 2020, 278, 118175. [Google Scholar] [CrossRef]
- Bartoli, M.; Rosi, L.; Giovannelli, A.; Frediani, P.; Frediani, M. Bio-oil from residues of short rotation coppice of poplar using a microwave assisted pyrolysis. J. Anal. Appl. Pyrolysis 2016, 119, 224–232. [Google Scholar] [CrossRef]
- Bartoli, M.; Rosi, L.; Giovannelli, A.; Frediani, P.; Frediani, M. Pyrolysis of α-cellulose using a multimode microwave oven. J. Anal. Appl. Pyrolysis 2016, 120, 284–296. [Google Scholar] [CrossRef]
- Bartoli, M.; Rosi, L.; Giovannelli, A.; Frediani, P.; Frediani, M. Production of bio-oils and bio-char from Arundo donax through microwave assisted pyrolysis in a multimode batch reactor. J. Anal. Appl. Pyrolysis 2016, 122, 479–489. [Google Scholar] [CrossRef]
- Bartoli, M.; Rosi, L.; Giovannelli, A.; Frediani, P.; Frediani, M. Characterization of bio-oil and bio-char produced by low-temperature microwave-assisted pyrolysis of olive pruning residue using various absorbers. Waste Manag. Res. 2020, 38, 213–225. [Google Scholar] [CrossRef]
- Bartoli, M.; Rosi, L.; Giovannelli, A.; Frediani, P.; Passaponti, M.; Frediani, M. Microwave assisted pyrolysis of crop residues from Vitis vinifera. J. Anal. Appl. Pyrolysis 2018, 130, 249–255. [Google Scholar] [CrossRef]
- Lester, E.; Kingman, S.; Wong, K.H.; Rudd, C.; Pickering, S.; Hilal, N. Microwave heating as a means for carbon fibre recovery from polymer composites: A technical feasibility study. Mater. Res. Bull. 2004, 39, 1549–1556. [Google Scholar] [CrossRef]
- Rosi, L.; Bartoli, M.; Undri, A.; Frediani, M.; Frediani, P. Synthesis of dianols or BPA through catalytic hydrolyisis/glycolysis of waste polycarbonates using a microwave heating. J. Mol. Catal. A Chem. 2015, 408, 278–286. [Google Scholar] [CrossRef]
- Nikje, M.M.A.; Askarzadeh, M. Controllable microwave-assisted polycarbonate waste chemical recycling. Prog. Rubber Plast. Recycl. Technol. 2013, 29, 169–176. [Google Scholar] [CrossRef]
- Das, S.K.; Kaufman, J.G. Recycling aluminum aerospace alloys. Adv. Mater. Process. 2008, 166, 34. [Google Scholar]
- Shaffer, C. Aircraft Keep Working Even After Retirement. Available online: https://www.thermofisher.com/blog/metals/aircraft-keep-working-even-after-retirement/ (accessed on 30 October 2024).
- Padamata, S.K.; Yasinskiy, A.; Polyakov, P. A review of secondary aluminum production and its byproducts. JOM 2021, 73, 2603–2614. [Google Scholar] [CrossRef]
- Capuzzi, S.; Timelli, G. Preparation and melting of scrap in aluminum recycling: A review. Metals 2018, 8, 249. [Google Scholar] [CrossRef]
- Verdier, J.F.; Butruille, J.R.; Leroy, M.; Valax, D. Process for Recycling Aluminum Alloy Scrap Coming from the Aaeronautical Industry. U.S. Patent 8,202,347 B2, 19 June 2012. [Google Scholar]
- Gesing, A.; Wolanski, R. Recycling light metals from end-of-life vehicle. JOM 2001, 53, 21–23. [Google Scholar] [CrossRef]
- Das, S.K.; Green, J.; Kaufman, J. Aluminum recycling: Economic and environmental benefits. Light Met. Age 2010, 68, 42. [Google Scholar]
- Ogilvie, S. A Review of: The Environmental Impact of Recycling; Report LR; Warren Spring Laboratory: Stevenage, UK, 1993. [Google Scholar]
- Raabe, D.; Ponge, D.; Uggowitzer, P.J.; Roscher, M.; Paolantonio, M.; Liu, C.; Antrekowitsch, H.; Kozeschnik, E.; Seidmann, D.; Gault, B. Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Prog. Mater. Sci. 2022, 128, 100947. [Google Scholar] [CrossRef]
- Gaustad, G.; Olivetti, E.; Kirchain, R. Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resour. Conserv. Recycl. 2012, 58, 79–87. [Google Scholar] [CrossRef]
- Green, J.A. Aluminum Recycling and Processing for Energy Conservation and Sustainability; ASM International: Novelty, OH, USA, 2007. [Google Scholar]
- Shi, L.; Peng, Z.; Ning, P.; Sun, X.; Li, K.; Zhang, H.; Qu, T. Clean and Efficient Recovery of Lithium from Al-Li Alloys via Vacuum Fractional Condensation. Separations 2023, 10, 374. [Google Scholar] [CrossRef]
- Eckelman, M.J.; Ciacci, L.; Kavlak, G.; Nuss, P.; Reck, B.K.; Graedel, T. Life cycle carbon benefits of aerospace alloy recycling. J. Clean. Prod. 2014, 80, 38–45. [Google Scholar] [CrossRef]
- Srivastava, R.R.; Kim, M.-s.; Lee, J.-c.; Jha, M.K.; Kim, B.-S. Resource recycling of superalloys and hydrometallurgical challenges. J. Mater. Sci. 2014, 49, 4671–4686. [Google Scholar] [CrossRef]
- Kollová, A.; Pauerová, K. Superalloys-characterization, usage and recycling. Manuf. Technol. 2022, 22, 550–557. [Google Scholar] [CrossRef]
- VV, S.P.; Rao, A.S.; Prakash, U.; Rao, V.R.; Rao, P.K.; Gupt, K.M. Recycling of superalloy scrap through electro slag remelting. ISIJ Int. 1996, 36, 1459–1464. [Google Scholar] [CrossRef]
- Cui, F.; Wang, G.; Yu, D.; Gan, X.; Tian, Q.; Guo, X. Towards “zero waste” extraction of nickel from scrap nickel-based superalloy using magnesium. J. Clean. Prod. 2020, 262, 121275. [Google Scholar] [CrossRef]
- Takeda, O.; Okabe, T.H. Current status of titanium recycling and related technologies. JOM 2019, 71, 1981–1990. [Google Scholar] [CrossRef]
- Rathi, M.G.; Nilesh, A.J. An overview of forging processes with their defects. Int. J. Sci. Res. Publ. 2014, 4, 1–7. [Google Scholar]
- Suomalainen, E.; Celikel, A.; Vénuat, P. Aircraft Metals Recycling: Process, Challenges and Opportunities; ENVISA and Bartin Recycling Group: Paris, France, 2017. [Google Scholar]
- Zhao, Q.; Sun, Q.; Xin, S.; Chen, Y.; Wu, C.; Wang, H.; Xu, J.; Wan, M.; Zeng, W.; Zhao, Y.J.M.S.; et al. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process. Mater. Sci. Eng. A 2022, 845, 143260. [Google Scholar] [CrossRef]
- Ahmad, A.; Lajis, M.; Yusuf, N.; Wagiman, A. Hot press forging as the direct recycling technique of aluminium—A review. ARPN J. Eng. Appl. Sci. 2016, 11, 2258–2265. [Google Scholar]
- ISO 5157:2023; Textiles—Environmental Aspects. International Organization for Standardization: Geneva, Switzerland, 2023.
- Duhoux, T.; Maes, E.; Hirschnitz-Garbers, M.; Peeters, K.; Asscherickx, L.; Christis, M.; Stubbe, B.; Colignon, P.; Hinzmann, M.; Sachdeva, A. Study on the Technical, Regulatory, Economic and Environmental Effectiveness of Textile Fibres Recycling; European Commission: Brussels, Belgium, 2021; Volume 24. [Google Scholar]
- Butenegro, J.A.; Bahrami, M.; Abenojar, J.; Martínez, M.Á. Recent progress in carbon fiber reinforced polymers recycling: A review of recycling methods and reuse of carbon fibers. Materials 2021, 14, 6401. [Google Scholar] [CrossRef] [PubMed]
- Huygens, D.; Foschi, J.; Caro, D.; Caldeira, C.; Faraca, G.; Foster, G.; Solis, M.; Marschinski, R.; Napolano, L.; Fruergaard Astrup, T. Techno-Scientific Assessment of the Management Options for Used and Waste Textiles in the European Union; Joint Research Centre (Seville site): Sevilla, Spain, 2023. [Google Scholar]
- Ribeiro, M.; Meira-Castro, A.C.; Silva, F.; Santos, J.; Meixedo, J.P.; Fiúza, A.; Dinis, M.; Alvim, M.R. Re-use assessment of thermoset composite wastes as aggregate and filler replacement for concrete-polymer composite materials: A case study regarding GFRP pultrusion wastes. Resour. Conserv. Recycl. 2015, 104, 417–426. [Google Scholar] [CrossRef]
- Palmer, J.A.T. Mechanical Recycling of Automotive Composites for Use as Reinforcement in Thermoset Composites; University of Exeter (United Kingdom): Exeter, UK, 2009. [Google Scholar]
- Job, S. Recycling glass fibre reinforced composites–history and progress. Reinf. Plast. 2013, 57, 19–23. [Google Scholar] [CrossRef]
- Ward, C.; Potter, K. Understanding composites design and manufacturing for minimisation of scrap generation: The first steps to efficient material use. In Proceedings of the SECIO 08, SAMPE Europe International Conference, Paris, France, 6–7 October 2008; pp. 543–548. [Google Scholar]
- Kouparitsas, C.; Kartalis, C.; Varelidis, P.; Tsenoglou, C.; Papaspyrides, C. Recycling of the fibrous fraction of reinforced thermoset composites. Polym. Compos. 2002, 23, 682–689. [Google Scholar] [CrossRef]
- Bernasconi, A.; Rossin, D.; Armanni, C. Analysis of the effect of mechanical recycling upon tensile strength of a short glass fibre reinforced polyamide 6,6. Eng. Fract. Mech. 2007, 74, 627–641. [Google Scholar] [CrossRef]
- Ogi, K.; Nishikawa, T.; Okano, Y.; Taketa, I. Mechanical properties of ABS resin reinforced with recycled CFRP. Adv. Compos. Mater. 2007, 16, 181–194. [Google Scholar] [CrossRef]
- Takahashi, J.; Matsutsuka, N.; Okazumi, T.; Uzawa, K.; Ohsawa, I.; Yamaguchi, K.; Kitano, A. Mechanical properties of recycled CFRP by injection molding method. In Proceedings of the ICCM-16, Japan Society for Composite Materials, Kyoto, Japan, 8 July 2007. [Google Scholar]
- Roux, M.; Eguémann, N.; Dransfeld, C.; Thiébaud, F.; Perreux, D. Thermoplastic carbon fibre-reinforced polymer recycling with electrodynamical fragmentation: From cradle to cradle. J. Thermoplast. Compos. Mater. 2017, 30, 381–403. [Google Scholar] [CrossRef]
- Aly, N.M. A review on utilization of textile composites in transportation towards sustainability. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 042002. [Google Scholar] [CrossRef]
- Juanga-Labayen, J.P.; Labayen, I.V.; Yuan, Q. A review on textile recycling practices and challenges. Textiles 2022, 2, 174–188. [Google Scholar] [CrossRef]
- Baloyi, R.B.; Gbadeyan, O.J.; Sithole, B.; Chunilall, V. Recent advances in recycling technologies for waste textile fabrics: A review. Text. Res. J. 2024, 94, 508–529. [Google Scholar] [CrossRef]
- Sandberg, E.; Pal, R. Exploring supply chain capabilities in textile-to-textile recycling–A European interview study. Clean. Logist. Supply Chain 2024, 11, 100152. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Karl, C.W.; Gagani, A.I.; Jørgensen, J.K. Composite material recycling technology—State-of-the-art and sustainable development for the 2020s. J. Compos. Sci. 2021, 5, 28. [Google Scholar] [CrossRef]
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef]
- Jiang, J.; Deng, G.; Chen, X.; Gao, X.; Guo, Q.; Xu, C.; Zhou, L. On the successful chemical recycling of carbon fiber/epoxy resin composites under the mild condition. Compos. Sci. Technol. 2017, 151, 243–251. [Google Scholar] [CrossRef]
- Borjan, D.; Knez, Ž.; Knez, M. Recycling of carbon fiber-reinforced composites—Difficulties and future perspectives. Materials 2021, 14, 4191. [Google Scholar] [CrossRef]
- Pimenta, S.; Pinho, S.T. Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Manag. 2011, 31, 378–392. [Google Scholar] [CrossRef]
- Jody, B.J.; Pomykala, J.A.; Daniels, E.J.; Greminger, J.L. A process to recover carbon fibers from polymer-matrix composites in end-of-life vehicles. JOM 2004, 56, 43–47. [Google Scholar] [CrossRef]
- Rybicka, J.; Tiwari, A.; Leeke, G.A. Technology readiness level assessment of composites recycling technologies. J. Clean. Prod. 2016, 112, 1001–1012. [Google Scholar] [CrossRef]
- Nakagawa, M.; Shibata, K.; Kuriya, H. Characterization of CFRP using recovered carbon fibers from waste CFRP. In Proceedings of the Second International Symposium on Fiber Recycling, the Fiber Recycling, Chengdu, China, 11–14 October 2009. [Google Scholar]
- Xu, P.; Li, J.; Ding, J. Chemical recycling of carbon fibre/epoxy composites in a mixed solution of peroxide hydrogen and N, N-dimethylformamide. Compos. Sci. Technol. 2013, 82, 54–59. [Google Scholar] [CrossRef]
- Kao, C.; Ghita, O.; Hallam, K.; Heard, P.; Evans, K. Mechanical studies of single glass fibres recycled from hydrolysis process using sub-critical water. Compos. Part A Appl. Sci. Manuf. 2012, 43, 398–406. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Jiang, Z.; Tang, T. Chemical recycling of carbon fibre reinforced epoxy resin composites in subcritical water: Synergistic effect of phenol and KOH on the decomposition efficiency. Polym. Degrad. Stab. 2012, 97, 214–220. [Google Scholar] [CrossRef]
- Oliveux, G.; Bailleul, J.-L.; La Salle, E.L.G.; Lefèvre, N.; Biotteau, G. Recycling of glass fibre reinforced composites using subcritical hydrolysis: Reaction mechanisms and kinetics, influence of the chemical structure of the resin. Polym. Degrad. Stab. 2013, 98, 785–800. [Google Scholar] [CrossRef]
- Okajima, I.; Watanabe, K.; Haramiishi, S.; Nakamura, M.; Shimamura, Y.; Sako, T. Recycling of carbon fiber reinforced plastic containing amine-cured epoxy resin using supercritical and subcritical fluids. J. Supercrit. Fluids 2017, 119, 44–51. [Google Scholar] [CrossRef]
- Sokoli, H.U.; Beauson, J.; Simonsen, M.E.; Fraisse, A.; Brøndsted, P.; Søgaard, E.G. Optimized process for recovery of glass-and carbon fibers with retained mechanical properties by means of near-and supercritical fluids. J. Supercrit. Fluids 2017, 124, 80–89. [Google Scholar] [CrossRef]
- Das, M.; Chacko, R.; Varughese, S. An efficient method of recycling of CFRP waste using peracetic acid. ACS Sustain. Chem. Eng. 2018, 6, 1564–1571. [Google Scholar] [CrossRef]
- Khalil, Y. Sustainability assessment of solvolysis using supercritical fluids for carbon fiber reinforced polymers waste management. Sustain. Prod. Consum. 2019, 17, 74–84. [Google Scholar] [CrossRef]
- Abdelghafar Elsayed, T.R.A.B. Best Practices and Standards in Aircraft End-of-Life and Recycling; International Civil Aviation Organisation: Montreal, QC, Canada, 2019; Available online: https://www.icao.int/environmental-protection/Documents/EnvironmentalReports/2019/ENVReport2019_pg279-284.pdf (accessed on 27 September 2024).
- Amy Bann, T.B.T. Paul McElroy. In Airplane and Carbon Fiber Recycling; Boeing: Arlington, VA, USA, 2020. [Google Scholar]
- 40 CFR Part 268-Land Disposal Restrictions. 1986. Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-I/part-268 (accessed on 21 August 2025).
- Giulvezan, G.; Carberry, B. Composite Recycling and Disposal—An Environmental R&D Issue; Boeing: Arlington, VA, USA, 2003. [Google Scholar]
- Council of the European Union. Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. 1999. Available online: https://eur-lex.europa.eu/eli/dir/1999/31/oj/eng (accessed on 21 August 2025).
- European Parliament and Council of the European Union. Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 Amending Directive 1999/31/EC on the Landfill of Waste (Text with EEA Relevance). 2018. Available online: https://eur-lex.europa.eu/eli/dir/2018/850/oj/eng (accessed on 21 August 2025).
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Iravanian, A.; Ravari, S.O. Types of contamination in landfills and effects on the environment: A review study. IOP Conf. Ser. Earth Environ. Sci. 2020, 614, 012083. [Google Scholar] [CrossRef]
- Lou, X.; Nair, J. The impact of landfilling and composting on greenhouse gas emissions–A review. Bioresour. Technol. 2009, 100, 3792–3798. [Google Scholar] [CrossRef]
- Liberacki, A.; Trincone, B.; Duca, G.; Aldieri, L.; Vinci, C.P.; Carlucci, F. The Environmental Life Cycle Costs (ELCC) of Urban Air Mobility (UAM) as an input for sustainable urban mobility. J. Clean. Prod. 2023, 389, 136009. [Google Scholar] [CrossRef]
Technology | Materials Treated | Advantages | Disadvantages |
---|---|---|---|
Thermal processes |
|
|
|
Melting and forging |
|
|
|
Mechanical processes and disassembling |
|
|
|
Chemical processes |
|
|
|
Landfilling |
|
|
|
Standard/Regulation | Mandatory/Recommended | EU, NON-EU, Internal, Other | Brief Topic Description |
---|---|---|---|
ISO 9001 | Recommended | Internal | Quality management systems |
ISO 14001 | Recommended | Internal | Environmental management systems |
REACH | Mandatory | EU | Registration, Evaluation, Authorization and Restriction of Chemicals |
OSHA 1910 | Mandatory | Non-EU | Occupational safety and health standards in the U.S. |
EASA Part M | Mandatory | EU | Requirements for the continuing airworthiness management of aircraft components |
EASA Part 145 | Mandatory | EU | Company-level certification for maintenance and operations on aircraft components |
EASA Part 21 Subpart G | Mandatory | EU | Approval of organizations for the production of aeronautical components |
EASA Part 147 | Mandatory | EU | Regulation of maintenance training organizations |
EASA Part 66 | Mandatory | EU | European aircraft maintenance license recognized across EU Member States |
EASA Part T | Mandatory | EU | Airworthiness management of third-country aircraft leased short-term |
EASA Part ML | Mandatory | EU | Simplified rules for maintaining non-complex aircraft |
EASA Part CAMO | Mandatory | EU | Requirements for continuing airworthiness management organizations |
EASA Part CAO | Mandatory | EU | Combined requirements for managing maintenance and airworthiness of non-complex aircraft |
Regulation (EU) 2018/1139 | Mandatory | EU | Common aviation rules and triennial environmental review |
ASA-100/FAA AC00-56 | Recommended | Non-EU | Voluntary accreditation program for aviation parts distributors |
UK Position Statement 164 | Mandatory | Non-EU | Removal of airworthy parts from waste aircraft without an environmental permit |
ICAO Annex 16 | Mandatory | Other | Environmental protection: noise, emissions, CO2 standards, and CORSIA program |
AFRA BMP | Recommended | Other | Best management practices for aircraft parts recycling and facility accreditation by the Aircraft Fleet Recycling Association |
IATA BIPAD | Recommended | Other | Guidelines for sustainable aircraft decommissioning addressing economic, safety, and environmental aspects |
IATA PAO: TO | Recommended | Other | Guidance for implementing paperless aircraft operations, focusing on cost-efficiency, compliance, and knowledge management. |
IATA Cabin Waste Handbook | Recommended | Other | Best practices for cabin waste management, including recycling solutions and waste reduction strategies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zecchi, S.; Cristoforo, G.; Rosso, C.; Tagliaferro, A.; Bartoli, M. Unconventional Mining of End-of-Life Aircrafts: A Systematic Review. Recycling 2025, 10, 187. https://doi.org/10.3390/recycling10050187
Zecchi S, Cristoforo G, Rosso C, Tagliaferro A, Bartoli M. Unconventional Mining of End-of-Life Aircrafts: A Systematic Review. Recycling. 2025; 10(5):187. https://doi.org/10.3390/recycling10050187
Chicago/Turabian StyleZecchi, Silvia, Giovanni Cristoforo, Carlo Rosso, Alberto Tagliaferro, and Mattia Bartoli. 2025. "Unconventional Mining of End-of-Life Aircrafts: A Systematic Review" Recycling 10, no. 5: 187. https://doi.org/10.3390/recycling10050187
APA StyleZecchi, S., Cristoforo, G., Rosso, C., Tagliaferro, A., & Bartoli, M. (2025). Unconventional Mining of End-of-Life Aircrafts: A Systematic Review. Recycling, 10(5), 187. https://doi.org/10.3390/recycling10050187