Co-Pelletization of Rice Husk and Corncob Residues: Evaluation of Physicochemical Properties and Combustion Performance
Abstract
1. Introduction
2. Results
2.1. Physical Properties of Pellets
2.2. Ultimate Analysis
2.3. Proximate Analysis
2.4. Heating Values
2.5. Chemical Composition
2.6. Impact Resistance
2.7. Macro-TG Analysis
2.8. Pellet Quality Analysis
3. Discussion
3.1. Analytical Perspectives on Physical Properties
3.2. Insights from Ultimate Analysis
3.3. Evaluation of Proximate Analysis
3.4. Implications of Heating Values
3.5. Relevance of Chemical Composition
3.6. Impact Resistance Analysis
3.7. Thermochemical Behavior from Macro-TG Insights
3.8. Integrated Assessment of Pellet Quality Parameters
4. Materials and Methods
4.1. Material Preparation
4.2. Pelletization Process
4.3. Pellet Dimensions
4.4. Specific and Bulk Density
4.5. Chemical Composition
4.6. Moisture Content
4.7. Ash Content
4.8. Volatile Material
4.9. Fixed Carbon
4.10. Ultimate Analysis
4.11. Higher Heating Value
4.12. Impact Resistance
4.13. Macro-TGA Analysis
4.14. Pellet Quality Assessment
4.15. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dao, C.N.; Salam, A.; Kim Oanh, N.T.; Tabil, L.G. Effects of Length-to-Diameter Ratio, Pinewood Sawdust, and Sodium Lignosulfonate on Quality of Rice Straw Pellets Produced via a Flat Die Pellet Mill. Renew. Energy 2022, 181, 1140–1154. [Google Scholar] [CrossRef]
- Ribun, V.; Boichenko, S.; Kale, U. Advances in Gas-to-Liquid Technology for Environmentally Friendly Fuel Synthesis: Analytical Review of World Achievements. Energy Rep. 2023, 9, 5500–5508. [Google Scholar] [CrossRef]
- Sarker, T.R.; Borugadda, V.B.; Meda, V.; Dalai, A.K. Optimization of Pelletization Process Conditions and Binder Concentration for Production of Fuel Pellets from Oat Hull and Quality Evaluation. Biomass Bioenergy 2023, 174, 106825. [Google Scholar] [CrossRef]
- Gargiulo, V.; Di Natale, F.; Alfe, M. From Agricultural Wastes to Advanced Materials for Environmental Applications: Rice Husk-Derived Adsorbents for Heavy Metals Removal from Wastewater. J. Environ. Chem. Eng. 2024, 12, 113497. [Google Scholar] [CrossRef]
- Chen, R.; Congress, S.S.C.; Cai, G.; Duan, W.; Liu, S. Sustainable Utilization of Biomass Waste-Rice Husk Ash as a New Solidified Material of Soil in Geotechnical Engineering: A Review. Constr. Build. Mater. 2021, 292, 123219. [Google Scholar] [CrossRef]
- Okeke, F.O.; Ahmed, A.; Imam, A.; Hassanin, H. A Review of Corncob-Based Building Materials as a Sustainable Solution for the Building and Construction Industry. Hybrid. Adv. 2024, 6, 100269. [Google Scholar] [CrossRef]
- Nahak, B.K.; Preetam, S.; Sharma, D.; Shukla, S.K.; Syväjärvi, M.; Toncu, D.C.; Tiwari, A. Advancements in Net-Zero Pertinency of Lignocellulosic Biomass for Climate Neutral Energy Production. Renew. Sustain. Energy Rev. 2022, 161, 112393. [Google Scholar] [CrossRef]
- Anyaoha, K.E. Synergistic Perspective on Biomass Co-Utilization in Thermo-Chemical Processes. Bioresour. Technol. Rep. 2022, 18, 101043. [Google Scholar] [CrossRef]
- Guo, F.; Chen, J.; He, Y.; Gardy, J.; Sun, Y.; Jiang, J.; Jiang, X. Upgrading Agro-Pellets by Torrefaction and Co-Pelletization Process Using Food Waste as a Pellet Binder. Renew. Energy 2022, 191, 213–224. [Google Scholar] [CrossRef]
- Cui, X.; Yang, J.; Wang, Z.; Shi, X. Better Use of Bioenergy: A Critical Review of Co-Pelletizing for Biofuel Manufacturing. Carbon Capture Sci. Technol. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Setter, C.; Borges, F.A.; Cardoso, C.R.; Mendes, R.F.; Oliveira, T.J.P. Energy Quality of Pellets Produced from Coffee Residue: Characterization of the Products Obtained via Slow Pyrolysis. Ind. Crops Prod. 2020, 154, 112731. [Google Scholar] [CrossRef]
- Pajampa, K.; Laloon, K.; Suksri, A.; Phadungton, S.; Ratpukdi, T.; Posom, J.; Wongwuttanasatian, T. A Way towards Zero-Waste Campaign and Sustainability in Sugar Industries; Filter Cake Valorisation as Energy Pellets. Ain Shams Eng. J. 2024, 15, 102459. [Google Scholar] [CrossRef]
- García, R.; González-Vázquez, M.P.; Rubiera, F.; Pevida, C.; Gil, M.V. Co-Pelletization of Pine Sawdust and Refused Derived Fuel (RDF) to High-Quality Waste-Derived Pellets. J. Clean. Prod. 2021, 328, 129635. [Google Scholar] [CrossRef]
- Ibitoye, S.E.; Jen, T.C.; Mahamood, R.M.; Akinlabi, E.T. Densification of Agro-Residues for Sustainable Energy Generation: An Overview. Bioresour. Bioprocess. 2021, 8, 75. [Google Scholar] [CrossRef]
- Yılmaz, H.; Çanakcı, M.; Topakcı, M.; Karayel, D.; Yiğit, M.; Ortaçeşme, D. In-Situ Pelletization of Campus Biomass Residues: Case Study for Akdeniz University. Renew. Energy 2023, 212, 972–983. [Google Scholar] [CrossRef]
- Sarker, T.R.; Azargohar, R.; Dalai, A.K.; Meda, V. Characteristics of Torrefied Fuel Pellets Obtained from Co-Pelletization of Agriculture Residues with Pyrolysis Oil. Biomass Bioenergy 2021, 150, 106139. [Google Scholar] [CrossRef]
- Stachowicz, P.; Stolarski, M.J. Pellets from Mixtures of Short Rotation Coppice with Forest-Derived Biomass: Production Costs and Energy Intensity. Renew. Energy 2024, 225, 120250. [Google Scholar] [CrossRef]
- Joka Yildiz, M.; Cwalina, P.; Obidziński, S. A Comprehensive Study of Buckwheat Husk Co-Pelletization for Utilization via Combustion. Biomass Convers. Biorefin. 2024, 14, 27925–27942. [Google Scholar] [CrossRef]
- de Almeida Moreira, B.R.; Barbosa Júnior, M.R.; de Brito Filho, A.L.; da Silva, R.P. Production of High-Quality Biogenic Fuels by Co-Pelletization of Sugarcane Bagasse with Pinewood Sawdust and Peanut Shell. Biomass Convers. Biorefin. 2024, 14, 6797–6820. [Google Scholar] [CrossRef]
- Brand, M.A.; Mariano Rodrigues, T.; Peretti da Silva, J.; de Oliveira, J. Recovery of Agricultural and Wood Wastes: The Effect of Biomass Blends on the Quality of Pellets. Fuel 2021, 284, 118881. [Google Scholar] [CrossRef]
- Iglesias Canabal, A.; Proupín Castiñeiras, J.; Rodríguez Añón, J.A.; Eimil Fraga, C.; Rodríguez Soalleiro, R. Elemental Composition of Raw and Torrefied Pellets Made from Pine and Pine-Eucalyptus Blends. Biomass Bioenergy 2023, 177, 106951. [Google Scholar] [CrossRef]
- da Silva, S.B.; Arantes, M.D.C.; de Andrade, J.K.B.; Andrade, C.R.; de Cassia Oliveira Carneiro, A.; de Paula Protásio, T. Influence of Physical and Chemical Compositions on the Properties and Energy Use of Lignocellulosic Biomass Pellets in Brazil. Renew. Energy 2020, 147, 1870–1879. [Google Scholar] [CrossRef]
- Vitoussia, T.; Leyssens, G.; Trouvé, G.; Brillard, A.; Kemajou, A.; Njeugna, E.; Brilhac, J.F. Analysis of the Combustion of Pellets Made with Three Cameroonian Biomass in a Domestic Pellet Stove. Fuel 2020, 276, 118105. [Google Scholar] [CrossRef]
- Hossain, T.; Jones, D.S.; Godfrey, E.; Saloni, D.; Sharara, M.; Hartley, D.S. Characterizing Value-Added Pellets Obtained from Blends of Miscanthus, Corn Stover, and Switchgrass. Renew. Energy 2024, 227, 120494. [Google Scholar] [CrossRef]
- Ríos-Badrán, I.M.; Luzardo-Ocampo, I.; García-Trejo, J.F.; Santos-Cruz, J.; Gutiérrez-Antonio, C. Production and Characterization of Fuel Pellets from Rice Husk and Wheat Straw. Renew. Energy 2020, 145, 500–507. [Google Scholar] [CrossRef]
- Zawiślak, K.; Sobczak, P.; Kraszkiewicz, A.; Niedziółka, I.; Parafiniuk, S.; Kuna-Broniowska, I.; Tanaś, W.; Żukiewicz-Sobczak, W.; Obidziński, S. The Use of Lignocellulosic Waste in the Production of Pellets for Energy Purposes. Renew. Energy 2020, 145, 997–1003. [Google Scholar] [CrossRef]
- Kamga, P.L.W.; Vitoussia, T.; Bissoue, A.N.; Nguimbous, E.N.; Dieudjio, D.N.; Bot, B.V.; Njeugna, E. Physical and Energetic Characteristics of Pellets Produced from Movingui Sawdust, Corn Spathes, and Coconut Shells. Energy Rep. 2024, 11, 1291–1301. [Google Scholar] [CrossRef]
- Kumar, P.; Subbarao, P.M.V.; Kala, L.; Vijay, V.K. Influence of Physical, Mechanical, and Thermal Properties of Biomass Pellets from Agriculture Residue: Pearl Millet Cob and Mix. Bioresour. Technol. Rep. 2022, 20, 101278. [Google Scholar] [CrossRef]
- Solís, A.; Rocha, S.; König, M.; Adam, R.; Garcés, H.O.; Candia, O.; Muñoz, R.; Azócar, L. Preliminary Assessment of Hazelnut Shell Biomass as a Raw Material for Pellet Production. Fuel 2023, 333, 126517. [Google Scholar] [CrossRef]
- Nie, Y.; Song, X.; Shan, M.; Yang, X. Effect of Pelletization on Biomass Thermal Degradation in Combustion: A Case Study of Peanut Shell and Wood Sawdust Using Macro-TGA. Energy Built Environ. 2024; in press. [Google Scholar] [CrossRef]
- Brand, M.A.; Jacinto, R.C. Apple Pruning Residues: Potential for Burning in Boiler Systems and Pellet Production. Renew. Energy 2020, 152, 458–466. [Google Scholar] [CrossRef]
- He, H.; Wu, K.; Wang, Y.; Sun, Y.; Wu, J. Co-Pelleting of Biomass Feedstock: Effects of Blend Types and Ratios on Mechanical Behavior and Physical Properties. Renew. Energy 2025, 244, 122578. [Google Scholar] [CrossRef]
- Nyashina, G.S.; Dorokhov, V.V.; Shvedov, D.K.; Strizhak, P.A. Effects of the Type and Proportion of a Binder on the Quality and Combustion of Fuel Pellets. Biomass Bioenergy 2025, 199, 107934. [Google Scholar] [CrossRef]
- Rajput, S.P.; Jadhav, S.V.; Thorat, B.N. Methods to Improve Properties of Fuel Pellets Obtained from Different Biomass Sources: Effect of Biomass Blends and Binders. Fuel Process. Technol. 2020, 199, 106255. [Google Scholar] [CrossRef]
- Loaiza, S.; Verchot, L.; Valencia, D.; Guzmán, P.; Amezquita, N.; Garcés, G.; Puentes, O.; Trujillo, C.; Chirinda, N.; Pittelkow, C.M. Evaluating Greenhouse Gas Mitigation through Alternate Wetting and Drying Irrigation in Colombian Rice Production. Agric. Ecosyst. Environ. 2024, 360, 108787. [Google Scholar] [CrossRef]
- Ordoñez, L.; Vallejo, E.; Amariles, D.; Mesa, J.; Esquivel, A.; Llanos-Herrera, L.; Prager, S.D.; Segura, C.; Valencia, J.J.; Duarte, C.J.; et al. Applying Agroclimatic Seasonal Forecasts to Improve Rainfed Maize Agronomic Management in Colombia. Clim. Serv. 2022, 28, 100333. [Google Scholar] [CrossRef]
- Arregocés, H.A.; Gómez, D.; Castellanos, M.L. Annual and Monthly Precipitation Trends: An Indicator of Climate Change in the Caribbean Region of Colombia. Case Stud. Chem. Environ. Eng. 2024, 10, 100834. [Google Scholar] [CrossRef]
- Ministerio de Agricultura y Desarrollo Rural Reporte de Estadísticas de Producción Agrícola En Colombia. Available online: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 (accessed on 15 May 2024).
- Sagastume Gutiérrez, A.; Mendoza Fandiño, J.M.; Cabello Eras, J.J.; Sofan German, S.J. Potential of Livestock Manure and Agricultural Wastes to Mitigate the Use of Firewood for Cooking in Rural Areas. The Case of the Department of Cordoba (Colombia). Dev. Eng. 2022, 7, 100093. [Google Scholar] [CrossRef]
- Dias, F.d.S.; Meira, L.A.; Carneiro, C.N.; dos Santos, L.F.M.; Guimarães, L.B.; Coelho, N.M.M.; Coelho, L.M.; Alves, V.N. Lignocellulosic Materials as Adsorbents in Solid Phase Extraction for Trace Elements Preconcentration. TrAC-Trends Anal. Chem. 2023, 158, 116891. [Google Scholar] [CrossRef]
- Gani, A.; Adisalamun; Arkan D, M.R.; Suhendrayatna; Reza, M.; Erdiwansyah; Saiful; Desvita, H. Proximate and Ultimate Analysis of Corncob Biomass Waste as Raw Material for Biocoke Fuel Production. Case Stud. Chem. Environ. Eng. 2023, 8, 100525. [Google Scholar] [CrossRef]
- Noh, Y.H.; Lee, D.G.; Park, J.H.; Song, G.S.; Seung Kim, J.; Park, S.J.; Won Choi, J.; Ho Song, K.; Choi, Y.C.; Lee, Y.J. Ashless Herbaceous Biomass for Slagging and Fouling Reduction in Solid-Fuel Boiler: Combustion and Ash Fusion Characterizations. Fuel 2025, 379, 132957. [Google Scholar] [CrossRef]
- ISO 17225-6; Solid Biofuels-Fuel Specifications and Classes-Part 6: Graded Non-Woody Pellets. ISO: Geneva, Switzerland, 2021.
- Berghel, J.; Ståhl, M.; Frodeson, S.; Pichler, W.; Weigl-Kuska, M. A Comparison of Relevant Data and Results from Single Pellet Press Research Is Mission Impossible: A Review. Bioresour. Technol. Rep. 2022, 18, 101054. [Google Scholar] [CrossRef]
- Szyszlak-Bargłowicz, J.; Słowik, T.; Zajac, G.; Blicharz-Kania, A.; Zdybel, B.; Andrejko, D.; Obidziński, S. Energy Parameters of Miscanthus Biomass Pellets Supplemented with Copra Meal in Terms of Energy Consumption during the Pressure Agglomeration Process. Energies 2021, 14, 4167. [Google Scholar] [CrossRef]
- Miranda, M.T.; Sepúlveda, F.J.; Arranz, J.I.; Montero, I.; Rojas, C.V. Analysis of Pelletizing from Corn Cob Waste. J. Environ. Manag. 2018, 228, 303–311. [Google Scholar] [CrossRef]
- Chen, C.; Yang, R.; Wang, X.; Qu, B.; Zhang, M.; Ji, G.; Li, A. Effect of In-Situ Torrefaction and Densification on the Properties of Pellets from Rice Husk and Rice Straw. Chemosphere 2022, 289, 133009. [Google Scholar] [CrossRef]
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Characterization of Spanish Biomass Wastes for Energy Use. Bioresour. Technol. 2012, 103, 249–258. [Google Scholar] [CrossRef]
- Sykorova, V.; Jezerska, L.; Sassmanova, V.; Honus, S.; Peikertova, P.; Kielar, J.; Zidek, M. Biomass Pellets with Organic Binders—Before and after Torrefaction. Renew. Energy 2024, 221, 119771. [Google Scholar] [CrossRef]
- Racero-Galaraga, D.; Rhenals-Julio, J.D.; Sofan-German, S.; Mendoza, J.M.; Bula-Silvera, A. Proximate Analysis in Biomass: Standards, Applications and Key Characteristics. Results Chem. 2024, 12, 101886. [Google Scholar] [CrossRef]
- Aliyu, A.; Lee, J.G.M.; Harvey, A.P. Microalgae for Biofuels: A Review of Thermochemical Conversion Processes and Associated Opportunities and Challenges. Bioresour. Technol. Rep. 2021, 15, 100694. [Google Scholar] [CrossRef]
- Cao, Y.; Bai, Y.; Du, J. Co-Gasification of Rice Husk and Woody Biomass Blends in a CFB System: A Modeling Approach. Renew. Energy 2022, 188, 849–858. [Google Scholar] [CrossRef]
- Awais, M.; Omar, M.M.; Munir, A.; Li, W.; Ajmal, M.; Hussain, S.; Ahmad, S.A.; Ali, A. Co-Gasification of Different Biomass Feedstock in a Pilot-Scale (24 KWe) Downdraft Gasifier: An Experimental Approach. Energy 2022, 238, 121821. [Google Scholar] [CrossRef]
- Mularski, J.; Li, J. A Review on Biomass Ignition: Fundamental Characteristics, Measurements, and Predictions. Fuel 2023, 340, 127526. [Google Scholar] [CrossRef]
- Pahla, G.; Mamvura, T.A.; Ntuli, F.; Muzenda, E. Energy Densification of Animal Waste Lignocellulose Biomass and Raw Biomass. S. Afr. J. Chem. Eng. 2017, 24, 168–175. [Google Scholar] [CrossRef]
- Zakaria, M.R.; Ahmad Farid, M.A.; Andou, Y.; Ramli, I.; Hassan, M.A. Production of Biochar and Activated Carbon from Oil Palm Biomass: Current Status, Prospects, and Challenges. Ind. Crops Prod. 2023, 199, 116767. [Google Scholar] [CrossRef]
- Yaka, H.; Insel, M.A.; Yucel, O.; Sadikoglu, H. A Comparison of Machine Learning Algorithms for Estimation of Higher Heating Values of Biomass and Fossil Fuels from Ultimate Analysis. Fuel 2022, 320, 123971. [Google Scholar] [CrossRef]
- Islam, M.R.; Tarikuzzaman, M.; Lynam, J.G. Hydrothermal Carbonization for Extracting Lignin from Agricultural Biomass Rice Husks and Cotton Gin Trash. Bioresour. Technol. Rep. 2025, 30, 102144. [Google Scholar] [CrossRef]
- Volli, V.; Gollakota, A.R.K.; Shu, C.-M. Comparative Studies on Thermochemical Behavior and Kinetics of Lignocellulosic Biomass Residues Using TG-FTIR and Py-GC/MS. Sci. Total Environ. 2021, 792, 148392. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; He, Y.; Yu, X.; Banks, S.W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A.V. Review of Physicochemical Properties and Analytical Characterization of Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [Google Scholar] [CrossRef]
- Agar, D.A.; Rudolfsson, M.; Lavergne, S.; Melkior, T.; Da Silva Perez, D.; Dupont, C.; Campargue, M.; Kalén, G.; Larsson, S.H. Pelleting Torrefied Biomass at Pilot-Scale—Quality and Implications for Co-Firing. Renew. Energy 2021, 178, 766–774. [Google Scholar] [CrossRef]
- Draszewski, C.P.; Bragato, C.A.; Lachos-Perez, D.; Celante, D.; Frizzo, C.P.; Castilhos, F.; Tres, M.V.; Zabot, G.L.; Abaide, E.R.; Mayer, F.D. Subcritical Water Hydrolysis of Rice Husks Pretreated with Deep Eutectic Solvent for Enhance Fermentable Sugars Production. J. Supercrit. Fluids 2021, 178, 105355. [Google Scholar] [CrossRef]
- Chen, C.; Qu, B.; Wang, W.; Wang, W.; Ji, G.; Li, A. Rice Husk and Rice Straw Torrefaction: Properties and Pyrolysis Kinetics of Raw and Torrefied Biomass. Environ. Technol. Innov. 2021, 24, 101872. [Google Scholar] [CrossRef]
- Awosusi, A.A.; Ayeni, A.O.; Adeleke, R.; Daramola, M.O. Biocompositional and Thermodecompositional Analysis of South African Agro-Waste Corncob and Husk towards Production of Biocommodities. Asia-Pac. J. Chem. Eng. 2017, 12, 960–968. [Google Scholar] [CrossRef]
- Quintero-Naucil, M.; Salcedo-Mendoza, J.; Solarte-Toro, J.C.; Aristizábal-Marulanda, V. Assessment and Comparison of Thermochemical Pathways for the Rice Residues Valorization: Pyrolysis and Gasification. Environ. Sci. Pollut. Res. 2024, 1–8. [Google Scholar] [CrossRef]
- Atay, O.A.; Ekinci, K. Characterization of Pellets Made from Rose Oil Processing Solid Wastes/Coal Powder/Pine Bark. Renew. Energy 2020, 149, 933–939. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, K.; Liu, C.; Xie, S.; Li, X.; Li, B.; Shu, J.; Niu, Y.; Zhu, H.; Ding, M.; et al. Comparative Investigation on Thermal Decomposition of Powdered and Pelletized Biomasses: Thermal Conversion Characteristics and Apparent Kinetics. Bioresour. Technol. 2020, 301, 122732. [Google Scholar] [CrossRef] [PubMed]
- ISO 17828:2015; Solid Biofuels-Determination of Bulk Density. ISO: Geneva, Switzerland, 2015.
- Agar, D.A.; Rudolfsson, M.; Kalén, G.; Campargue, M.; Da Silva Perez, D.; Larsson, S.H. A Systematic Study of Ring-Die Pellet Production from Forest and Agricultural Biomass. Fuel Process. Technol. 2018, 180, 47–55. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy. Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Lei, T.; Huang, H.; Tan, M.; Huang, Z.; Li, C.; Liu, P.; Zhou, X.; Zhang, X.; Huang, J.; Li, H. The Effect of Additives on the Co-Pelletization of Sewage Sludge and Extraction Residue on Combustion Behavior and off-Gas Emission Reduction. Biomass Bioenergy 2024, 184, 107181. [Google Scholar] [CrossRef]
- ISO 18134-3:2015; Solid Biofuels-Determination of Moisture Content-Oven Dry Method-Part 3: Moisture in General Analysis Sample. ISO: Geneva, Switzerland, 2015.
- ISO 18122:2015; Solid Biofuels-Determination of Ash Content. ISO: Geneva, Switzerland, 2015.
- ISO-18123:2015; Solid Biofuels-Determination of the Content of Volatile Matter. ISO: Geneva, Switzerland, 2015.
- Lee, K.-T.; Gabriela, S.; Chen, W.-H.; Ong, H.C.; Rajendran, S.; Tran, K.-Q. Co-Torrefaction and Synergistic Effect of Spent Coffee Grounds and Tea Waste for Sustainable Waste Remediation and Renewable Energy. Renew. Energy 2024, 233, 121181. [Google Scholar] [CrossRef]
- Alves, J.L.F.; da Silva, J.C.G.; Mumbach, G.D.; Di Domenico, M.; Marangoni, C. Assessing the Potential of the Invasive Grass Cenchrus Echinatus for Bioenergy Production: A Study of Its Physicochemical Properties, Pyrolysis Kinetics and Thermodynamics. Thermochim. Acta 2023, 724, 179500. [Google Scholar] [CrossRef]
Parameter/Treatment | CC100 | CC70:RH30 | CC50:RH30 | CC30:RH70 | RH100 |
---|---|---|---|---|---|
343 | 308 | 377 | 376 | 345 | |
459 | 487 | 512 | 500 | 515 | |
586 | 576 | 614 | 557 | 601 | |
2.65 | 3.16 | 3.13 | 2.98 | 3.48 | |
1.83 | 2.68 | 2.55 | 2.48 | 3.14 |
Treatment | ISO 17225-6 | CC100 | CC70:RH30 | CC50:RH50 | CC30:RH70 | RH100 |
D (mm) | 6–10 | 6.00 ± 0.02 | 6.00 ± 0.02 | 6.00 ± 0.02 | 6.00 ± 0.02 | 6.00 ± 0.02 |
L (mm) | 3.15–40.00 | 29.2 ± 1.3 | 29.1 ± 1.2 | 28.6 ± 1.2 | 28.1 ± 1.3 | 28.1 ± 1.2 |
AC (wt.% db.) | ≤6 | 3.2 ± 0.9 | 7.2 ± 0.1 | 7.8 ± 0.1 | 10.8 ± 0.2 | 13.6 ± 0.2 |
MC (wt.%) | ≤12 | 9.6 ± 0.1 | 9.1 ± 0.1 | 8.2 ± 0.1 | 8.4 ± 0.1 | 8.1 ± 0.1 |
LHV (MJ/kg) | ≥14.5 | 15.9 ± <0.1 | 15.2 ± <0.1 | 14.7 ± <0.1 | 14.4 ± <0.1 | 13.8 ± <0.1 |
Bulk Density (kg/m3) | ≥600 | 601 ± 3.8 | 608 ± 2.1 | 616 ± 2.3 | 620 ± 6.8 | 614 ± 5.2 |
S (wt.% db.) | ≤0.2 | n.d. | n.d. | n.d. | n.d. | n.d. |
N (wt.% db.) | ≤1.5 | 0.78 ± <0.03 | 0.75 ± <0.03 | 0.74 ± <0.03 | 0.73 ± <0.03 | 0.70 ± <0.03 |
Treatment | CC: Corncob (%) | RH: Rice Husk (%) |
---|---|---|
CC100 | 100 | 0 |
RH100 | 0 | 100 |
CC70:RH30 | 70 | 30 |
CC50:RH50 | 50 | 50 |
CC30:RH70 | 30 | 70 |
Specification | Measurement Unit | Parameters |
---|---|---|
Electric motor rated power | kW | 7.50 |
Electric motor supply voltage | V | 380 |
Motor rotational speed | rpm | 1753 |
Rotational speed of the shaft with rollers | rpm | 320 |
Number of rollers | - | 2 |
Diameter of the press rollers | mm | 100 |
Width of the press rollers | mm | 50 |
Dimensions of the grooves on the rollers (width × depth) | mm | 6 × 4 |
Spacing of the grooves on the press rollers | mm | 4 |
Type of die | - | Flat |
Die diameter | mm | 200 |
Thickness of the die | mm | 27 |
Diameter of the holes in the die | mm | 6 |
Dimensions of the pellet machine (length × width × height) | cm | 125 × 45 × 80 |
Total mass of pelletizer | kg | 210 |
Number of holes in the die | - | 234 |
Capacity of the pellet machine | kg/h | 250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arroyo Dagobeth, E.D.; Otero Meza, D.D.; Cabello Eras, J.J.; Moya Rodríguez, J.L.; Salcedo Mendoza, J.G. Co-Pelletization of Rice Husk and Corncob Residues: Evaluation of Physicochemical Properties and Combustion Performance. Recycling 2025, 10, 173. https://doi.org/10.3390/recycling10050173
Arroyo Dagobeth ED, Otero Meza DD, Cabello Eras JJ, Moya Rodríguez JL, Salcedo Mendoza JG. Co-Pelletization of Rice Husk and Corncob Residues: Evaluation of Physicochemical Properties and Combustion Performance. Recycling. 2025; 10(5):173. https://doi.org/10.3390/recycling10050173
Chicago/Turabian StyleArroyo Dagobeth, Eduardo D., Daniel D. Otero Meza, Juan J. Cabello Eras, Jorge L. Moya Rodríguez, and Jairo G. Salcedo Mendoza. 2025. "Co-Pelletization of Rice Husk and Corncob Residues: Evaluation of Physicochemical Properties and Combustion Performance" Recycling 10, no. 5: 173. https://doi.org/10.3390/recycling10050173
APA StyleArroyo Dagobeth, E. D., Otero Meza, D. D., Cabello Eras, J. J., Moya Rodríguez, J. L., & Salcedo Mendoza, J. G. (2025). Co-Pelletization of Rice Husk and Corncob Residues: Evaluation of Physicochemical Properties and Combustion Performance. Recycling, 10(5), 173. https://doi.org/10.3390/recycling10050173