Forecasting the Shredder Output Volume Flow Towards Dynamic Control in Waste Management
Abstract
:1. Introduction
2. Results
2.1. Time Series
2.2. Model Choice
2.3. Coefficients
2.4. Prediction Quality
3. Discussion
4. Materials and Methods
4.1. Time Series Analysis
4.2. ARIMA Models
4.3. Model Evaluation
4.4. Coefficients
4.5. Prediction Quality and Analysis of Residuals
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACF | Autocorrelation function |
ADF | Augmented Dickey–Fuller |
AIC | Akaike Information Criterion |
Approx. | Approximately |
ARIMA | Auto-Regressive Integrated Moving Average |
EU | European Union |
i.e., | Id est (that is) |
KPSS | Kwiatkowski-Phillips-Schmidt-Shin |
LSTM | Long Short-Term Memory |
MBB | Moving Block Bootstrap |
PACF | Partial autocorrelation function |
PCA | Primary Component Analysis |
Pred 1 | Prediction for the next value |
Pred 3 | Prediction for the 3rd next value |
Pred 5 | Prediction for the 5th next value |
Q | Quantile |
References
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Commitee and the Commitee of the Regions: A New Circular Economy Action Plan. For a Cleaner and More Competitive Europe, Brussels. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN (accessed on 17 December 2024).
- Federal Ministry Republic of Austria Climate Action. Environment, Energy, Mobility, Innovation and Technology, Austria on the Path to a Sustainable and Circular Society; The Austrian Circular Economy Strategy: Vienna, Austria, 2022.
- Sarc, R.; Curtis, A.; Kandlbauer, L.; Khodier, K.; Lorber, K.E.; Pomberger, R. Digitalisation and Intelligent Robotics in Value Chain of Circular Economy Oriented Waste Management—A Review. Waste Manag. 2019, 95, 476–492. [Google Scholar] [CrossRef]
- Fatimah, Y.A.; Govindan, K.; Murniningsih, R.; Setiawan, A. Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. J. Clean. Prod. 2020, 269, 122263. [Google Scholar] [CrossRef]
- Antikainen, M.; Uusitalo, T.; Kivikytö-Reponen, P. Digitalisation as an Enabler of Circular Economy. Procedia CIRP 2018, 73, 45–49. [Google Scholar] [CrossRef]
- Moreno, M.; Charnley, F. Can Re-Distributed Manufacturing and Digital Intelligence Enable a Regenerative Economy? An Integrative Literature Review. In Sustainable Design and Manufacturing 2016; Springer: Cham, Switzerland, 2016; pp. 563–575. [Google Scholar] [CrossRef]
- Borchard, R.; Zeiss, R.; Recker, J. Digitalization of waste management: Insights from German private and public waste management firms. Waste Manag. Res. 2022, 40, 775–792. [Google Scholar] [CrossRef] [PubMed]
- Sarc, R.; Curtis, A.; Khodier, K.; Koinegg, J.; Ortner, M. Digitale Abfallwirtschaft. Digital Waste Management; Recy & DepoTech: Leoben, Austria, 2018. [Google Scholar]
- Kurniawan, T.A.; Avtar, R.; Singh, D.; Xue, W.; Othman, M.H.D.; Hwang, G.H.; Iswanto, I.; Albadarin, A.B.; Kern, A.O. Reforming MSWM in Sukunan (Yogjakarta, Indonesia): A case-study of applying a zero-waste approach based on circular economy paradigm. J. Clean. Prod. 2021, 284, 124775. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, T.A.; Othman, M.H.D.; Liang, X.; Goh, H.H.; Gikas, P.; Kusworo, T.D.; Anouzla, A.; Chew, K.W. Decarbonization in waste recycling industry using digitalization to promote net-zero emissions and its implications on sustainability. J. Environ. Manag. 2023, 338, 117765. [Google Scholar] [CrossRef] [PubMed]
- Gursch, H.; Körner, S.; Thaler, F.; Waltner, G.; Gastner, H.; Rinnhofer, A.; Oberwinkler, C.; Meisenbichler, R.; Bischof, H.; Kern, R. Digitalisation of Refuse Sorting with Image Recognition and Time Series Analysis; Recy & DepoTech: Leoben, Austria, 2022. [Google Scholar]
- Feil, A.; Pretz, T. Ungenutzte Potenziale in der Abfallaufbereitung. Unused Potentials in Waste Treatment; Recy & DepoTech: Leoben, Austria, 2018. [Google Scholar]
- Khodier, K.; Feyerer, C.; Möllnitz, S.; Curtis, A.; Sarc, R. Efficient Derivation of Significant Results from Mechanical Processing Experiments with Mixed Solid Waste: Coarse-Shredding of Commercial Waste. Waste Manag. 2021, 121, 164–174. [Google Scholar] [CrossRef]
- Küppers, B.; Seidler, I.; Koinig, G.R.; Pomberger, R.; Vollprecht, D. Influence of throughput rate and input composition on sensor-based sorting efficiency. Detritus 2020, 9, 59–67. [Google Scholar] [CrossRef]
- Lasch, T.; Imhof, J.; Sarc, R.; Khodier, K. Development of a method for shredder characterisation and dynamic control of the output material stream. J. Sustain. Dev. Energy Water Environ. Syst. 2024, 12, 1–10. [Google Scholar] [CrossRef]
- Araghinejad, S. Time Series Modeling: Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Chatfield, C. Time-Series Forecasting; Chapman & Hall/CRC: Boca Raton, FL, USA, 2000. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; Otexts Online Open-Access Textbooks: Melbourne, Australia, 2021. [Google Scholar]
- Hyndman, R.J.; Khandakar, Y. Automatic Time Series Forecasting: The forecast Package for R. J. Stat. Softw. 2008, 27, 1–22. [Google Scholar] [CrossRef]
- Cubillos, M. Multi-Site Household Waste Generation Forecasting Using a Deep Learning Approach. Waste Manag. 2020, 115, 8–14. [Google Scholar] [CrossRef]
- Feyerer, C.; Khodier, K.; Lasch, T.; Pomberger, R.; Sarc, R. Indirect Estimation of the Volumetric Throughput Performance in Shredding of Solid Waste. Clean Technol. 2025. [Google Scholar]
- Fahrmeir, L.; Heumann, C.; Künstler, R.; Pigeot, I.; Tutz, G.; Fahrmeir, L.; Heumann, C.; Künstler, R.; Pigeot, I.; Tutz, G. Statistik: Der Weg zur Datenanalyse, 9th ed.; Springer: Berlin, Germany, 2023; pp. 553–578. [Google Scholar] [CrossRef]
- Shumway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications: With R Examples; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Kwiatkowski, D.; Phillips, P.C.B.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econom. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Said, S.E.; Dickey, D.A. Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order. Biometrika 1984, 71, 599–607. [Google Scholar] [CrossRef]
- Chambers, J.; Eddy, W.; Härdle, W.; Sheather, S.; Tierney, L.; Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; Yasmeen, F. Forecast: Forecasting Functions for Time Series and Linear Models: R Package Version 8.21.1; Monash University: Melbourne, Australia, 2023. [Google Scholar]
- Newbold, P. ARIMA model building and the time series analysis approach to forecasting. J. Forecast. 1983, 2, 23–35. [Google Scholar] [CrossRef]
- Lijung, G.M.; Box, G.E.P. On a measure of lack of fit in time series models. Biometrika 1978, 65, 297–303. [Google Scholar] [CrossRef]
- Box, G.E.P.; Pierce, D.A. Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. J. Am. Stat. Assoc. 1970, 65, 1509–1526. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Pan, L.; Politis, D.N. Bootstrap prediction intervals for linear, nonlinear and nonparametric autoregressions. J. Stat. Plan. Inference 2016, 177, 1–27. [Google Scholar] [CrossRef]
- Bergmeir, C.; Hyndman, R.J.; Benítez, J.M. Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation. Int. J. Forecast. 2016, 32, 303–312. [Google Scholar] [CrossRef]
- Vandeginste, B.; Massart, D.L.; Buydens, L.; de Jong, S.; Lewi, P.J.; Smeyers-Verbeke, J. Chapter 31—Analysis of Measurement Tables. In Handbook of Chemometrics and Qualimetrics: Part B; Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
p | d | q | med. AIC |
---|---|---|---|
Best individual | 18,621 | ||
2 | 1 | 3 | 18,621 |
1 | 1 | 3 | 18,622 |
1 | 1 | 4 | 18,622 |
4 | 1 | 1 | 18,623 |
4 | 1 | 2 | 18,624 |
4 | 1 | 3 | 18,625 |
1 | 0 | 2 | 18,632 |
4 | 0 | 3 | 18,637 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasch, T.; Imhof, J.; Kandlbauer, L.; Sarc, R.; Khodier, K. Forecasting the Shredder Output Volume Flow Towards Dynamic Control in Waste Management. Recycling 2025, 10, 83. https://doi.org/10.3390/recycling10030083
Lasch T, Imhof J, Kandlbauer L, Sarc R, Khodier K. Forecasting the Shredder Output Volume Flow Towards Dynamic Control in Waste Management. Recycling. 2025; 10(3):83. https://doi.org/10.3390/recycling10030083
Chicago/Turabian StyleLasch, Tatjana, Jason Imhof, Lisa Kandlbauer, Renato Sarc, and Karim Khodier. 2025. "Forecasting the Shredder Output Volume Flow Towards Dynamic Control in Waste Management" Recycling 10, no. 3: 83. https://doi.org/10.3390/recycling10030083
APA StyleLasch, T., Imhof, J., Kandlbauer, L., Sarc, R., & Khodier, K. (2025). Forecasting the Shredder Output Volume Flow Towards Dynamic Control in Waste Management. Recycling, 10(3), 83. https://doi.org/10.3390/recycling10030083