Precise and Accurate Assessment of the Copper Scrap Composition by the X-Ray Fluorescence Spectrometry
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Analytical Methods and Instrumentation
2.2.1. EG+FAAS
2.2.2. X-Ray Fluorescence Spectrometry
3. Results and Discussion
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Recycled Copper Market Size, Share, Trends & Growth Forecast Report By Application (Building and Construction, Transportation, Industrial Machinery and Equipment, Electricity and Electronics, and Others), By Copper Scrap Grade (Bright Bare Copper, Number 1 Copper, Number 2 Copper and Number 1 Insulated Wire) and Region (North America, Europe, Asia Pacific, Latin America, and Middle East & Africa), Industry Analysis From 2024 to 2032. Available online: https://www.marketdataforecast.com/market-reports/recycled-copper-market (accessed on 17 January 2025).
- Laubertova, M.; Havlik, T.; Trpčevská, J.; Piroskova, J. Methodology of sampling in secondary copper processing. Metall 2016, 3, 78–81. [Google Scholar]
- Owen, J.F.; Patterson, C.S.; Rice, G.S. Electrogravimetric Determination of Cobalt, Nickel, and Copper in Presence of Chloride Ion. Anal. Chem. 1983, 55, 990–992. [Google Scholar] [CrossRef]
- Lubert, K.-H.; Kalcher, K. History of Electroanalytical Methods. Electroanalysis 2010, 22, 1937–1946. [Google Scholar] [CrossRef]
- Pietrzyk, D.J.; Frank, C.W. Chapter Seven—Precipitation Methods. In Analytical Chemistry, 2nd ed.; Academic Press: London, UK, 1979; pp. 90–130. [Google Scholar] [CrossRef]
- Burns, D.T.; Szabadvary, F.; Zolotov, Y.A. History of Analytical Science. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 399–410. [Google Scholar] [CrossRef]
- EN 16117-1:2011; Copper and Copper Alloys—Determination of Copper Content—Part 1: Electrolytic Determination of Copper in Materials with Copper Content Less Than 99,85%. CEN: Brussels, Belgium, 2011.
- EN 16117-2:2014; Copper and Copper Alloys—Determination of Copper Content—Part 2: Electrolytic Determination of Copper in Materials with Copper Content More Than 99,80%. CEN: Brussels, Belgium, 2014.
- Van den Eynde, S.; Diaz-Romero, D.J.; Engelen, B.; Zaplana, I.; Peeters, J.R. Assessing the Efficiency of Laser-Induced Breakdown Spectroscopy (LIBS) Based Sorting of Post-Consumer Aluminium Scrap. Procedia CIRP 2022, 105, 278–283. [Google Scholar] [CrossRef]
- Díaz-Romero, D.J.; Van den Eynde, S.; Sterkens, W.; Eckert, A.; Zaplana, I.; Goedemé, T.; Peeters, J. Real-Time Classification of Aluminum Metal Scrap with Laser-Induced Breakdown Spectroscopy Using Deep and Other Machine Learning Approaches. Spectrochim. Acta Part B At. Spectrosc. 2022, 196, 106519. [Google Scholar] [CrossRef]
- Kölking, M.; Flamme, S.; Heinrichs, S.; Schmalbein, N.; Jacob, M. More Resource Efficient Recycling of Copper and Copper Alloys by Using X-Ray Fluorescence Sorting Systems: An Investigation on the Metallic Fraction of Mixed Foundry Residues. Waste Manag. Res. 2024, 42, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Piorek, S. Rapid Sorting of Aluminum Alloys with Handheld µLIBS Analyzer. Mater. Today Proc. 2019, 10, 348–354. [Google Scholar] [CrossRef]
- Bertin, E.P. Principles and Practice of X-Ray Spectrometric Analysis, 2nd ed.; Plenum Press: New York, NY, USA, 1975. [Google Scholar]
- ISO 17034:2016; General Requirements for the Competence of Reference Material Producers. ISO: Geneve, Switzerland, 2016.
- Barałkiewicz, D.; Pikosz, B.; Belter, M.; Marcinkowska, M. Speciation Analysis of Chromium in Drinking Water Samples by Ion-Pair Reversed-Phase HPLC–ICP-MS: Validation of the Analytical Method and Evaluation of the Uncertainty Budget. Accredit. Qual. Assur. 2013, 18, 391–401. [Google Scholar] [CrossRef]
- Paired Samples t-Test: Definition, Formula, and Example. Available online: https://www.statology.org/paired-samples-t-test/ (accessed on 17 January 2025).
- Critical Values of the Student’s t Distribution. Available online: https://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm (accessed on 17 January 2025).
- Martin Bland, J.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneve, Switzerland, 2017.
Cu | Sn | Zn | Co | Cd | Sb | Ni | Fe | Pb | Bi | Ag | Al | P | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCD1 | 99.83 | 0.00088 | 0.0101 | 0.00096 | 0.00115 | 0.00022 | 0.1038 | 0.011 | 0.0063 | 0.00031 | 0.00153 | 0.00039 | 0.033 |
CCD2 | 96.2 | 0.0552 | 0.756 | 0.01677 | 0.00474 | 0.00479 | 0.0222 | 2.17 | 0.66 | 0.0012 | 0.0208 | 0.03804 | 0.053 |
CCD3 | 94.33 | 0.258 | 1.61 | 0.0318 | 0.0091 | 0.01886 | 0.0639 | 0.0332 | 3.28 | 0.00368 | 0.0598 | 0.252 | 0.045 |
CCD4 | 94.5 | 0.109 | 0.1565 | 0.084 | 0.01786 | 0.0791 | 0.00476 | 4.61 | 0.0674 | 0.0182 | 0.1528 | 0.0893 | 0.11 |
CCD5 | 95.32 | 1.072 | 0.0841 | 0.1499 | 0.0328 | 0.131 | 0.329 | 0.331 | 1.68 | 0.0093 | 0.313 | 0.521 | 0.031 |
CCD6 | 95.55 | 0.547 | 0.32 | 0.1966 | 0.0469 | 0.2019 | 0.532 | 0.853 | 0.1109 | 0.0096 | 0.512 | 1.076 | 0.048 |
Cu99 | 99.34 | 0.1 | 0.106 | 0.1023 | 0.1931 | ||||||||
Cu97 | 96.75 | 0.432 | 0.901 | 0.416 | 1.21 | ||||||||
Cu90 | 90.65 | 0.767 | 3.61 | 0.9467 | 3.395 |
Sample | Method | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EG+FAAS | XRF | ||||||||||
Cu | Cu | Sn | Zn | Ni | Fe | Pb | Ag | Al | P | ||
U, k = 2 | 0.23 | 0.23 | 0.006 | 0.010 | 0.0027 | 0.0022 | 0.0041 | 0.0038 | 0.0016 | 0.017 | |
Cable scrap 1 | Bottom | 99.45 | 99.35 | 0.116 | 0.312 | 0.0169 | 0.0182 | 0.1703 | 0.0067 | 0.0149 | 0.009 |
Middle | 99.29 | 99.34 | 0.114 | 0.316 | 0.0169 | 0.0196 | 0.1678 | 0.0065 | 0.0231 | 0.010 | |
Top | 99.32 | 99.32 | 0.114 | 0.318 | 0.0172 | 0.0187 | 0.1702 | 0.0061 | 0.0401 | 0.012 | |
Cable scrap 2 | Bottom | 99.21 | 99.46 | 0.072 | 0.199 | 0.0246 | 0.0289 | 0.1844 | 0.0059 | 0.0268 | 0.008 |
Middle | 99.43 | 99.45 | 0.073 | 0.200 | 0.0242 | 0.0287 | 0.1904 | 0.0059 | 0.0260 | 0.008 | |
Top | 99.46 | 99.45 | 0.071 | 0.200 | 0.0247 | 0.0292 | 0.1891 | 0.0056 | 0.0289 | 0.009 | |
Cable scrap 3 | Bottom | 99.32 | 99.34 | 0.088 | 0.227 | 0.0204 | 0.0270 | 0.2268 | 0.0068 | 0.0679 | 0.009 |
Middle | 99.41 | 99.34 | 0.088 | 0.229 | 0.0194 | 0.0248 | 0.2224 | 0.0074 | 0.0742 | 0.010 | |
Top | 99.24 | 99.28 | 0.102 | 0.232 | 0.0180 | 0.0213 | 0.2767 | 0.0080 | 0.0594 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anyszkiewicz, J.; Kasierot, S.; Gorewoda, T.; Kostrzewa, J. Precise and Accurate Assessment of the Copper Scrap Composition by the X-Ray Fluorescence Spectrometry. Recycling 2025, 10, 36. https://doi.org/10.3390/recycling10020036
Anyszkiewicz J, Kasierot S, Gorewoda T, Kostrzewa J. Precise and Accurate Assessment of the Copper Scrap Composition by the X-Ray Fluorescence Spectrometry. Recycling. 2025; 10(2):36. https://doi.org/10.3390/recycling10020036
Chicago/Turabian StyleAnyszkiewicz, Jacek, Sonia Kasierot, Tadeusz Gorewoda, and Justyna Kostrzewa. 2025. "Precise and Accurate Assessment of the Copper Scrap Composition by the X-Ray Fluorescence Spectrometry" Recycling 10, no. 2: 36. https://doi.org/10.3390/recycling10020036
APA StyleAnyszkiewicz, J., Kasierot, S., Gorewoda, T., & Kostrzewa, J. (2025). Precise and Accurate Assessment of the Copper Scrap Composition by the X-Ray Fluorescence Spectrometry. Recycling, 10(2), 36. https://doi.org/10.3390/recycling10020036