Investigating the Effect of Different Bidirectional Pulsed Current Parameters on the Heat Generation of Lithium-Ion Battery at Low Temperatures
Abstract
:1. Introduction
2. Experiments
2.1. Experiment Platform
2.2. EIS Test at Different Temperatures and AC Amplitude
2.3. BPC Test
3. Mathematic Model
3.1. Calculation of Heating Power
3.2. Electro-Thermal Coupled Model
3.3. Determinations of Model Parameters
3.3.1. Electrical Model Parameters
3.3.2. Calculation of Equivalent Heat Transfer Coefficient h
4. Results and Discussions
4.1. Validation of the Electro-Thermal Coupled Model
4.2. Determination of BPC Parameters
4.3. Heating Power of the Battery with Different BPC Parameters
5. Conclusions
- (1)
- The heating power of the battery increases with a decrease in the discharge cut-off voltage and an increase in the charge cut-off voltage. Under the discharge cut-off voltage constraint, higher heating powers are observed in the range of larger Rpulse values. Conversely, the higher heating powers are mainly concentrated in the range of smaller Rpulse values for the charge cut-off voltage constraint.
- (2)
- The symmetrical BPC approach does not result in maximum heating power. The relationship between the maximum heating power and Rpulse is influenced by both the charge cut-off voltage and the discharge cut-off voltage. Specifically, the Rpulse of the maximum heating power increases with an increase in the discharge cut-off voltage, while it decreases with a decrease in the charge cut-off voltage.
- (3)
- When the voltage constraint range is set between 3 V and 4.2 V, the Rpulse of the maximum heating power is primarily 0.55. Moreover, under the same frequency, the maximum heating power gradually increases with rising temperatures. At frequencies of 0.5 Hz, 5 Hz, 100 Hz, and 10,000 Hz, the maximum heating power exhibits a progressive increase with higher frequencies at a constant temperature.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wei, G.; Huang, R.; Zhang, G.; Jiang, B.; Zhu, J.; Guo, Y.; Han, G.; Wei, X.; Dai, H. A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards. Appl. Energy 2023, 349, 121651. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, R.J.; Liu, K.; Zhang, W.G. A novel interval-based approach for quantifying practical parameter identifiability of a lithium-ion battery model. Int. J. Energy Res. 2020, 44, 3558–3573. [Google Scholar] [CrossRef]
- Rodrigues, M.-T.F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F.N.; Kato, K.; Joyner, J.; Ajayan, P.M. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2017, 2, 17108. [Google Scholar] [CrossRef]
- Ouyang, M.; Chu, Z.; Lu, L.; Li, J.; Han, X.; Feng, X.; Liu, G. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles. J. Power Sources 2015, 286, 309–320. [Google Scholar] [CrossRef]
- You, H.; Dai, H.; Li, L.; Wei, X.; Han, G. Charging Strategy Optimization at Low Temperatures for Li-Ion Batteries Based on Multi-Factor Coupling Aging Model. IEEE Trans. Veh. Technol. 2021, 70, 11433–11445. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Chen, Z. Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges. Appl. Energy 2022, 313, 118832. [Google Scholar] [CrossRef]
- Hu, X.; Zheng, Y.; Howey, D.A.; Perez, H.; Foley, A.; Pecht, M. Battery warm-up methodologies at subzero temperatures for automotive applications: Recent advances and perspectives. Prog. Energy Combust. Sci. 2020, 77, 100806. [Google Scholar] [CrossRef]
- Lin, C.; Kong, W.; Tian, Y.; Wang, W.; Zhao, M. Heating Lithium-Ion Batteries at Low Temperatures for Onboard Applications: Recent Progress, Challenges and Prospects. Automot. Innov. 2022, 5, 3–17. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhang, G.; Ge, S.; Xu, T.; Ji, Y.; Yang, X.G.; Leng, Y. Lithium-ion battery structure that self-heats at low temperatures. Nature 2016, 529, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xiong, R.; Li, H.; Nian, V.; Ma, S. The state of the art on preheating lithium-ion batteries in cold weather. J. Energy Storag. 2020, 27, 101059. [Google Scholar] [CrossRef]
- Qu, Z.G.; Jiang, Z.Y.; Wang, Q. Experimental study on pulse self–heating of lithium–ion battery at low temperature. Int. J. Heat Mass Transf. 2019, 135, 696–705. [Google Scholar] [CrossRef]
- Stuart, T.A.; Hande, A. HEV battery heating using AC currents. J. Power Sources 2004, 129, 368–378. [Google Scholar] [CrossRef]
- Shang, Y.; Liu, K.; Cui, N.; Wang, N.; Li, K.; Zhang, C. A Compact Resonant Switched-Capacitor Heater for Lithium-Ion Battery Self-Heating at Low Temperatures. IEEE Trans. Power Electron. 2020, 35, 7134–7144. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Y.; Liu, F.; Zhao, B.; Li, W.; Yang, R.; Xie, C.; Shi, Y. Thermal Characteristics Investigation of Lithium-Ion Battery Under High-Frequency AC Excitation in Low-Temperature Environment. IEEE Trans. Transp. Electrif. 2022, 8, 407–419. [Google Scholar] [CrossRef]
- Zhu, C.; Cao, Y.; Zhang, H.; Lu, F.; Zhang, X. Comprehensive Design and Optimization of an Onboard Resonant Self-Heater for EV Battery. IEEE Trans. Transp. Electrif. 2021, 7, 452–463. [Google Scholar] [CrossRef]
- Li, Y.; Gao, X.; Qin, Y.; Du, J.; Guo, D.; Feng, X.; Lu, L.; Han, X.; Ouyang, M. Drive circuitry of an electric vehicle enabling rapid heating of the battery pack at low temperatures. iScience 2021, 24, 101921. [Google Scholar] [CrossRef]
- Du, C.; Peng, Q.; Chen, F.; Deng, K.; Chen, J.; Deng, C.; Hu, M. Investigation on the method of battery self-heating using motor pulse current. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 236, 2399–2409. [Google Scholar] [CrossRef]
- Zhang, J.; Ge, H.; Li, Z.; Ding, Z. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain. J. Power Sources 2015, 273, 1030–1037. [Google Scholar] [CrossRef]
- Guo, S.; Xiong, R.; Shen, W.; Sun, F. Aging investigation of an echelon internal heating method on a three-electrode lithium ion cell at low temperatures. J. Energy Storage 2019, 25, 100878. [Google Scholar] [CrossRef]
- Ruan, H.; Jiang, J.; Sun, B.; Zhang, W.; Gao, W.; Wang, L.Y.; Ma, Z. A rapid low-temperature internal heating strategy with optimal frequency based on constant polarization voltage for lithium-ion batteries. Appl. Energy 2016, 177, 771–782. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, W.; Wang, Z.; Li, W.; Sauer, D.U. Battery heating for lithium-ion batteries based on multi-stage alternative currents. J. Energy Storage 2020, 32, 101885. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, Z.; Wei, X.; Dai, H. An alternating current heating method for lithium-ion batteries from subzero temperatures. Int. J. Energy Res. 2016, 40, 1869–1883. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, X.; Jian, J.; Wang, S.; Gong, J.; Zhang, J. Rapid and deposition-free preheating of lithium-ion cell with square wave current. Int. J. Energy Res. 2022, 46, 18. [Google Scholar] [CrossRef]
- Wu, X.; Cui, Z.; Chen, E.; Du, J. Capacity degradation minimization oriented optimization for the pulse preheating of lithium-ion batteries under low temperature. J. Energy Storage 2020, 31, 101746. [Google Scholar] [CrossRef]
- Qin, Y.; Du, J.; Lu, L.; Gao, M.; Haase, F.; Li, J.; Ouyang, M. A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life. Appl. Energy 2020, 280, 115957. [Google Scholar] [CrossRef]
- Waldmann, T.; Hogg, B.-I.; Wohlfahrt-Mehrens, M. Li plating as unwanted side reaction in commercial Li-ion cells—A review. J. Power Sources 2018, 384, 107–124. [Google Scholar] [CrossRef]
- Tomaszewska, A.; Chu, Z.; Feng, X.; O’Kane, S.; Liu, X.; Chen, J.; Ji, C.; Endler, E.; Li, R.; Liu, L.; et al. Lithium-ion battery fast charging: A review. eTransportation 2019, 1, 100011. [Google Scholar] [CrossRef]
- Konz, Z.M.; McShane, E.J.; McCloskey, B.D. Detecting the Onset of Lithium Plating and Monitoring Fast Charging Performance with Voltage Relaxation. ACS Energy Lett. 2020, 5, 1750–1757. [Google Scholar] [CrossRef]
- Jiang, J.; Ruan, H.; Sun, B.; Wang, L.; Gao, W.; Zhang, W. A low-temperature internal heating strategy without lifetime reduction for large-size automotive lithium-ion battery pack. Appl. Energy 2018, 230, 257–266. [Google Scholar] [CrossRef]
- Ge, H.; Huang, J.; Zhang, J.; Li, Z. Temperature-Adaptive Alternating Current Preheating of Lithium-Ion Batteries with Lithium Deposition Prevention. J. Electrochem. Soc. 2015, 163, A290–A299. [Google Scholar] [CrossRef]
- Forgez, C.; Vinh Do, D.; Friedrich, G.; Morcrette, M.; Delacourt, C. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J. Power Sources 2010, 195, 2961–2968. [Google Scholar] [CrossRef]
- Onda, K.; Kameyama, H.; Hanamoto, T.; Ito, K. Experimental Study on Heat Generation Behavior of Small Lithium-Ion Secondary Batteries. J. Electrochem. Soc. 2003, 150, A285–A291. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Z.; Gong, J.; Li, Q.; Zhou, Y.; Zou, H. A Square Wave Alternating Current Preheating with High Applicability and Effectiveness of Preventing Lithium Plating. Processes 2023, 11, 1089. [Google Scholar] [CrossRef]
- Ruan, H.; Sun, B.; Jiang, J.; Zhang, W.; He, X.; Su, X.; Bian, J.; Gao, W. A modified-electrochemical impedance spectroscopy-based multi-time-scale fractional-order model for lithium-ion batteries. Electrochim. Acta 2021, 394, 139066. [Google Scholar] [CrossRef]
- Zou, C.; Hu, X.; Dey, S.; Zhang, L.; Tang, X. Nonlinear Fractional-Order Estimator with Guaranteed Robustness and Stability for Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2017, 65, 5951–5961. [Google Scholar] [CrossRef]
- Wang, B.; Li, S.E.; Peng, H.; Liu, Z. Fractional-order modeling and parameter identification for lithium-ion batteries. J. Power Sources 2015, 293, 151–161. [Google Scholar] [CrossRef]
- Huang, R.; Wang, X.; Jiang, B.; Chen, S.; Zhang, G.; Zhu, J.; Wei, X.; Dai, H. Revealing the electrochemical impedance characteristics of lithium-ion battery (nickel-cobalt-aluminum vs. graphite) under various alternating current amplitudes. J. Power Sources 2023, 566, 232929. [Google Scholar] [CrossRef]
- Shafiei Sabet, P.; Sauer, D.U. Separation of predominant processes in electrochemical impedance spectra of lithium-ion batteries with nickel-manganese-cobalt cathodes. J. Power Sources 2019, 425, 121–129. [Google Scholar] [CrossRef]
- Available online: https://www.ameteksi.com/products/software/zview-software-en (accessed on 31 July 2023).
- Guillen Montenegro, L.E.; Villegas Pico, H.N. Ac-Heating and Fast-Charging Power Requirements of EV Battery Packs in Subzero Temperature. IEEE Trans. Transp. Electrif. 2023. [Google Scholar] [CrossRef]
- Cao, W.; Xu, X.; Wei, Z.; Wang, W.; Li, J.; He, H. Synergized Heating and Optimal Charging of Lithium-ion Batteries at Low Temperature. IEEE Trans. Transp. Electrif. 2022. [Google Scholar] [CrossRef]
- Suh, I.-S.; Lee, M.; Kim, J.; Oh, S.T.; Won, J.-P. Design and experimental analysis of an efficient HVAC (heating, ventilation, air-conditioning) system on an electric bus with dynamic on-road wireless charging. Energy 2015, 81, 262–273. [Google Scholar] [CrossRef]
- Soares, R.; Djekanovic, N.; Wallmark, O.; Loh, P.C. Integration of Magnified Alternating Current in Battery Fast Chargers Based on DC–DC Converters Using Transformerless Resonant Filter Design. IEEE Trans. Transp. Electrif. 2019, 5, 925–933. [Google Scholar] [CrossRef]
- Zhu, C.; Han, J.; Zhang, H.; Lu, F.; Liu, K.; Zhang, X. Modeling and Control of An Integrated Self-Heater for Automotive Batteries Based on Traction Motor Drive Reconfiguration. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 384–395. [Google Scholar] [CrossRef]
- Ghassemi, A.; Hollenkamp, A.F.; Chakraborty Banerjee, P.; Bahrani, B. Impact of high-amplitude alternating current on LiFePO4 battery life performance: Investigation of AC-preheating and microcycling effects. Appl. Energy 2022, 314, 12. [Google Scholar] [CrossRef]
Frequency fpulse (Hz) | Ratio Rpulse | Discharge Amplitude Adis (A) | Charge Amplitude Acha (A) | Abbreviation |
---|---|---|---|---|
1 | 0.5 | 3.5 | 1.5 | I@1 Hz |
0.7 | 2.5 | 2.5 | II@1 Hz | |
50 | 0.5 | 3.5 | 1.5 | I@50 Hz |
0.7 | 2.5 | 2.5 | II@50 Hz | |
100 | 0.5 | 3.5 | 1.5 | I@100 Hz |
0.7 | 2.5 | 2.5 | II@100 Hz |
Frequency fpulse (Hz) | Ratio Rpulse | Discharge Amplitude Adis (A) | Charge Amplitude Acha (A) | Abbreviation |
---|---|---|---|---|
1 | 0.5 | 2.5 | 2.5 | III@1 Hz |
0.7 | 1.5 | 3.5 | IV@1 Hz | |
10 | 0.5 | 2.5 | 2.5 | III@10 Hz |
0.7 | 1.5 | 3.5 | IV@10 Hz | |
100 | 0.5 | 2.5 | 2.5 | III@100 Hz |
0.7 | 1.5 | 3.5 | IV@100 Hz |
Rpulse | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adis (A) | 14.49 | 13.80 | 13.89 | 13.07 | 12.81 | 12.58 | 12.38 | 12.20 | 12.04 | 11.88 | 11.74 | 11.61 | 11.48 | 11.36 | 11.25 | 11.14 | 9.21 | 6.49 | 3.44 |
(Ω) | 0.0619 | 0.0624 | 0.0628 | 0.0631 | 0.0633 | 0.0635 | 0.0637 | 0.0638 | 0.0640 | 0.0641 | 0.0643 | 0.0644 | 0.0645 | 0.0647 | 0.0648 | 0.0649 | 0.0672 | 0.0715 | 0.079 |
qdis (W) | 0.65 | 1.19 | 1.69 | 2.15 | 2.60 | 3.02 | 3.42 | 3.80 | 4.17 | 4.53 | 4.87 | 5.21 | 5.53 | 5.84 | 6.15 | 6.45 | 4.84 | 2.71 | 0.89 |
Acha (A) | 0.76 | 1.53 | 2.36 | 3.27 | 4.27 | 5.39 | 6.67 | 8.13 | 9.84 | 11.88 | 14.35 | 17.41 | 21.32 | 26.51 | 33.75 | 44.57 | 52.18 | 58.43 | 65.33 |
(Ω) | 0.0841 | 0.0827 | 0.0823 | 0.0796 | 0.0766 | 0.0738 | 0.0711 | 0.0687 | 0.0664 | 0.0641 | 0.0620 | 0.0600 | 0.0580 | 0.0560 | 0.0541 | 0.0522 | 0.0513 | 0.0506 | 0.0501 |
qcha (W) | 0.047 | 0.18 | 0.39 | 0.68 | 1.05 | 1.50 | 2.06 | 2.73 | 3.54 | 4.53 | 5.75 | 7.27 | 9.22 | 11.82 | 15.41 | 20.74 | 20.93 | 17.29 | 10.68 |
q (W) | 0.70 | 1.36 | 2.08 | 2.83 | 3.64 | 4.52 | 5.47 | 6.53 | 7.71 | 9.06 | 10.62 | 12.48 | 14.75 | 17.66 | 21.56 | 27.19 | 25.77 | 20.00 | 11.57 |
Temperature (°C) | −15 | 10 | ||||||
---|---|---|---|---|---|---|---|---|
fpulse (Hz) | 0.5 | 5 | 100 | 10,000 | 0.5 | 5 | 100 | 10,000 |
Adis (A) | 6.13 | 7.12 | 10.91 | 18.89 | 17.74 | 18.14 | 18.26 | 28.37 |
(Ω) | 0.2085 | 0.1578 | 0.0956 | 0.0637 | 0.0765 | 0.0652 | 0.0522 | 0.0435 |
qdis (W) | 6.66 | 6.79 | 9.67 | 19.31 | 20.47 | 18.24 | 14.79 | 29.74 |
Acha (A) | 34.73 | 40.34 | 61.81 | 107.04 | 100.54 | 102.81 | 103.49 | 160.79 |
(Ω) | 0.1062 | 0.0960 | 0.0742 | 0.0589 | 0.0587 | 0.0536 | 0.0433 | 0.0414 |
qcha (W) | 19.21 | 23.44 | 42.52 | 101.30 | 89.03 | 85.05 | 69.54 | 160.71 |
q (W) | 25.87 | 30.24 | 52.19 | 120.61 | 109.51 | 103.29 | 84.33 | 190.45 |
Rpulse | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adis (A) | 43.79 | 48.18 | 51.54 | 48.93 | 42.83 | 37.02 | 31.83 | 27.30 | 23.35 | 19.88 | 16.83 | 14.12 | 11.69 | 9.51 | 7.53 | 5.73 | 4.08 | 2.58 | 1.21 |
(Ω) | 0.0523 | 0.0517 | 0.0513 | 0.0516 | 0.0525 | 0.0534 | 0.0546 | 0.0558 | 0.0571 | 0.0586 | 0.0603 | 0.0622 | 0.0643 | 0.0668 | 0.0696 | 0.0730 | 0.0771 | 0.0820 | 0.0832 |
qdis (W) | 5.02 | 12.01 | 20.45 | 24.72 | 24.06 | 21.97 | 19.35 | 16.63 | 14.02 | 11.59 | 9.40 | 7.44 | 5.72 | 4.23 | 2.96 | 1.92 | 1.09 | 0.49 | 0.12 |
Acha (A) | 2.31 | 5.35 | 9.10 | 12.23 | 14.28 | 15.86 | 17.14 | 18.20 | 19.10 | 19.88 | 20.57 | 21.18 | 21.72 | 22.19 | 22.59 | 22.91 | 23.14 | 23.22 | 22.93 |
(Ω) | 0.0823 | 0.0739 | 0.0673 | 0.0638 | 0.0621 | 0.0609 | 0.0601 | 0.0595 | 0.0590 | 0.0586 | 0.0583 | 0.0580 | 0.0578 | 0.0576 | 0.0574 | 0.0573 | 0.0572 | 0.0572 | 0.0573 |
qcha (W) | 0.42 | 1.91 | 4.73 | 7.64 | 9.49 | 10.74 | 11.48 | 11.83 | 11.85 | 11.59 | 11.10 | 10.41 | 9.54 | 8.51 | 7.33 | 6.02 | 4.60 | 3.08 | 1.51 |
q (W) | 5.43 | 13.91 | 25.19 | 32.36 | 33.55 | 32.71 | 30.83 | 28.46 | 25.87 | 23.19 | 20.50 | 17.85 | 15.26 | 12.73 | 10.29 | 7.94 | 5.69 | 3.58 | 1.62 |
Temperature (°C) | −15 | 10 | ||||||
---|---|---|---|---|---|---|---|---|
fpulse (Hz) | 0.5 | 5 | 100 | 10,000 | 0.5 | 5 | 100 | 10,000 |
Adis (A) | 19.59 | 23.44 | 35.59 | 59.85 | 61.52 | 63.33 | 64.69 | 84.00 |
(Ω) | 0.1294 | 0.1110 | 0.0795 | 0.0608 | 0.0626 | 0.0560 | 0.0449 | 0.0426 |
qdis (W) | 9.93 | 12.20 | 20.13 | 43.52 | 47.37 | 44.93 | 37.55 | 60.15 |
Acha (A) | 4.90 | 5.86 | 8.90 | 14.96 | 15.38 | 15.83 | 16.17 | 21.00 |
(Ω) | 0.2292 | 0.1669 | 0.0991 | 0.064 | 0.0784 | 0.0665 | 0.0530 | 0.0435 |
qcha (W) | 4.40 | 4.59 | 6.27 | 11.47 | 14.84 | 13.34 | 11.10 | 15.35 |
q (W) | 14.32 | 16.78 | 26.41 | 54.99 | 62.21 | 58.27 | 48.65 | 75.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Wei, G.; Jiang, B.; Zhu, J.; Pan, X.; Wang, X.; Zhou, X.; Ye, J.; Wei, X.; Dai, H. Investigating the Effect of Different Bidirectional Pulsed Current Parameters on the Heat Generation of Lithium-Ion Battery at Low Temperatures. Batteries 2023, 9, 457. https://doi.org/10.3390/batteries9090457
Huang R, Wei G, Jiang B, Zhu J, Pan X, Wang X, Zhou X, Ye J, Wei X, Dai H. Investigating the Effect of Different Bidirectional Pulsed Current Parameters on the Heat Generation of Lithium-Ion Battery at Low Temperatures. Batteries. 2023; 9(9):457. https://doi.org/10.3390/batteries9090457
Chicago/Turabian StyleHuang, Ranjun, Gang Wei, Bo Jiang, Jiangong Zhu, Xiangmin Pan, Xueyuan Wang, Xiangyang Zhou, Jiping Ye, Xuezhe Wei, and Haifeng Dai. 2023. "Investigating the Effect of Different Bidirectional Pulsed Current Parameters on the Heat Generation of Lithium-Ion Battery at Low Temperatures" Batteries 9, no. 9: 457. https://doi.org/10.3390/batteries9090457
APA StyleHuang, R., Wei, G., Jiang, B., Zhu, J., Pan, X., Wang, X., Zhou, X., Ye, J., Wei, X., & Dai, H. (2023). Investigating the Effect of Different Bidirectional Pulsed Current Parameters on the Heat Generation of Lithium-Ion Battery at Low Temperatures. Batteries, 9(9), 457. https://doi.org/10.3390/batteries9090457