Experimental Application of the Global Technical Regulation on In-Vehicle Battery Durability
Abstract
:1. Introduction
2. Materials and Methods
2.1. In-Vehicle Battery Durability GTR Overview
2.2. Tested Vehicle and the Laboratory
2.3. Driving Cycles
- The Worldwide Harmonized Light-duty Test Cycle (WLTC);
- The Worldwide Harmonized Light-duty Shorten Test Procedure (WLTP STP).
2.4. Measurement Points
3. Results
3.1. Usable Battery Energy, Driving Range and Energy Consumption
3.2. Calculate the SOCE/SOCR Monitor
3.3. Applying the GTR No. 22 Part A Statistics
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Abbreviations
BEV | Battery electric vehicle |
CAN | Controller area network |
CCT | Consecutive Cycle Test |
CSS | Constant speed segment |
EVE | Electric Vehicles and Environment |
GTR | Global Technical Regulation |
HVAC | Heating, Venting, and Air Conditioning |
ICE | Internal combustion engine |
IWG | Informal Working Group |
JRC | Joint Research Centre |
MPR | Minimum performance requirement |
NEDC | New European Driving Cycle |
OVC-HEV | Off-vehicle charging hybrid electric vehicle |
SOH | State of health |
SOCE | State of certified energy |
SOCR | State of certified range |
STP | Shortened test procedure |
UBE | Usable battery energy |
UN ECE | United Nations Economic Commission for Europe |
V2X | Vehicle to Everything |
VELA | Vehicle emission laboratories |
WLTP | Worldwide Harmonized Light-duty Test Procedure |
Appendix A
- (a)
- Pass the family if ;
- (b)
- Fail the family if ;
- (c)
- Take another measurement if:
PASS | FAIL | |||
---|---|---|---|---|
Tests (N) | tP1,N | tP2,N | tF1,N | tF2 |
3 | 1.686 | 0.438 | 1.686 | 0.438 |
4 | 1.125 | 0.425 | 1.177 | 0.438 |
5 | 0.850 | 0.401 | 0.953 | 0.438 |
6 | 0.673 | 0.370 | 0.823 | 0.438 |
7 | 0.544 | 0.335 | 0.734 | 0.438 |
8 | 0.443 | 0.299 | 0.670 | 0.438 |
9 | 0.361 | 0.263 | 0.620 | 0.438 |
10 | 0.292 | 0.226 | 0.580 | 0.438 |
11 | 0.232 | 0.190 | 0.546 | 0.438 |
12 | 0.178 | 0.153 | 0.518 | 0.438 |
13 | 0.129 | 0.116 | 0.494 | 0.438 |
14 | 0.083 | 0.078 | 0.473 | 0.438 |
15 | 0.040 | 0.038 | 0.455 | 0.438 |
16 | 0.000 | 0.000 | 0.438 | 0.438 |
References
- International Energy Agency IEA. Global EV Outlook 2023. 2023. Available online: https://www.iea.org/reports/global-ev-outlook-2023 (accessed on 3 August 2023).
- European Environment Agency. Greenhouse Gas Emissions from Transport in Europe. Available online: https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-transport (accessed on 3 August 2023).
- European Commission. Paris Agreement COP21. 2015. Available online: https://climate.ec.europa.eu/eu-action/international-action-climate-change/climate-negotiations/paris-agreement_en (accessed on 3 August 2023).
- European Commission. European Green Deal. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_19_6691 (accessed on 3 August 2023).
- European Commission. Sustainable and Smart Mobility Strategy—Putting European Transport on Track for the Future. 9 December 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0789 (accessed on 3 August 2023).
- European Commission. Sustainable Mobility the European Green Deal. December 2021. Available online: https://ec.europa.eu/commission/presscorner/detail/en/fs_19_6726 (accessed on 3 August 2023).
- Bloomberg NEF. Electric Vehicle Outlook 2022. 2022. Available online: https://about.bnef.com/electric-vehicle-outlook/ (accessed on 3 August 2023).
- Miao, Y.; Hynan, P.; von Jouanne, A.; Yokochi, A. Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies 2019, 12, 1074. [Google Scholar] [CrossRef]
- Dechent, P.; Epp, A.; Jöst, D.; Preger, Y.; Attia, P.M.; Li, W.; Sauer, D.U. ENPOLITE: Comparing Lithium-Ion Cells across Energy, Power, Lifetime, and Temperature. ACS Energy Lett. 2021, 6, 2351–2355. [Google Scholar] [CrossRef]
- Thomas Merichko (FEV North America Inc.). Battery Durability in Electrified Vehicle Applications: A Review of Degradation Mechanisms and Durability Testing. 2016. Available online: https://wiki.unece.org/download/attachments/29884985/EVE-18-04e.pdf?api=v2 (accessed on 3 August 2023).
- Broussely, M.; Biensan, P.; Bonhommeb, F.; Blanchard, P.; Herreyre, S.; Nechev, K.; Staniewicz, R. Main aging mechanisms in Li ion batteries. J. Power Sources 2005, 146, 90–96. [Google Scholar] [CrossRef]
- Keil, P.; Jossen, A.; Kowal, J. Aging of Lithium-Ion Batteries in Electric Vehicles; Technische Universität München—Fakultät für Elektrotechnik und Informationstechnik: München, Germany, 2017. [Google Scholar]
- Preger, Y.; Barkholtz, H.M.; Fresquez, A.; Campbell, D.L.; Juba, B.W.; Romàn-Kustas, J.; Ferreira, S.R.; Chalamala, B. Degradation of Commercial Lithium-Ion Cells as a Function of Chemistry and Cycling Conditions. J. Electrochem. Soc. 2020, 167, 120532. [Google Scholar] [CrossRef]
- UNECE; GRPE. Working Party on Pollution and Energy. 2023. Available online: http://www.unece.org/trans/main/wp29/meeting_docs_grpe.html (accessed on 3 August 2023).
- UN GTR No. 22. In-Vehicle Battery Durability for Electrified Vehicles. 2023. Available online: https://unece.org/transport/documents/2022/04/standards/un-gtr-no22-vehicle-battery-durability-electrified-vehicles (accessed on 3 August 2023).
- GRPE. Proposal for a Final Status Report on the Development of a New UN Global Technical Regulation on In-Vehicle Battery Durability for Electrified Vehicles; UNECE: Geneva, Switzerland, 2021. [Google Scholar]
- UNECE. Special Resolution No. 1 Concerning the Common Definitions of Vehicle Categories, Masses and Dimensions; TRANS/WP.29/1045; UNECE: Geneva, Switzerland, 2005. [Google Scholar]
- UNECE. Global Technical Regulation No. 15 Worldwide Harmonized Light Vehicles Test Procedure. 2014. Available online: https://unece.org/sites/default/files/2022-06/ECE-TRANS-180a15am6e.pdf (accessed on 3 August 2023).
- Patrone, G.L.; Paffumi, E.; Otura, M.; Centurelli, M.; Ferrarese, C.; Jahn, S.; Brenner, A.; Thieringer, B.; Braum, D.; Hoffmann, T. Assessing the Energy Consumption and Driving Range of the QUIET Project Demonstrator Vehicle. Energies 2022, 10, 1290. [Google Scholar] [CrossRef]
- European Commission. Vehicle Emissions Laboratories. Available online: https://ec.europa.eu/jrc/en/research-facility/vehicle-emissions-laboratory-vela (accessed on 3 August 2023).
- De Gennaro, M.; Paffumi, E.; Martini, G.; Manfredi, U.; Vianelli, S.; Ortenzi, F.; Genovese, A. Experimental Test Campaign on a Battery Electric Vehicle: Laboratory Test Results (Part 1). SAE Int. J. Altern. Powertrains 2015, 4, 100–114. [Google Scholar] [CrossRef]
- Paffumi, E.; De Gennaro, M.; Martini, G.; Manfredi, U.; Vianelli, S.; Ortenzi, F.; Genovese, A. Experimental Test Campaign on a Battery Electric Vehicle: On-Road Test Results (Part 2). SAE Int. J. Altern. Powertrains 2015, 4, 277–292. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2017/1151 of 1 June 2017 Supplementing Regulation (EC) No 715/2007 of the European Parliament and of the Council on Type-Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Maintenance Information, Amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) No 1230/2012 and Repealing Commission Regulation (EC) No 692/2008. Off. J. Eur. Union 2017, L175. Available online: https://eur-lex.europa.eu/eli/reg/2017/1151/oj (accessed on 3 August 2023).
- UN Regulation No 154. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A42021X2039 (accessed on 3 August 2023).
- UNECE. Major Auto Markets Join Forces for Draft UN Legislation on Electric Vehicle Battery Durability. Press Release. Available online: https://unece.org/circular-economy/press/major-auto-markets-join-forces-draft-un-legislation-electric-vehicle-battery (accessed on 3 August 2023).
Architecture | Battery Electric Vehicle |
---|---|
Propulsion | Synchronous electric motor |
Drive Type | FWD |
Max. Power (kW) | 80 |
Max. Torque (Nm) | 280 |
Empty mass (kg) | 1520 |
Battery | 24 kWh 192 Li-ion cells (96S-2P) |
F/R tire and wheel size | 205/55 R16 |
Length (mm) | 4440 |
Width (mm) | 1770 |
Height (mm) | 1549 |
Wheelbase (mm) | 2700 |
Measurement Point Marker | Explanation |
---|---|
M1 | Electrical energy from the mains to the high-voltage battery (Wh) (acquired directly at the recharging station) |
M2 | Current (A) and Voltage (V) from the high-voltage battery to the inverter, the low-voltage auxiliary systems and the HVAC systems; (acquired both by CAN bus and current clamp measurements) |
M3 | Rotational speed (rpm) and torque (N∙m) of the electric motor; (acquired by CAN bus) |
M4 | Mechanical energy at the wheel (Wh); (acquired by the dyno) |
M5 | 12V battery electrical energy measurement (acquired both by CAN bus and current clamp measurements) |
WLTC Cycle n. | WLTP CCT | ° | WLTP STP |
---|---|---|---|
1 | 158.16 | WLTC cycle 1 | 155.58 |
2 | 153.66 | WLTC cycle 2 | 151.71 |
3 | 152.50 | DS1 | 147.43 |
4 | 159.15 | DS2 | 144.06 |
Tot. up to break-off | 158.31 | Tot. up to break-off | 156.19 |
WLTP post processed energy consumption | 155.74 | WLTP post processed energy consumption | 152.51 |
WLTC Cycle n. | Phase n. | WLTP CCT | WLTC Cycle n. | Phase n. | WLTP STP | |
---|---|---|---|---|---|---|
1 | 1 | 145.57 | DS1 | 1 | 138.16 | |
2 | 142.99 | 2 | 137.69 | |||
3 | 145.20 | 3 | 143.12 | |||
4 | 191.06 | 4 | 190.22 | |||
2 | 1 | 138.02 | 1 | 126.69 | ||
2 | 131.58 | 2 | 127.80 | |||
3 | 143.54 | CSS1 | 167.02 | |||
4 | 190.73 | DS2 | 1 | 124.61 | ||
3 | 1 | 136.10 | 2 | 129.20 | ||
2 | 129.69 | 3 | 140.85 | |||
3 | 142.44 | 4 | 191.31 | |||
4 | 190.50 | 1 | 123.49 | |||
4 | 1 | 138.10 | 2 | 127.46 | ||
2 | 129.65 | CSS2 | 210.14 | |||
3 | 158.12 | WLTP post-processed energy consumption | 152.51 | |||
4 | 194.84 | |||||
5 | 1 | 144.54 | ||||
2 | 155.82 | |||||
3 | 152.02 | |||||
4 | 234.80 | |||||
WLTP post-processed energy consumption | 155.74 |
CCT | 73.4 | 70.7 |
STP | 72.4 | 71.2 |
Vehicle Tested | SOCEread (%) | SOCEmeas (%) | xi (%) | Pass Boundary (%) | Fail
Boundary (%) | Xtest (%) | Decision |
---|---|---|---|---|---|---|---|
1 | 78 | 73.4 | 4.6 | 4.6 | |||
2 | 78 | 73.4 | 4.6 | 4.6 | |||
3 | 78 | 73.4 | 4.6 | 5 | 5 | 4.6 | PASS |
Minimum (%) | 1st Quarter (%) | Median (%) | Mean (%) | 3rd Quarter (%) | Maximum (%) | Std. Deviation (%) | |
---|---|---|---|---|---|---|---|
SOCEmeas | 67.086 | 72.356 | 73.428 | 73.415 | 74.488 | 79.005 | 1.56 |
SOCEread | 72.061 | 76.937 | 77.992 | 77.986 | 79.048 | 83.448 | 1.56 |
Sample Size | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pass rate (%) | 5.25 | 3.30 | 1.75 | 1.75 | 2.05 | 3.00 | 4.20 | 4.85 | 5.25 | 7.20 | 7.80 | 7.70 | 7.35 | 3.95 |
Cumulative Pass rate (%) | 5.25 | 8.55 | 10.30 | 12.05 | 14.10 | 17.10 | 21.30 | 26.15 | 31.40 | 38.60 | 46.40 | 54.10 | 61.45 | 65.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patrone, G.L.; Paffumi, E. Experimental Application of the Global Technical Regulation on In-Vehicle Battery Durability. Batteries 2023, 9, 454. https://doi.org/10.3390/batteries9090454
Patrone GL, Paffumi E. Experimental Application of the Global Technical Regulation on In-Vehicle Battery Durability. Batteries. 2023; 9(9):454. https://doi.org/10.3390/batteries9090454
Chicago/Turabian StylePatrone, Gian Luca, and Elena Paffumi. 2023. "Experimental Application of the Global Technical Regulation on In-Vehicle Battery Durability" Batteries 9, no. 9: 454. https://doi.org/10.3390/batteries9090454
APA StylePatrone, G. L., & Paffumi, E. (2023). Experimental Application of the Global Technical Regulation on In-Vehicle Battery Durability. Batteries, 9(9), 454. https://doi.org/10.3390/batteries9090454