A Review on Recent Progress Achieved in Boron Carbon Nitride Nanomaterials for Supercapacitor Applications
Abstract
:1. Introduction
2. Definition and Properties of Boron Carbon Nitride
3. Synthesis of Nanostructured BCN Materials
3.1. Chemical Vapor Deposition
3.2. Pyrolysis
3.2.1. Template-Assisted Methods
3.2.2. Precursor Pyrolytic Methods
3.2.3. Molten Salt Synthesis
3.3. Other Methods
4. Application of Boron Carbon Nitride in Supercapacitors
4.1. BN-Graphene Composite-Based Supercapacitor
4.2. BCN-Based Supercapacitor
4.3. Strategies to Boost the Electrochemical Performance of BCN-Based Supercapacitors
4.3.1. 1D BCN-Based Electrode Materials
4.3.2. 2D BCN-Based Electrode Materials
4.3.3. 3D BCN-Based Electrode Materials
5. Conclusions and Future Outlook
- (1)
- It is still a challenge to synthesize semiconducting BCNs with both high electric conductivity and pseudocapacitive performance. The most advanced technique for synthesizing BCN nanomaterials is still lacking. To tune the electrochemical properties of BCN materials, advanced synthesis techniques, i.e., constructing unique structures such as vertically aligned BCN nanotube arrays, 2D porous nanosheets, and 3D hierarchical 3D networks, and controlling the BCN compositions by varying the combinations of starting materials, and designing novel synthesis routes, are required.
- (2)
- The electron and ion transport properties of BCNs should be further increased during the electrochemical processes. The restacking and irreversible agglomeration issues may damage the porous structure of BCNs, influencing the charge transportation and electrolyte access to the BCN surface. Functionalized BCN materials are efficient in inhibiting restacking of BCN layers and introducing more defect sites in BCN skeletons. The methods of functionalization include doping and coupling with other functional materials. Diverse functional materials such as metal oxides, conductive polymers, carbon materials, and other 2D materials can be used to improve the capacitance, energy, and power density of BCNs. Doping with heteroatoms such as F and S can also change the electrical properties of BCNs.
- (3)
- Constructing BCN-based heterostructures is an alternative while the weak interaction forces in the hybrid structure are adverse for the interface stability during charging and discharging. Heterostructures can alleviate the restacking of BCN and enhance the electrical conductivity of nanocomposites. To make these materials viable, graphene, Mxenem and other 2D materials can be incorporated via strong π-π stacking or weak van der Waals interactions. A stronger bonding heterostructure should be considered for follow-up research work.
- (4)
- Additionally, the feasibility of BCN preparation on an industrial scale, the longer time/cycles to maintain high performance and flexibility, and electrolyte selection will all affect the electrochemical properties and the commercialization of BCN electrode materials.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Li, H.; Zhang, M.; Pan, W.; Luo, Z.; Sun, X. Hierarchical nanocages assembled by NiCo-layered double hydroxide nanosheets for a high-performance hybrid supercapacitor. ACS Appl. Mater. Interfaces 2022, 14, 34781–34792. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, M.; Li, H.; Pan, W.; Luo, Z.; Sun, X. Smart construction of MnCo2O4 microspheres with multiple interiors: Morphological evolution and structure-performance relationship for supercapacitor electrodes. Appl. Surf. Sci. 2022, 600, 154062. [Google Scholar] [CrossRef]
- Karbhal, I.; Chaturvedi, V.; Patrike, A.; Yadav, P.; Shelke, M.V. Honeycomb boron carbon nitride as high-performance anode material for Li-ion batteries. ChemNanoMat 2022, 8, e202200056. [Google Scholar] [CrossRef]
- Panchatcharam, P.; Vengidusamy, N.; Arumainathan, S. Facile in situ synthesis of flexible porous polycarbazole/BCN nanocomposite as a novel electrode material for high-performance supercapacitor. J. Mater. Sci. Mater. Electron. 2022, 33, 23580–23598. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Narenthiran, B.; Sivanantham, A.; Bhatlu, L.D.; Maridurai, T. Supercapacitor: Evolution and review. Mater. Today Proc. 2021, 46, 3984–3988. [Google Scholar] [CrossRef]
- Kumar, S.; Saeed, G.; Zhu, L.; Hui, K.N.; Kim, N.H.; Lee, J.H. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 2021, 403, 126352. [Google Scholar] [CrossRef]
- Al-Enizi, A.M. Waste cigarette butt-derived B, N doped bifunctional hierarchical mesoporous carbon for supercapacitor and oxygen reduction reaction. Colloids Surf. A 2022, 643, 128775. [Google Scholar] [CrossRef]
- Yang, L.; Wu, D.; Wang, T.; Jia, D. B/N-codoped carbon nanosheets derived from the self-assembly of chitosan–amino acid gels for greatly improved supercapacitor performances. ACS Appl. Mater. Interfaces 2020, 12, 18692–18704. [Google Scholar] [CrossRef]
- Pu, J.; Zhang, K.; Wang, Z.; Li, C.; Zhu, K.; Yao, Y.; Hong, G. Synthesis and modification of boron nitride nanomaterials for electrochemical energy storage: From theory to application. Adv. Funct. Mater. 2021, 31, 2106315. [Google Scholar] [CrossRef]
- Shan, Q.; Ding, Q.; Wang, X.; Wu, W. Electrochemical preparation of hydroxylated boron nitride nanosheets for solid–state flexible supercapacitors using deep eutectic solvent and water mixture as electrolytes. Langmuir 2022, 38, 8169–8178. [Google Scholar] [CrossRef]
- Nasrin, K.; Sudharshan, V.; Subramani, K.; Sathish, M. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: A review. Adv. Funct. Mater. 2022, 32, 2110267. [Google Scholar] [CrossRef]
- Chang, C.; Chen, W.; Chen, Y.; Chen, Y.; Chen, Y.; Ding, F.; Fan, C.; Fan, H.; Fan, Z.; Gong, C.; et al. Recent progress on two-dimensional materials. Acta Phys.-Chim. Sin. 2021, 37, 2108017. [Google Scholar] [CrossRef]
- Nahirniak, S.; Ray, A.; Saruhan, B. Challenges and future prospects of the mxene-based materials for energy storage applications. Batteries 2023, 9, 126. [Google Scholar] [CrossRef]
- Liang, C.; Wang, S.; Sha, S.; Lv, S.; Wang, G.; Wang, B.; Li, Q.; Yu, J.; Xu, X.; Zhang, L. Novel semiconductor materials for advanced supercapacitors. J. Mater. Chem. C 2023, 11, 4288–4317. [Google Scholar] [CrossRef]
- Maity, C.K.; Sahoo, S.; Verma, K.; Behera, A.K.; Nayak, G.C. Facile functionalization of boron nitride (BN) for the development of high-performance asymmetric supercapacitors. New J. Chem. 2020, 44, 8106–8119. [Google Scholar] [CrossRef]
- Althubaiti, N.; Mussa, Y.; Bongu, C.S.; Bayhan, Z.; Arsalan, M.; Soliman, A.; Alsharaeh, E. Reduced graphene oxide/hexagonal boron nitride-based composite as a positive electrode in asymmetric supercapacitors. J. Mater. Sci. 2022, 57, 14371–14385. [Google Scholar] [CrossRef]
- Karbhal, I.; Devarapalli, R.R.; Debgupta, J.; Pillai, V.K.; Ajayan, P.M.; Shelke, M.V. Facile green synthesis of bcn nanosheets as high-performance electrode material for electrochemical energy storage. Chem.-Eur. J. 2016, 22, 7134–7140. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, K.; Vij, A.; Kumar, A. Recent insight into BCN nanomaterials–synthesis, properties and applications. New J. Chem. 2023, 47, 2137–2160. [Google Scholar] [CrossRef]
- Han, R.; Liu, F.; Wang, X.; Huang, M.; Li, W.; Yamauchi, Y.; Sun, X.; Huang, Z. Functionalised hexagonal boron nitride for energy conversion and storage. J. Mater. Chem. A 2020, 8, 14384–14399. [Google Scholar] [CrossRef]
- Sathish, C.I.; Kothandam, G.; Selvarajan, P.; Lei, Z.; Lee, J.; Qu, J.; Al-Muhtaseb, A.H.; Yu, X.; Zheng, R.; Vinu, A.; et al. Ordered mesoporous boron carbon nitrides with tunable mesopore nanoarchitectonics for energy storage and CO2 adsorption properties. Adv. Sci. 2022, 9, 2105603. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Chhetri, M. Borocarbonitrides as metal-free catalysts for the hydrogen evolution reaction. Adv. Mater. 2019, 31, 1803668. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Pramoda, K.; Gopalakrishnan, K.; Rao, C.N.R. Synthesis, characterization, surface properties and energy device characterstics of 2D borocarbonitrides, (BN)xC1x, covalently cross-linked with sheets of other 2D materials. RSC Adv. 2018, 8, 17237–17253. [Google Scholar] [CrossRef] [PubMed]
- Garg, H.; Patial, S.; Raizada, P.; Nguyen, V.H.; Kim, S.Y.; Van Le, Q.; Ahamad, T.; Alshehri, S.M.; Hussain, C.M.; Singh, P.; et al. Hexagonal-borocarbonitride (h-BCN) based heterostructure photocatalyst for energy and environmental applications: A review. Chemosphere 2022, 313, 137610. [Google Scholar] [CrossRef]
- Recepoglu, Y.K.; Goren, A.Y.; Vatanpour, V.; Yoon, Y.; Khataee, A. Boron carbon nitride nanosheets in water and wastewater treatment: A critical review. Desalination 2022, 533, 115782. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Gopalakrishnan, K. Borocarbonitrides, BxCyNz: Synthesis, Characterization, and Properties with potential applications. ACS Appl. Mater. Interfaces 2017, 9, 19478–19494. [Google Scholar] [CrossRef]
- Bahadur, R.; Singh, G.; Bando, Y.; Vinu, A. Advanced porous borocarbonitride nanoarchitectonics: Their structural designs and applications. Carbon 2022, 190, 142–169. [Google Scholar] [CrossRef]
- Nehate, S.D.; Saikumar, A.K.; Prakash, A.; Sundaram, K.B. A review of boron carbon nitride thin films and progress in nanomaterials. Mater. Today Adv. 2020, 8, 100106. [Google Scholar] [CrossRef]
- Fan, M.; Wu, J.; Yuan, J.; Deng, L.; Zhong, N.; He, L.; Cui, J.; Wang, Z.; Behera, S.K.; Zhang, C.; et al. Doping nanoscale graphene domains improves magnetism in hexagonal boron nitride. Adv. Mater. 2019, 31, 1805778. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Z.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T.R.; Liu, Y.; Yan, X.; Nilsson, E.; et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859. [Google Scholar] [CrossRef]
- Yi, K.; Jin, Z.; Bu, S.; Wang, D.; Liu, D.; Huang, Y.; Dong, Y.; Yuan, Q.; Liu, Y.; Wei, D.; et al. Catalyst-free growth of two-dimensional bcxn materials on dielectrics by temperature-dependent plasma-enhanced chemical vapor deposition. ACS Appl. Mater. Interfaces 2020, 12, 33113–33120. [Google Scholar] [CrossRef]
- Liu, F.; Nattestad, A.; Naficy, S.; Han, R.; Casillas, G.; Angeloski, A.; Sun, X.; Huang, Z. Fluorescent carbon-and oxygen-doped hexagonal boron nitride powders as printing ink for anticounterfeit applications. Adv. Opt. Mater. 2019, 7, 1901380. [Google Scholar] [CrossRef]
- Liu, F.; Han, R.; Nattestad, A.; Sun, X.; Huang, Z. Carbon-and oxygen-doped hexagonal boron nitride for degradation of organic pollutants. Surf. Innov. 2020, 9, 222–230. [Google Scholar] [CrossRef]
- Liu, F.; Han, R.; Zhang, G.; Zhang, M.; Chen, J.; Sun, X. Molten salt assisted synthesis of boron carbon nitride nanosheets for enhanced photocatalytic activity of silver phosphate. J. Nanoelectron. Optoelectron. 2022, 17, 560–568. [Google Scholar] [CrossRef]
- Kaner, R.B.; Kouvetakis, J.; Warble, C.E.; Sattler, M.L.; Bartlett, N. Boron-carbon-nitrogen materials of graphite-like structure. Mater. Res. Bull. 1987, 22, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Ci, L.; Song, L.; Jin, C.; Jariwala, D.; Wu, D.; Li, Y.; Srivastava, A.; Wang, A.F.; Storr, K.; Balicas, L.; et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Son, M.; Lim, H.; Hong, M.; Choi, H.C. Direct growth of graphene pad on exfoliated hexagonal boron nitride surface. Nanoscale 2011, 3, 3089–3093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, L.; Yu, J.; Kuang, S.; Xiao, C.; Bai, X. Few-atomic-layered boron carbonitride nanosheets prepared by chemical vapor deposition. Nanoscale 2012, 4, 120–123. [Google Scholar] [CrossRef]
- Roy, S.; Zhang, X.; Puthirath, A.B.; Meiyazhagan, A.; Bhattacharyya, S.; Rahman, M.M.; Babu, G.; Susarla, S.; Saju, S.K.; Tran, M.K.; et al. Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 2021, 33, 2101589. [Google Scholar] [CrossRef]
- Yang, W.; Chen, G.; Shi, Z.; Liu, C.C.; Zhang, L.; Xie, G.; Cheng, M.; Wang, D.; Yang, R.; Shi, D.; et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792–797. [Google Scholar] [CrossRef]
- Tang, S.; Wang, H.; Wang, H.S.; Sun, Q.; Zhang, X.; Cong, C.; Xie, H.; Liu, X.; Zhou, X.; Huang, F.; et al. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat. Commun. 2015, 6, 6499. [Google Scholar] [CrossRef] [Green Version]
- Seo, T.H.; Lee, W.; Lee, K.S.; Hwang, J.Y.; Son, D.I.; Ahn, S.; Cho, H.; Kim, M.J. Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization. Carbon 2021, 182, 791–798. [Google Scholar] [CrossRef]
- Han, W.; Bando, Y.; Kurashima, K.; Sato, T. Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Appl. Phys. Lett. 1998, 73, 3085–3087. [Google Scholar] [CrossRef]
- Han, W.Q.; Mickelson, W.; Cumings, J.; Zettl, A. Transformation of BxCyNz nanotubes to pure BN nanotubes. Appl. Phys. Lett. 2002, 81, 1110–1112. [Google Scholar] [CrossRef]
- Kumar, N.; Subrahmanyam, K.S.; Chaturbedy, P.; Raidongia, K.; Govindaraj, A.; Hembram, K.P.; Mishra, A.K.; Waghmare, U.V.; Rao, C.N.R. Remarkable uptake of CO2 and CH4 by graphene-like borocarbonitrides, BxCyNz. ChemSusChem 2011, 4, 1662–1670. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Mo, X.; Gan, H.; Guo, T.; Wang, X.; Chen, B.; Chen, J.; Deng, S.; Xu, N.; Sekiguchi, T. Cheap, gram-scale fabrication of BN nanosheets via substitution reaction of graphite powders and their use for mechanical reinforcement of polymers. Sci. Rep. 2014, 4, 4211. [Google Scholar] [CrossRef] [Green Version]
- Vinu, A.; Terrones, M.; Golberg, D.; Hishita, S.; Ariga, K.; Mori, T. Synthesis of mesoporous BN and BCN exhibiting large surface areas via templating methods. Chem. Mater. 2005, 17, 5887–5890. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Wang, S.; Wang, J.; Qiu, J. Boron-nitride-carbon nanosheets with different pore structure and surface properties for capacitive deionization. J. Colloid Interface Sci. 2019, 552, 604–612. [Google Scholar] [CrossRef]
- Luo, Z.; Fang, Y.; Zhou, M.; Wang, X. A borocarbonitride ceramic aerogel for photoredox catalysis. Angew. Chem. Int. Ed. 2019, 58, 6033–6037. [Google Scholar] [CrossRef]
- Portehault, D.; Giordano, C.; Gervais, C.; Senkovska, I.; Kaskel, S.; Sanchez, C.; Antonietti, M. High-surface-area nanoporous boron carbon nitrides for hydrogen storage. Adv. Funct. Mater. 2010, 20, 1827–1833. [Google Scholar] [CrossRef]
- Wang, S.; Wang, G.; Wu, T.; Zhang, Y.; Zhan, F.; Wang, Y.; Wang, J.; Fu, Y.; Qiu, J. BCN nanosheets templated by gC3N4 for high performance capacitive deionization. J. Mater. Chem. A 2018, 6, 14644–14650. [Google Scholar] [CrossRef]
- Li, J.; Lei, N.; Hao, H.; Zhou, J. A series of BCN nanosheets with enhanced photoelectrochemical performances. Chem. Phys. Lett. 2017, 672, 99–104. [Google Scholar] [CrossRef]
- Cao, L.; Dai, P.; Tang, J.; Li, D.; Chen, R.; Liu, D.; Gu, X.; Li, L.; Bando, Y.; Ok, Y.S.; et al. Spherical superstructure of boron nitride nanosheets derived from boron-containing metal–organic frameworks. J. Am. Chem. Soc. 2020, 142, 8755–8762. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Han, C.; Li, H.; Su, P.; Ta, N.; Ma, Y.; Huang, Z.; Liu, J. Fabrication of monodispersed B, N co-doped hierarchical porous carbon nanocages through confined etching to boost electrocatalytic oxygen reduction. Nano Res. 2023, 16, 290–298. [Google Scholar] [CrossRef]
- Lu, L.; He, J.; Wu, P.; Wu, Y.; Chao, Y.; Li, H.; Tao, D.; Fan, L.; Li, H.; Zhu, W. Taming electronic properties of boron nitride nanosheets as metal-free catalysts for aerobic oxidative desulfurization of fuels. Green Chem. 2018, 20, 4453–4460. [Google Scholar] [CrossRef]
- Goyal, R.; Sarkar, B.; Bag, A.; Lefebvre, F.; Sameer, S.; Pendem, C.; Bordoloi, A. Single-step synthesis of hierarchical BxCN: A metal-free catalyst for low-temperature oxidative dehydrogenation of propane. J. Mater. Chem. A 2016, 4, 18559–18569. [Google Scholar] [CrossRef]
- Massimi, L.; Betti, M.G.; Caramazza, S.; Postorino, P.; Mariani, C.; Latini, A.; Leardini, F. In-vacuum thermolysis of ethane 1, 2-diamineborane for the synthesis of ternary borocarbonitrides. Nanotechnology 2016, 27, 435601. [Google Scholar] [CrossRef]
- Zhang, P.; Hou, C.; Shao, W.; Liu, R.; Wu, Z.; Tai, G. Crystalline BC2N quantum dots. Nano Res. 2023, 16, 7837–7843. [Google Scholar] [CrossRef]
- Giusto, P.; Arazoe, H.; Cruz, D.; Lova, P.; Heil, T.; Aida, T.; Antonietti, M. Boron carbon nitride thin films: From disordered to ordered conjugated ternary materials. J. Am. Chem. Soc. 2020, 142, 20883–20891. [Google Scholar] [CrossRef]
- Han, R.; Diao, J.; Kumar, S.; Lyalin, A.; Taketsugu, T.; Casillas, G.; Richardson, C.; Liu, F.; Yoon, C.W.; Liu, H.; et al. Boron nitride for enhanced oxidative dehydrogenation of ethylbenzene. J. Energy Chem. 2021, 57, 477–484. [Google Scholar] [CrossRef]
- Mirzaee, M.; Rashidi, A.; Zolriasatein, A.; Abadchi, M.R. Solid-state synthesis and characterization of two-dimensional hexagonal BCN nanosheet using a free template method. Diam. Relat. Mater. 2021, 115, 108350. [Google Scholar] [CrossRef]
- Huang, C.; Chen, C.; Zhang, M.; Lin, L.; Ye, X.; Lin, S.; Antonietti, M.; Wang, X. Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 2015, 6, 7698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Hao, J.; Liu, D.; Qin, S.; Portehault, D.; Li, Y.; Chen, Y.; Lei, W. Porous boron carbon nitride nanosheets as efficient metal-free catalysts for the oxygen reduction reaction in both alkaline and acidic solutions. ACS Energy Lett. 2017, 2, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Tabassum, H.; Zou, R.; Mahmood, A.; Liang, Z.; Guo, S. A catalyst-free synthesis of B, N co-doped graphene nanostructures with tunable dimensions as highly efficient metal free dual electrocatalysts. J. Mater. Chem. A 2016, 4, 16469–16475. [Google Scholar] [CrossRef]
- Tabassum, H.; Zou, R.; Mahmood, A.; Liang, Z.; Wang, Q.; Zhang, H.; Gao, S.; Qu, C.; Guo, W.; Guo, S. A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N Co-doped graphitic nanotubes as high-performance lithium-ion battery anodes. Adv. Mater. 2018, 30, 1705441. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, P.; Xu, J.; Li, F.; Herold, F.; Etzold, B.J.; Wang, p.; Su, D.; Lin, S.; Qi, W.; et al. Methanol conversion on borocarbonitride catalysts: Identification and quantification of active sites. Sci. Adv. 2020, 6, eaba5778. [Google Scholar] [CrossRef]
- Tian, L.; Li, J.; Liang, F.; Chang, S.; Zhang, H.; Zhang, M.; Zhang, S. Facile molten salt synthesis of atomically thin boron nitride nanosheets and their co-catalytic effect on the performance of carbon nitride photocatalyst. J. Colloid Interface Sci. 2019, 536, 664–672. [Google Scholar] [CrossRef]
- Liu, F.; Han, R.; Naficy, S.; Casillas, G.; Sun, X.; Huang, Z. Few-layered boron nitride nanosheets for strengthening polyurethane hydrogels. ACS Appl. Nano Mater. 2021, 4, 7988–7994. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Zhang, R.; Ding, R.; Chen, X.; Lv, B. Edge-activating CO2-mediated ethylbenzene dehydrogenation by a hierarchical porous BN catalyst. ACS Catal. 2020, 10, 6697–6706. [Google Scholar] [CrossRef]
- Lei, W.; Portehault, D.; Dimova, R.; Antonietti, M. Boron carbon nitride nanostructures from salt melts: Tunable water-soluble phosphors. J. Am. Chem. Soc. 2011, 133, 7121–7127. [Google Scholar] [CrossRef]
- Huang, L.; Hu, Z.; Jin, H.; Wu, J.; Liu, K.; Xu, Z.; Wan, J.; Zhou, H.; Duan, J.; Hu, B.; et al. Salt-assisted synthesis of 2D materials. Adv. Funct. Mater. 2020, 30, 1908486. [Google Scholar] [CrossRef]
- Sun, Q.; Zhu, S.; Shen, Z.; Liu, Y.; Wu, C.; Kang, L.; Yang, Y. Molten-salt assisted synthesis of two-dimensional materials and energy storage application. Mater. Today Chem. 2023, 29, 101419. [Google Scholar] [CrossRef]
- Liu, X.; Fechler, N.; Antonietti, M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev. 2013, 42, 8237–8265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, H.; Ouyang, H.; Li, W.; Long, Y. Molten salt synthesis of BCNO nanosheets for the electrochemical detection of clenbuterol. Microchem. J. 2022, 178, 107359. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, M.; Luo, Z.; Zhang, J.; Wang, S.; Wang, X. Molten salt assisted assembly growth of atomically thin boron carbon nitride nanosheets for photocatalytic H2 evolution. Chem. Commun. 2020, 56, 2558–2561. [Google Scholar] [CrossRef]
- Wang, H.; Tian, L.; Huang, Z.; Liang, F.; Guan, K.; Jia, Q.; Zhang, H.; Zhang, S. Molten salt synthesis of carbon-doped boron nitride nanosheets with enhanced adsorption performance. Nanotechnology 2020, 31, 505606. [Google Scholar] [CrossRef]
- Huang, F.L.; Cao, C.B.; Xiang, X.; Lv, R.T.; Zhu, H.S. Synthesis of hexagonal boron carbonitride phase by solvothermal method. Diam. Relat. Mater. 2004, 13, 1757–1760. [Google Scholar] [CrossRef]
- Shi, D.; Yang, M.; Chang, B.; Ai, Z.; Zhang, K.; Shao, Y.; Wang, S.; Wu, Y.; Hao, X. Ultrasonic-ball milling: A novel strategy to prepare large-size ultrathin 2d materials. Small 2020, 16, 1906734. [Google Scholar] [CrossRef]
- Li, X.; Hao, X.; Zhao, M.; Wu, Y.; Yang, J.; Tian, Y.; Qian, G. Exfoliation of hexagonal boron nitride by molten hydroxides. Adv. Mater. 2013, 25, 2200–2204. [Google Scholar] [CrossRef]
- Li, T.; Jiao, X.; You, T.; Dai, F.; Zhang, P.; Yu, F.; Hu, L.; Ding, L.; Zhang, L.; Wen, Z.; et al. Hexagonal boron nitride nanosheet/carbon nanocomposite as a high-performance cathode material towards aqueous asymmetric supercapacitors. Ceram. Int. 2019, 45, 4283–4289. [Google Scholar] [CrossRef]
- Özçelik, V.O.; Ciraci, S. Nanoscale dielectric capacitors composed of graphene and boron nitride layers: A first-principles study of high capacitance at nanoscale. J. Phys. Chem. C 2013, 117, 15327–15334. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Jana, M.; Khanra, P.; Samanta, P.; Koo, H.; Murmu, N.C.; Kuila, T. Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Appl. Mater. Interfaces 2015, 7, 14211–14222. [Google Scholar] [CrossRef]
- Saha, S.; Samanta, P.; Murmu, N.C.; Kim, N.H.; Kuila, T.; Lee, J.H. Electrochemical functionalization and in-situ deposition of the SAA@ rGO/h-BN@ Ni electrode for supercapacitor applications. J. Ind. Eng. Chem. 2017, 52, 321–330. [Google Scholar] [CrossRef]
- Jia, H.; Qiu, M.; Tang, C.; Liu, H.; Fu, S.; Zhang, X. Nano-scale BN interface for ultra-stable and wide temperature range tolerable Zn anode. EcoMat 2022, 4, e12190. [Google Scholar] [CrossRef]
- Paul, R.; Roy, A.K. BN-codoped CNT based nanoporous brushes for all-solid-state flexible supercapacitors at elevated temperatures. Electrochim. Acta 2021, 365, 137345. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, R.; Liu, Z.; Liu, Z. Widely tunable carrier mobility of boron nitride-embedded graphene. Small 2013, 9, 1373–1378. [Google Scholar] [CrossRef]
- Byun, S.; Kim, J.H.; Song, S.H.; Lee, M.; Park, J.J.; Lee, G.; Hong, S.H.; Lee, D. Ordered, scalable heterostructure comprising boron nitride and graphene for high-performance flexible supercapacitors. Chem. Mater. 2016, 28, 7750–7756. [Google Scholar] [CrossRef]
- Saha, S.; Samanta, P.; Murmu, N.C.; Banerjee, A.; Ganesh, R.S.; Inokawa, H.; Kuila, T. Modified electrochemical charge storage properties of h-BN/rGO superlattice through the transition from n to p type semiconductor by fluorine doping. Chem. Eng. J. 2018, 339, 334–345. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, G.; Huang, F.; Liu, H.; Gong, C.; Wen, S.; Hu, Y.; Zheng, G.; Chen, D. Liquid phase exfoliated hexagonal boron nitride/graphene heterostructure based electrode toward asymmetric supercapacitor application. Front. Chem. 2019, 7, 544. [Google Scholar] [CrossRef] [Green Version]
- Patil, I.M.; Kapse, S.; Parse, H.; Thapa, R.; Andersson, G.; Kakade, B. 2D/3D heterostructure of h-BN/reduced graphite oxide as a remarkable electrode material for supercapacitor. J. Power Sources 2020, 479, 229092. [Google Scholar] [CrossRef]
- Saha, S.; Jana, M.; Samanta, P.; Murmu, N.C.; Kim, N.H.; Kuila, T.; Lee, J.H. Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications. Mater. Chem. Phys. 2017, 190, 153–165. [Google Scholar] [CrossRef]
- Guo, H.; Gao, Q. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. J. Power Sources 2009, 186, 551–556. [Google Scholar] [CrossRef]
- Iyyamperumal, E.; Wang, S.; Dai, L. Vertically aligned BCN nanotubes with high capacitance. ACS Nano 2012, 6, 5259–5265. [Google Scholar] [CrossRef]
- Zhou, J.; Li, N.; Gao, F.; Zhao, Y.; Hou, L.; Xu, Z. Vertically-aligned BCN nanotube arrays with superior performance in electrochemical capacitors. Sci. Rep. 2014, 4, 6083. [Google Scholar] [CrossRef] [Green Version]
- Dou, S.; Huang, X.; Ma, Z.; Wu, J.; Wang, S. A simple approach to the synthesis of BCN graphene with high capacitance. Nanotechnology 2015, 26, 045402. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Winterr, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X.; Müllen, K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv. Mater. 2012, 24, 5130–5135. [Google Scholar] [CrossRef]
- Kaur, M.; Mir, R.A.; Chauhan, I.; Singh, K.; Krishnan, U.; Kumar, M.; Devi, P.; Pandey, O.P.; Kumar, A. Defect states induced luminescence and electrochemical studies of boron carbon nitride nanosheets. Appl. Surf. Sci. 2021, 559, 149982. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, G.; Liu, Y.; Liu, Y.; Li, Y.; Han, G.; Xing, B.; Liu, Q.; Jia, J.; Zhang, C. Facile synthesis of B/N co-doped porous carbon nanosheets with high heteroatom content and electrical conductivity for excellent-performance supercapacitors. Appl. Surf. Sci. 2022, 580, 152236. [Google Scholar] [CrossRef]
- Wang, S.; Ma, F.; Jiang, H.; Shao, Y.; Wu, Y.; Hao, X. Band gap-tunable porous borocarbonitride nanosheets for high energy-density supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 19588–19597. [Google Scholar] [CrossRef]
- Karbhal, I.; Basu, A.; Patrike, A.; Shelke, M.V. Laser patterning of boron carbon nitride electrodes for flexible micro-supercapacitor with remarkable electrochemical stability/capacity. Carbon 2021, 171, 750–757. [Google Scholar] [CrossRef]
- Chen, D.; Huang, Y.; Hu, X.; Li, R.; Qian, Y.; Li, D. Synthesis and characterization of “Ravine-Like” BCN compounds with high capacitance. Materials 2018, 11, 209. [Google Scholar] [CrossRef] [Green Version]
- Yadav, V.K.; Chakraborty, H.; Klein, M.L.; Waghmare, U.V.; Rao, C.N. R, Defect-enriched tunability of electronic and charge-carrier transport characteristics of 2D borocarbonitride (BCN) monolayers from ab initio calculations. Nanoscale 2019, 11, 19398–19407. [Google Scholar] [CrossRef]
- Peng, J.; Dai, X.; Huang, J.; Zeng, J.; Zheng, L.; Chen, H. High-yield preparation of B/N co-doped porous carbon nanosheets from a cross-linked boronate polymer for supercapacitor applications. J. Energy Storage 2023, 59, 106498. [Google Scholar] [CrossRef]
- Bahadur, R.; Singh, G.; Li, M.; Chu, D.; Yi, J.; Karakoti, A.; Vinu, A. BCN nanostructures conjugated nanoporous carbon with oxygenated surface and high specific surface area for enhanced CO2 capture and supercapacitance. Chem. Eng. J. 2023, 460, 141793. [Google Scholar] [CrossRef]
- Krishnaiah, P.; Prasanna, B.P.; Kumar, K.Y.; Asha, P.K.; Nautiyal, P.; Devi, V.S.; Alharthi, F.A.; PhD, L.P.; PhD, M.S. Fabrication of anode material for asymmetric supercapacitor device using polyaniline wrapped boroncarbonitride nanocomposite with enhanced capacitance. J. Alloys Compd. 2020, 848, 156602. [Google Scholar] [CrossRef]
- Shi, D.; Yang, M.; Zhang, B.; Hu, H.; Ai, Z.; Shao, Y.; Shen, J.; Wu, Y.; Hao, X. Design of boron carbonitrides-polyaniline (BCN-PANI) assembled supercapacitor with high voltage window. J. Colloid Interface Sci. 2022, 626, 544–553. [Google Scholar] [CrossRef]
- Chithaiah, P.; Pramoda, K.; Kulkarni, G.U.; Rao, C.N.R. A simple chemical route to borocarbonitride nanotubes. Eur. J. Inorg. Chem. 2020, 2020, 1230–1232. [Google Scholar] [CrossRef]
- Devarajan, J.; Arumugam, P.; Govindasamy, G. Synthesis of BCN nanotubes by CVD method and their electrochemical performance towards supercapacitors. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Karbhal, I.; Chaturvedi, V.; Yadav, P.; Patrike, A.; Shelke, M.V. Template directed synthesis of boron carbon nitride nanotubes (BCN-NTs) and their evaluation for energy storage properties. Adv. Mater. Interfaces 2023, 10, 2201560. [Google Scholar] [CrossRef]
- Xu, D.; Jiang, H.; Liang, Z.; Kong, Z.; Liu, S.; Deng, L.; Shao, Y.; Wu, Y.; Hao, X. Na0.76V6O15@ boron carbonitride nanotube composites as cathodes for high-performance lithium-ion capacitors. Crystals 2022, 12, 597. [Google Scholar] [CrossRef]
- Liang, Z.; Tu, H.; Shi, D.; Chen, F.; Jiang, H.; Shao, Y.; Wu, Y.; Hao, X. In situ growing BCN nanotubes on carbon fibers for novel high-temperature supercapacitor with excellent cycling performance. Small 2021, 17, 2102899. [Google Scholar] [CrossRef]
- Tu, D.; Yang, W.; Yan, J.; Yang, Y.; Xu, J.; Chua, D.H. Highly densed BCN nanofiber core with MoS2 shell for enhanced hydrogen evolution reaction and supercapacitance applications. Appl. Surf. Sci. 2023, 615, 156400. [Google Scholar] [CrossRef]
- Wang, L.; Hu, P.; Long, Y.; Liu, Z.; He, X. Recent advances in ternary two-dimensional materials: Synthesis, properties and applications. J. Mater. Chem. A 2017, 5, 22855–22876. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, S.; Shao, Y.; Wu, Y.; Miao, S. High-energy density Li-ion capacitor with layered SnS2/reduced graphene oxide anode and BCN nanosheet cathode. Adv. Energy Mater. 2020, 10, 1902836. [Google Scholar] [CrossRef]
- Panda, P.; Samanta, R.; Barman, S. Facile synthesis of two-dimensional (2D) boron carbonitride and 2D porous boron carbonitride for excellent energy storage and gas adsorption applications. Energy Fuels 2023, 37, 5540–5555. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, K.; Wen, P.; Wang, J.; Yang, G.; Liu, D.; Lin, Z.; Lian, C.; Liu, H.; Zheng, S.; et al. Tailoring the defects of two-dimensional borocarbonitride nanomesh for high energy density micro-supercapacitor. Energy Storage Mater. 2021, 42, 430–437. [Google Scholar] [CrossRef]
- Shi, D.; Yang, M.; Zhang, B.; Ai, Z.; Hu, H.; Shao, Y.; Shen, J.; Wu, Y.; Hao, X. BCN-assisted built-in electric field in heterostructure: An innovative path for broadening the voltage window of aqueous supercapacitor. Adv. Funct. Mater. 2022, 32, 2108843. [Google Scholar] [CrossRef]
- Nasrin, K.; Sudharshan, V.; Subramani, K.; Karnan, M.; Sathish, M. In-situ synergistic 2D/2D MXene/BCN heterostructure for superlative energy density supercapacitor with super-long life. Small 2022, 18, 2106051. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Peng, L.; Wu, C.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303–3323. [Google Scholar] [CrossRef] [PubMed]
- KA, S.R.; Pramoda, K.; Rout, C.S. Assembling a high-performance asymmetric supercapacitor based on pseudocapacitive S-doped VSe2/CNT hybrid and 2D borocarbonitride nanosheets. J. Mater. Chem. C 2023, 11, 2565–2573. [Google Scholar] [CrossRef]
- Bassum, H.; Qu, C.; Cai, K.; Aftab, W.; Liang, Z.; Qiu, T.; Mahmood, A.; Meng, W.; Zou, R. Large-scale fabrication of BCN nanotube architecture entangled on a three-dimensional carbon skeleton for energy storage. J. Mater. Chem. A 2018, 6, 21225–21230. [Google Scholar]
- Zou, X.; Wu, D.; Mu, Y.; Xing, L.; Zhang, W.; Gao, Z.; Xu, F.; Jiang, K. Boron and nitrogen Co-doped holey graphene aerogels with rich B-N motifs for flexible supercapacitors. Carbon 2020, 159, 94–101. [Google Scholar] [CrossRef]
- Liu, S.; Shi, D.; Tu, H.; Yao, X.; Deng, L.; Xu, D.; Shao, Y.; Wu, Y.; Hao, X. Self-supported fluorine-doped boron carbonitride porous aerogels for high-performance supercapacitors. Energy Technol. 2021, 9, 2100824. [Google Scholar] [CrossRef]
- Tu, D.; Yang, W.; Li, Y.; Zhou, Y.; Shi, L.; Xu, J.; Yang, Y. Three-dimensional MXene/BCN microflowers for wearable all-solid-state microsupercapacitors. J. Mater. Chem. C 2021, 9, 11104–11114. [Google Scholar] [CrossRef]
- Tu, D.; Xu, J.; Yang, W.; Shi, L.; Chen, X.; Li, Y.; Yang, Y.; Gao, C. Synthesis of three-dimensional boron carbon nitrogen/reduced grapheme oxide broccoli as electrode material for flexible micro-supercapacitors. Surf. Interfaces 2022, 30, 101873. [Google Scholar] [CrossRef]
Method | Materials with Composition (B:C:N) in Atomic Ratio (%) | Precursor | Temperature (°C) | Properties of Products | Advantages/Disadvantages | Ref. |
---|---|---|---|---|---|---|
CVD | 2D h-BC2N (25:48:27) | BH3·NH3, CH4, SiO2/Si substrate | 580~620 | ● Band gap of about 2.3 eV, p-type conducting property | ● Can produce high quality BCN films ● High cost; complicated operation | [30] |
h-BxCyNz films | N-tri-methyl borazine | 1000 | ● Bandgap decreased to 2.15 eV | [41] | ||
Template-assisted methods | 3D BCN ceramic aerogels (55.5:10.7:30) | H3BO3, urea, starch, NaCl | 1250 | ● 880 m2 g−1 | ● Replicate the porous structure of template ● Insufficient filling of precursors; sophisticated and harmful template removal steps | [48] |
BCNNs (16.09:58.77:10.72) | g-C3N4, H3BO3 | 900 | ● 330 m2 g−1 | [50] | ||
Hierarchical BxCN (26.9:60.4:12.7) | Ethylenediamine, dimethylaminoborane, | 600 | ● 620 m2 g−1 | [55] | ||
Precursor pyrolysis | BCN thin films (9.4:34:56.6) | Melamine, H3BO3 | 550 | ● Bandgap decreased to 2.71 eV | ● Feasible, cost-effective, stable, and scalable ● Long-time synthesis at high temperature is sometimes adverse for the preparation of BCN nanomaterials | [58] |
BCNNs (42.5:8:39.5) | B2O3, glucose, urea | 1250 | ● Bandgap of 2.72 eV, 520 m2 g−1 | [61] | ||
BCNNs (11.48:76.02:12.5) | PVA, H3BO3, guanidine carbonate salt | 900 | ● 817 m2 g−1 | [62] | ||
BCNNT (16.16:66.2:15.06) | H3BO3, urea, PEG-2000 | 900 | ● 890 m2 g−1 | [63] | ||
Molten salt synthesis | BCNNS | EDAB, KCl-NaCl | 1000 | ● Bandgap decreased to 1.90 eV | ● Time-saving, green, and beneficial to prepare nanostructured BCN materials ● Small crystals, corrosion to furnace tubes | [33] |
BCNO nanosheets | Tripolycyanamide, H3BO3, PEG, KCl-NaCl | 750 | ● Lamellar structure with a thickness of ~5.8 nm | [73] | ||
BCNNS | B2O3, melamine, glucose, KCl-NaCl | 1250 | ● Bandgap of 2.56–2.95 eV | [74] | ||
Solvothermal method | h-BCN phases (14.43:36.63:20.78) | CH3CN·BCl3,Li3N, benzene | 300 | ● Hexagonal structures containing very small single crystals and polycrystalline | ● Low temperature; can maintain complete lattice structure ● High cost and may have toxic chemical effects | [76] |
Ultrasonic ball milling | BCNNS | Bulk BCN, Al2O3 | 30 | ● A lateral size of 1–20 µm and a thickness of 1–3 nm | [77] |
Electrode Material | Synthesis Method | Surface Area (m2 g−1) | Electrolyte | Electrochemical Performance | Capacity Retention (%) | Ref. |
---|---|---|---|---|---|---|
Asymmetric supercapacitors | ||||||
h-BN/rGO heterostructure | Liquid-phase exfoliation method | 371.2 | 2 M KOH | 2.05 Wh kg−1, 1998.5 W kg−1 | 96% after 10,000 cycles at 10 A g−1 | [88] |
h-BN/rGO superlattice | Pyrolysis | / | 1 M Na2SO4 | 960 F g−1 @ 13 mA g−1, 73 Wh kg−1, 14,000 W kg−1 | 80% after 10,000 cycles | [90] |
BCN/PANI nanocomposite | In situ polymerization | 146 | 1 M H2SO4 | 951 F g−1 @ 2 mVs−1, 14 Wh kg−1, 465 W kg−1 | 79% after 4000 cycles | [104] |
3D BCN | Template assisted pyrolysis | 649 | 2M KOH | 344 F g−1 @ 1 A g−1, 72 W h kg−1, 22,732 W kg−1 | 80.7% after 10,000 cycles | [120] |
Symmetric supercapacitors | ||||||
BCN-PANI | Ultrasonic ball milling | 166.5 | 1 M Et4N BF4 | 3 V, 672.0 F g−1@1 A g−1, 67.1 W h kg−1 | 89.6% after 10,000 cycles | [105] |
BCNNT | CVD | / | 1 M aqueous H2SO4 | 68.125 F g−1 @ 0.5 A g−1, 1.51 Wh Kg−1, 100 W kg−1 | 73.6% after 1000 cycles | [107] |
BCNNT | Template-assisted method | 581.6 | 1 M EMIM·BF4 | 177.1 mF cm−2 @ 5 mA cm−2, 112.5 Wh kg−1, 1253.8 W kg−1 | 86.1% after 5000 cycles | [110] |
BCN/MoS2 nanofiber | CVD | / | 1 M aqueous KOH | 446.3 F g−1 @ 0.25 A g−1, 33.3 Wh kg−1 | 91% after 5000 cycles | [111] |
Porous BCNNs | Solvothermal | 3310.4 | 1 M H2SO4 | 406 F g−1 under 1 A g−1, 17 W h kg−1, 4000 W kg−1 | 75% after 10,000 cycles | [114] |
MnO/MnS@BCN | Hydrothermal and annealing | / | 1 M aqueous Li2SO4 | 2 V, 698.9 F g−1 @ 0.5 A g−1, 75 W h kg−1 | 75% after 10,000 cycles at 10 A g−1 | [116] |
BCN/MXene heterostructure | Pyrolysis | 44.0 | PVA/H2SO4 gel | 1173 F g−1 @ 2 A g−1, 45 Wh kg−1 | 100% after 100,000 cycles | [117] |
F-BCN aerogel | Hydrothermal and annealing | 496.7 | 6 M KOH | 524.9 F g−1 @ 1 A g−1, 11.75 Wh kg−1 | 91.4% after 10,000 cycles at 20 A g−1 | [122] |
Micro-supercapacitors | ||||||
BCN | CO2 laser scribing | / | PVA/H2SO4 gel | 72 mF cm cm−2 @ 0.25 mA cm−2 | 100% after 80,000 cycles | [99] |
BCN nanomesh | Carbonizng gel precursor | 415 | PVA/H2SO4 gel | 3.2 V, 80.1 mF cm−2 @ 0.25 mA cm−2, 67.6 mWh cm−3 @ 0.8 Wh cm−3 (using EMIMBF4/PVDF-HFP electrolyte) | 92% after 10,000 cycles | [115] |
BCN/MXene microflowers | Hydrothermal and sonicating | / | PVA/H2SO4 gel | 89 mF cm−2 @ 0.5 mA cm−2, 0.0124 mW h cm−2, 3.1 mW cm−2 | 90.1% after 10,000 cycles | [123] |
3D BCN/rGO broccoli | Pyrolysis | 607 | PVA/H2SO4 gel | 72.2 mF cm−2 @ 0.1 mA cm−2, 1175 mW cm−2 @ 2.5 mA cm−2, 11 mWh cm−2 @ 0.1 mA cm−2 | 95% after 10,000 cycles | [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Zhao, X.; Shi, P.; Li, L.; Dong, Q.; Tian, M.; Wu, Y.; Sun, X. A Review on Recent Progress Achieved in Boron Carbon Nitride Nanomaterials for Supercapacitor Applications. Batteries 2023, 9, 396. https://doi.org/10.3390/batteries9080396
Liu F, Zhao X, Shi P, Li L, Dong Q, Tian M, Wu Y, Sun X. A Review on Recent Progress Achieved in Boron Carbon Nitride Nanomaterials for Supercapacitor Applications. Batteries. 2023; 9(8):396. https://doi.org/10.3390/batteries9080396
Chicago/Turabian StyleLiu, Feng, Xiang Zhao, Ping Shi, Laishi Li, Qidi Dong, Mi Tian, Yusheng Wu, and Xudong Sun. 2023. "A Review on Recent Progress Achieved in Boron Carbon Nitride Nanomaterials for Supercapacitor Applications" Batteries 9, no. 8: 396. https://doi.org/10.3390/batteries9080396
APA StyleLiu, F., Zhao, X., Shi, P., Li, L., Dong, Q., Tian, M., Wu, Y., & Sun, X. (2023). A Review on Recent Progress Achieved in Boron Carbon Nitride Nanomaterials for Supercapacitor Applications. Batteries, 9(8), 396. https://doi.org/10.3390/batteries9080396