Recent Advances in Ionic Liquids—MOF Hybrid Electrolytes for Solid-State Electrolyte of Lithium Battery
Abstract
:1. Introduction
2. Ionic Liquids Hybrid MOFs as Electrolyte
2.1. Composition and Structure Introduction of MOFs Hybrid Electrolyte
2.2. Proposal and Development of ILs@MOFs
2.3. Advantages and Function Mechanism of ILs@MOFs Electrolyte
2.4. Improvement Direction of ILs@MOFs Electrolyte
3. ILs@MOFs as Filler of Composite Electrolyte
3.1. Advantages and Bottlenecks of ILs/MOFs in Composite Electrolyte
3.2. Ionic Transport Mechanism and Development Strategy of ILs@MOFs CPEs
4. Conclusions and Perspectives
- The development of new MOFs materials. MOFs materials have powerful modular properties due to the rich variety of inorganic metal centers and bridging organic ligands in combination with various grafting methods. For lithium conduction in Li-ion batteries, the composition of the MOFs material will determine the strength of the encapsulant-frame interaction. The reasonable regulation on Lewis acidity and charge density of MOFs material will effectively improve the ionic conductivity and selectivity of the hybrid electrolyte.
- Developing evaluation methods for the performance of ILs@MOFs. While the encapsulation of different kinds of ILs in MOFs has become relatively common, the types of ILs and the generated transference properties are not yet well summarized and are still in the mapping stage. Therefore, theoretical calculations of ILs and systematic encapsulation schemes based on theoretical and practical phenomena are particularly important for the systematic development of ILs@MOFs hybrid electrolytes.
- Deepening the study of key structural factors for MOFs. Due to the complex topology of MOFs materials, the specific surface area, particle size and pore size of the formed structures can have different effects on interaction with ILs and electrochemical properties. The study of these structure-related relationships can better serve the development of new ILs@MOFs materials.
- Carrying out in-depth theoretical studies on ion transport mechanisms. The mechanism of lithium-ion transport can serve as an important guide for the design of both electrolyte systems with ILs@MOFs as the main body and composite polymer systems with ILs@MOFs as fillers. As a new type of solid electrolyte system, the transport mechanism of ILs@MOFs as the main electrolyte system has not been clarified in relation to the type and amount of inner or external ILs. Thus, the basis of the conduction theory still needs to be clarified. Nonetheless, the transport mechanism regarding MOFs in composite polymer systems can be explained using the common theory of composite electrolyte systems to a certain extent, while the influence of their metal sites and encapsulants on conduction still lacks empirical evidence and remains to be explored. Along with more extensive experiments, basic conduction theory research needs to be developed as soon as possible.
- Deepening the analysis of electrolyte/electrode interfacial evolution processes. In electrolyte with ILs@MOFs as the main body, the stability of ILs@MOFs in contact with the lithium anode interface directly affects the SEI generation and the growth of dendrites. Therefore, ensuring good contact between the interface of rigid ILs@MOFs materials and electrodes as well as providing high mechanical strength and thermodynamics stability for electrolyte against electrode is urgent. A thorough theoretical study of the multiple interfaces related to ILs@MOFs can better integrate it with the existing theoretical system and facilitate further theoretical design and practical applications.
- The integrated development of ILs@MOFs in the mass production of electrolytes. In industrialized battery design, factors such as raw material production process, matching degree with present manufacturing procedures, and overall battery performance need to be considered. ILs@MOFs materials can be synthesized at room temperature or using hydrothermal methods, which can meet commercial large-scale production requirements. Due to the precedent of commercial polymers, electrolyte membranes can be easily prepared through solution-casting technique by the simple mixing and flowing of precursor polymer solution containing ILs@MOFs fillers. However, the current problem is the high price of raw materials such as ionic liquids and the difficulty of ensuring uniformity in large-scale production. The development of sustainable, environmentally friendly, low-cost mass production solutions is of great significance for practical production.
Author Contributions
Funding
Conflicts of Interest
References
- Amirante, R.; Cassone, E.; Distaso, E.; Tamburrano, P. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies. Energy Convers. Manag. 2017, 132, 372–387. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Zong, X.; Zhang, X.; Jia, Z.; Tan, S.; Xiong, Y. Cathode structural design enabling interconnected ionic/electronic transport channels for high-performance solid-state lithium batteries. J. Power Sources 2022, 530, 231297. [Google Scholar] [CrossRef]
- Li, S.Q.; Wang, K.; Zhang, G.F.; Li, S.N.; Xu, Y.A.; Zhang, X.D.; Zhang, X.; Zheng, S.H.; Sun, X.Z.; Ma, Y.W. Fast Charging Anode Materials for Lithium-Ion Batteries: Current Status and Perspectives. Adv. Funct. Mater. 2022, 32, 2200796. [Google Scholar] [CrossRef]
- Tan, S.J.; Zeng, X.X.; Ma, Q.; Wu, X.W.; Guo, Y.G. Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries. Electrochem. Energy Rev. 2018, 1, 113–138. [Google Scholar] [CrossRef]
- Koerver, R.; Zhang, W.B.; de Biasi, L.; Schweidler, S.; Kondrakov, A.O.; Kolling, S.; Brezesinski, T.; Hartmann, P.; Zeier, W.G.; Janek, J. Chemo-mechanical expansion of lithium electrode materials—on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 2018, 11, 2142–2158. [Google Scholar] [CrossRef]
- Xu, L.; Tang, S.; Cheng, Y.; Wang, K.Y.; Liang, J.Y.; Liu, C.; Cao, Y.C.; Wei, F.; Mai, L.Q. Interfaces in Solid-State Lithium Batteries. Joule 2018, 2, 1991–2015. [Google Scholar] [CrossRef] [Green Version]
- Uemura, T.; Yanai, N.; Kitagawa, S. Polymerization reactions in porous coordination polymers. Chem. Soc. Rev. 2009, 38, 1228–1236. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Xiao, Y.; Li, Q.; Wang, J.; Guo, S.; Li, X.; Ouyang, Y.; Zeng, Q.; He, W.; Huang, S. Design of thiol-lithium ion interaction in metal-organic framework for high-performance quasi-solid lithium metal batteries. Dalton Trans. 2021, 50, 2928–2935. [Google Scholar] [CrossRef]
- Tao, F.; Tian, L.; Liu, Z.; Cui, R.; Liu, M.; Kang, X.; Liu, Z. A novel lithium-impregnated hollow MOF-based electrolyte realizing an optimum balance between ionic conductivity and the transference number in solid-like batteries. J. Mater. Chem. A 2022, 10, 14020–14027. [Google Scholar] [CrossRef]
- Yang, G.; Chanthad, C.; Oh, H.; Ayhan, I.A.; Wang, Q. Organic-inorganic hybrid electrolytes from ionic liquid-functionalized octasilsesquioxane for lithium metal batteries. J. Mater. Chem. A 2017, 5, 18012–18019. [Google Scholar] [CrossRef]
- Xia, W.; Mahmood, A.; Zou, R.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866. [Google Scholar] [CrossRef]
- Majid, M.F.; Mohd Zaid, H.F.; Kait, C.F.; Ahmad, A.; Jumbri, K. Ionic Liquid@Metal-Organic Framework as a Solid Electrolyte in a Lithium-Ion Battery: Current Performance and Perspective at Molecular Level. Nanomaterials 2022, 12, 1076. [Google Scholar] [CrossRef]
- Zhou, T.H.; Zhao, Y.; Choi, J.W.; Coskun, A. Ionic Liquid Functionalized Gel Polymer Electrolytes for Stable Lithium Metal Batteries. Angew. Chem. Int. Ed. 2021, 60, 22791–22796. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.J.; Kim, K.J.; Choi, J.W. The Synergistic Effect of Cation and Anion of an Ionic Liquid Additive for Lithium Metal Anodes. Adv. Energy Mater. 2018, 8. [Google Scholar] [CrossRef]
- Lei, W.Y.; Zhang, C.F.; Qiao, R.; Ravivarma, M.; Chen, H.X.; Ajdari, F.B.; Salavati-Niasari, M.; Song, J.X. Stable Li|LAGP Interface Enabled by Confining Solvate Ionic Liquid in a Hyperbranched Polyanionic Copolymer for NASICON-Based Solid-State Batteries. ACS Appl. Energy Mater. 2023, 6, 4363–4371. [Google Scholar] [CrossRef]
- Wu, S.H.; Guo, Z.W.; Sih, C.J. Enhancing the enantioselectivity of Candida lipase-catalyzed ester hydrolysis via noncovalent enzyme modification. J. Am. Chem. Soc. 1990, 112, 1990–1995. [Google Scholar] [CrossRef]
- Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O’Keeffe, M.; Yaghi, O.M. Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties. J. Am. Chem. Soc. 2009, 131, 3875–3877. [Google Scholar] [CrossRef]
- Cho, S.H.; Ma, B.Q.; Nguyen, S.T.; Hupp, J.T.; Albrecht-Schmitt, T.E. A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem. Commun. 2006, 24, 2563–2565. [Google Scholar] [CrossRef]
- Torad, N.L.; Hu, M.; Kamachi, Y.; Takai, K.; Imura, M.; Naito, M.; Yamauchi, Y. Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem. Commun. 2013, 49, 2521–2523. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Meng, C.; Zhang, L.; Cai, Y.; Yuan, A. Anion-Immobilized and Fiber-Reinforced Hybrid Polymer Electrolyte for Advanced Lithium-Metal Batteries. Chemelectrochem 2020, 7, 2660–2664. [Google Scholar] [CrossRef]
- Moggach, S.A.; Oswald, I.D.H. Crystallography Under High Pressures. In 21st Century Challenges in Chemical Crystallography I: History and Technical Developments; Mingos, D.M.P., Raithby, P.R., Eds.; Springer: Cham, Switzerland, 2020; Volume 185, pp. 141–198. [Google Scholar]
- AbdelSalam, H.; El-Maghrbi, H.H.; Zahran, F.; Zaki, T. Microwave-assisted production of biodiesel using metal-organic framework Mg3(bdc)3(H2O)2. Korean J. Chem. Eng. 2020, 37, 670–676. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, J.; Zhao, J.; Xu, D.; Wang, F.; Liu, C.; Jiang, Y.; Wu, L.; Cui, P.; Lv, L.; et al. High-Efficiency Electromagnetic Wave Absorption of Cobalt-Decorated NH2-UIO-66-Derived Porous ZrO2/C. ACS Appl. Mater. Interfaces 2019, 11, 35959–35968. [Google Scholar] [CrossRef] [PubMed]
- Krause, S.; Hosono, N.; Kitagawa, S. Chemistry of Soft Porous Crystals: Structural Dynamics and Gas Adsorption Properties. Angew. Chem.-Int. Ed. 2020, 59, 15325–15341. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [Green Version]
- Miner, E.M.; Park, S.S.; Dinca, M. High Li+ and Mg2+ Conductivity in a Cu-Azolate Metal-Organic Framework. J. Am. Chem. Soc. 2019, 141, 4422–4427. [Google Scholar] [CrossRef]
- Li, H.F.; Wu, P.; Xiao, Y.W.; Shao, M.; Shen, Y.; Fan, Y.; Chen, H.H.; Xie, R.J.; Zhang, W.L.; Li, S.; et al. Metal-Organic Frameworks as Metal Ion Precursors for the Synthesis of Nanocomposites for Lithium-Ion Batteries. Angew. Chem.-Int. Ed. 2020, 59, 4763–4769. [Google Scholar] [CrossRef]
- Li, F.L.; Shao, Q.; Huang, X.Q.; Lang, J.P. Nanoscale Trimetallic Metal-Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis. Angew. Chem.-Int. Ed. 2018, 57, 1888–1892. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, X.; Yuan, N.; Sun, C. Molecular design of a metal-organic framework material rich in fluorine as an interface layer for high-performance solid-state Li metal batteries. Chem. Eng. J. 2023, 451, 138819. [Google Scholar] [CrossRef]
- Ben Saad, K.; Hamzaoui, H.; Mohamed, M.M. Ionic conductivity of metallic cations encapsulated in zeolite Y and mordenite. Mater. Sci. Eng. B 2007, 139, 226–231. [Google Scholar] [CrossRef]
- Wiers, B.M.; Foo, M.L.; Balsara, N.P.; Long, J.R. A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites. J. Am. Chem. Soc. 2011, 133, 14522–14525. [Google Scholar] [CrossRef] [PubMed]
- Colomban, P.; Novak, A. Proton transfer and superionic conductivity in solids and gels. J. Mol. Struct. 1988, 177, 277–308. [Google Scholar] [CrossRef]
- Zhao, T.; Kou, W.J.; Zhang, Y.F.; Wu, W.J.; Li, W.P.; Wang, J.T. Laminar composite solid electrolyte with succinonitrile-penetrating metal-organic framework (MOF) for stable anode interface in solid-state lithium metal. J. Power Sources 2023, 554, 232349. [Google Scholar] [CrossRef]
- Colombo, V.; Galli, S.; Choi, H.J.; Han, G.D.; Maspero, A.; Palmisano, G.; Masciocchi, N.; Long, J.R. High thermal and chemical stability in pyrazolate-bridged metal-organic frameworks with exposed metal sites. Chem. Sci. 2011, 2, 1311–1319. [Google Scholar] [CrossRef] [Green Version]
- Sumida, K.; Her, J.-H.; Dinca, M.; Murray, L.J.; Schloss, J.M.; Pierce, C.J.; Thompson, B.A.; FitzGerald, S.A.; Brown, C.M.; Long, J.R. Neutron Scattering and Spectroscopic Studies of Hydrogen Adsorption in Cr3(BTC)2-A Metal-Organic Framework with Exposed Cr2+ Sites. J. Phys. Chem. C 2011, 115, 8414–8421. [Google Scholar] [CrossRef]
- Bloch, E.D.; Queen, W.L.; Krishna, R.; Zadrozny, J.M.; Brown, C.M.; Long, J.R. Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites. Science 2012, 335, 1606–1610. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Boyle, P.D.; Malpezzi, L.; Mele, A.; Shin, J.-H.; Passerini, S.; Henderson, W.A. Phase Behavior of Ionic Liquid–LiX Mixtures: Pyrrolidinium Cations and TFSI– Anions—Linking Structure to Transport Properties. Chem. Mater. 2011, 23, 4331–4337. [Google Scholar] [CrossRef]
- Liu, L.; Sun, C. Flexible Quasi-Solid-State Composite Electrolyte Membrane Derived from a Metal-Organic Framework for Lithium-Metal Batteries. Chemelectrochem 2020, 7, 707–715. [Google Scholar] [CrossRef]
- Fujie, K.; Yamada, T.; Ikeda, R.; Kitagawa, H. Introduction of an Ionic Liquid into the Micropores of a Metal-Organic Framework and Its Anomalous Phase Behavior. Angew. Chem. Int. Ed. 2014, 53, 11302–11305. [Google Scholar] [CrossRef]
- Fujie, K.; Ikeda, R.; Otsubo, K.; Yamada, T.; Kitagawa, H. Lithium Ion Diffusion in a Metal–Organic Framework Mediated by an Ionic Liquid. Chem. Mater. 2015, 27, 7355–7361. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, R.; Wang, H.; Yang, L.; Hu, J.; Chen, H.; Pan, F. A Metal-Organic-Framework-Based Electrolyte with Nanowetted Interfaces for High-Energy-Density Solid-State Lithium Battery. Adv. Mater. 2018, 30, 1704436. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, X.-B.; Huang, J.-Q.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G.-L.; Xu, R.; Zhao, C.-Z.; Hou, L.-P.; et al. Controlling Dendrite Growth in Solid-State Electrolytes. ACS Energy Lett. 2020, 5, 833–843. [Google Scholar] [CrossRef]
- Liu, Y.D.; Liu, Q.; Xin, L.; Liu, Y.Z.; Yang, F.; Stach, E.A.; Xie, J. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat. Energy 2017, 2, 17083. [Google Scholar] [CrossRef]
- Wang, K.; Yang, L.Y.; Wang, Z.Q.; Zhao, Y.; Wang, Z.J.; Han, L.; Song, Y.L.; Pan, F. Enhanced lithium dendrite suppressing capability enabled by a solid-like electrolyte with different-sized nanoparticles. Chem. Commun. 2018, 54, 13060–13063. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, Z.; Jiang, X.; Wang, X.; Li, Z.; Chen, Z.; Zhang, Y.; Zhang, S. Metal-Organic Framework Confined Solvent Ionic Liquid Enables Long Cycling Life Quasi-Solid-State Lithium Battery in Wide Temperature Range. Small 2022, 18, 2203011. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Z.; Yang, L.; Wang, H.; Song, Y.; Han, L.; Yang, K.; Hu, J.; Chen, H.; Pan, F. Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries. Nano Energy 2018, 49, 580–587. [Google Scholar] [CrossRef]
- Kachmar, A.; Carignano, M.; Laino, T.; Iannuzzi, M.; Hutter, J. Mapping the Free Energy of Lithium Solvation in the Protic Ionic Liquid Ethylammonuim Nitrate: A Metadynamics Study. Chemsuschem 2017, 10, 3083–3090. [Google Scholar] [CrossRef] [Green Version]
- Kachmar, A.; Goddard, W.A. Free Energy Landscape of Sodium Solvation into Graphite. J. Phys. Chem. C 2018, 122, 20064–20072. [Google Scholar] [CrossRef] [Green Version]
- Zettl, R.; Hanzu, I. The Origins of Ion Conductivity in MOF-Ionic Liquids Hybrid Solid Electrolytes. Front. Energy Res. 2021, 9, 714698. [Google Scholar] [CrossRef]
- Wu, J.-F.; Guo, X. Nanostructured Metal-Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries. Small 2019, 15, 1804413. [Google Scholar] [CrossRef]
- Vazquez, M.; Liu, M.; Zhang, Z.; Chandresh, A.; Kanj, A.B.; Wenzel, W.; Heinke, L. Structural and Dynamic Insights into the Conduction of Lithium-Ionic-Liquid Mixtures in Nanoporous Metal-Organic Frameworks as Solid-State Electrolytes. Acs Appl. Mater. Interfaces 2021, 13, 21166–21174. [Google Scholar] [CrossRef] [PubMed]
- Abdelmaoula, A.E.; Shu, J.; Cheng, Y.; Xu, L.; Zhang, G.; Xia, Y.; Tahir, M.; Wu, P.; Mai, L. Core-Shell MOF-in-MOF Nanopore Bifunctional Host of Electrolyte for High-Performance Solid-State Lithium Batteries. Small Methods 2021, 5, 2100508. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.L.; Yi, Y.K.; Wu, Z.D.; Cheng, G.Y.; Zheng, S.T.; Fang, B.R.; Wang, T.; Shchukin, D.G.; Hai, F.; Guo, J.Y.; et al. Ionic liquid confined in MOF/polymerized ionic network core-shell host as a solid electrolyte for lithium batteries. Chem. Eng. Sci. 2023, 266, 118271. [Google Scholar] [CrossRef]
- He, C.; Sun, J.; Hou, C.; Zhang, Q.; Li, Y.; Li, K.; Wang, H. Sandwich-structural ionogel electrolyte with core-shell ionic-conducting nanocomposites for stable Li metal battery. Chem. Eng. J. 2023, 451, 138993. [Google Scholar] [CrossRef]
- Gao, Z.H.; Sun, H.B.; Fu, L.; Ye, F.L.; Zhang, Y.; Luo, W.; Huang, Y.H. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Adv. Mater. 2018, 30, 1705702. [Google Scholar] [CrossRef]
- Jiang, T.L.; He, P.G.; Wang, G.X.; Shen, Y.; Nan, C.W.; Fan, L.Z. Solvent-Free Synthesis of Thin, Flexible, Nonflammable Garnet-Based Composite Solid Electrolyte for All-Solid-State Lithium Batteries. Adv. Energy Mater. 2020, 10, 1903376. [Google Scholar] [CrossRef]
- Lu, W.; Xue, M.; Zhang, C. Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries. Energy Storage Mater. 2021, 39, 108–129. [Google Scholar] [CrossRef]
- Liu, S.L.; Liu, W.Y.; Ba, D.L.; Zhao, Y.Z.; Ye, Y.H.; Li, Y.Y.; Liu, J.P. Filler-Integrated Composite Polymer Electrolyte for Solid-State Lithium Batteries. Adv. Mater. 2023, 35, 2110423. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Li, H.; Wu, H.B. Recent Progress of Hybrid Solid-State Electrolytes for Lithium Batteries. Chem.-A Eur. J. 2018, 24, 18293–18306. [Google Scholar] [CrossRef]
- Zheng, Y.; Yao, Y.; Ou, J.; Li, M.; Luo, D.; Dou, H.; Li, Z.; Amine, K.; Yu, A.; Chen, Z. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, R.; Fang, J.; Liang, Z.; Gao, L.; Bian, J.; Zhu, J.; Zhao, Y. Metal-organic framework (MOF)-incorporated polymeric electrolyte realizing fast lithium-ion transportation with high Li+ transference number for solid-state batteries. Front. Chem. 2022, 10, 1013965. [Google Scholar] [CrossRef]
- Huo, H.; Wu, B.; Zhang, T.; Zheng, X.; Ge, L.; Xu, T.; Guo, X.; Sun, X. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 2019, 18, 59–67. [Google Scholar] [CrossRef]
- Liu, W.; Lee, S.W.; Lin, D.C.; Shi, F.F.; Wang, S.; Sendek, A.D.; Cui, Y. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2017, 2, 17035. [Google Scholar] [CrossRef]
- Ye, Y.S.; Rick, J.; Hwang, B.J. Ionic liquid polymer electrolytes. J. Mater. Chem. A 2013, 1, 2719–2743. [Google Scholar] [CrossRef]
- Polu, A.R.; Rhee, H.-W. Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int. J. Hydrog. Energy 2017, 42, 7212–7219. [Google Scholar] [CrossRef]
- Hofmann, A.; Schulz, M.; Hanemann, T. Gel electrolytes based on ionic liquids for advanced lithium polymer batteries. Electrochim. Acta 2013, 89, 823–831. [Google Scholar] [CrossRef]
- Grewal, M.S.; Tanaka, M.; Kawakami, H. Solvated Ionic-Liquid Incorporated Soft Flexible Cross-Linked Network Polymer Electrolytes for Safer Lithium Ion Secondary Batteries. Macromol. Chem. Phys. 2022, 223, 2100317. [Google Scholar] [CrossRef]
- Chen, L.; Xue, P.; Liang, Q.; Liu, X.; Tang, J.; Li, J.; Liu, J.; Tang, M.; Wang, Z. A Single-Ion Polymer Composite Electrolyte Via In Situ Polymerization of Electrolyte Monomers into a Porous MOF-Based Fibrous Membrane for Lithium Metal Batteries. ACS Appl. Energy Mater. 2022, 5, 3800–3809. [Google Scholar] [CrossRef]
- Wu, J.-F.; Guo, X. MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. J. Mater. Chem. A 2019, 7, 2653–2659. [Google Scholar] [CrossRef]
- Osada, I.; de Vries, H.; Scrosati, B.; Passerini, S. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. Angew. Chem.-Int. Ed. 2016, 55, 500–513. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, N.; Du, L.; Cheng, Y.; Lei, S.; Li, S.; Liao, X.; Shi, W.; Xu, L.; Mai, L. Rational Design of Ion Transport Paths at the Interface of Metal-Organic Framework Modified Solid Electrolyte. ACS Appl. Mater. Interfaces 2020, 12, 22930–22938. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Feng, T.; Xu, L.; Zhang, L.; Luo, L. A Hollow Porous Metal-Organic Framework Enabled Polyethylene Oxide Based Composite Polymer Electrolytes for All-Solid-State Lithium Batteries. Batter. Supercaps 2022, 5, e202100303. [Google Scholar] [CrossRef]
- Kinik, F.P.; Altintas, C.; Balci, V.; Koyuturk, B.; Uzun, A.; Keskin, S. [BMIM][PF6] Incorporation Doubles CO2 Selectivity of ZIF-8: Elucidation of Interactions and Their Consequences on Performance. ACS Appl. Mater. Interfaces 2016, 8, 30992–31005. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yi, E.; Fici, A.J.; Laine, R.M.; Kieffer, J. Lithium Ion Conducting Poly(ethylene oxide)-Based Solid Electrolytes Containing Active or Passive Ceramic Nanoparticles. J. Phys. Chem. C 2017, 121, 2563–2573. [Google Scholar] [CrossRef]
- Qi, X.; Cai, D.; Wang, X.; Xia, X.; Gu, C.; Tu, J. Ionic Liquid-Impregnated ZIF-8/Polypropylene Solid-like Electrolyte for Dendrite-free Lithium-Metal Batteries. ACS Appl. Mater. Interfaces 2022, 14, 6859–6868. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wu, J.; Chen, J.; Wang, X.; Yang, Z. 3D flame-retardant skeleton reinforced polymer electrolyte for solid-state dendrite-free lithium metal batteries. J. Energy Chem. 2022, 71, 174–181. [Google Scholar] [CrossRef]
- Sun, M.; Li, J.; Yuan, H.; Zeng, X.; Lan, J.; Yu, Y.; Yang, X. Fast Li+ transport pathways of quasi-solid-state electrolyte constructed by 3D MOF composite nanofibrous network for dendrite- free lithium metal battery. Mater. Today Energy 2022, 29, 101117. [Google Scholar] [CrossRef]
- Long, L.Z.; Wang, S.J.; Xiao, M.; Meng, Y.Z. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038–10069. [Google Scholar] [CrossRef]
- Frömling, T.; Kunze, M.; Schönhoff, M.; Sundermeyer, J.; Roling, B. Enhanced Lithium Transference Numbers in Ionic Liquid Electrolytes. J. Phys. Chem. B 2008, 112, 12985–12990. [Google Scholar] [CrossRef]
- Diederichsen, K.M.; McShane, E.J.; McCloskey, B.D. Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries. ACS Energy Lett. 2017, 2, 2563–2575. [Google Scholar] [CrossRef]
- Shen, J.; Lei, Z.; Wang, C. An ion conducting ZIF-8 coating protected PEO based polymer electrolyte for high voltage lithium metal batteries. Chem. Eng. J. 2022, 447, 137503. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Meng, C.; Xiong, W.; Cai, Y.; Hu, P.; Pang, H.; Yuan, A. Enhancing Ion Transport: Function of Ionic Liquid Decorated MOFs in Polymer Electrolytes for All-Solid-State Lithium Batteries. ACS Appl. Energy Mater. 2020, 3, 4265–4274. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Shen, F.-Y.; Long, X.; Zheng, S.; Ruan, Z.; Cai, Y.-P.; Hong, X.-J.; Zheng, Q. Fast Li+ transport and superior interfacial chemistry within composite polymer electrolyte enables ultra-long cycling solid-state Li-metal batteries. Energy Storage Mater. 2022, 52, 201–209. [Google Scholar] [CrossRef]
- Fu, J.L.; Li, Z.; Zhou, X.Y.; Guo, X. Ion transport in composite polymer electrolytes. Mater. Adv. 2022, 3, 3809–3819. [Google Scholar] [CrossRef]
Type of MOFs | Type of ILs | Room Temperature (R.T.) Conductivity (S/cm) | Electrochemical Oxidation Potential (V) | Li Symmetric Cell Performance | Cycling Capacity and Cathode in Battery | Cycling Performance in Battery | Ref. |
---|---|---|---|---|---|---|---|
MOF-525(Cu) | [EMIM][TFSI] | 3.0 × 10−4 | 4.1 | 800 h at 0.02 mA/cm2 (R.T.) | 142 mAh/g (LFP) | 93%-100 cycles-0.1 C | [42] |
Uio-66 | [BMP][TFSI] | 3.3 × 10−4 | 5.2 | 2000 h at 0.1 mA/cm2 (R.T.) | 129 mAh/g (LFP) | 94.8%-100 cycles-0.1 C | [45] |
Uio-67 | [EMIM][TFSI] | 1.0 × 10−4 | 5.2 | 40 days at 0.1 mA/cm2 (R.T.) | 170 mAh/g (LFP) | 97%-150 cycles-0.1 C | [47] |
Uio-66 | [EMIM][TFSI] | 5.0 × 10−4 | / | 100 h at 0.2 mA/cm2 (60 °C) | 119 mAh/g (LFP) | 94%-380 cycles-1 C | [51] |
Uio-66@67 | [EMIM][TFSI] | 2.1 × 10−3 | 5.2 | 1050 h at 1 mA/cm2 (R.T.) | 158 mAh/g (LFP) | 99%-100 cycles-0.2 C | [53] |
HKUST-1 | [DEME][TFSI] | 4.0 × 10−4 | 5.5 | 300 h at 0.1 mA/cm2 (R.T.) | 120 mAh/g (LFP) | 108%-100 cycles-0.5 C | [54] |
HKUST-1 | [EMIM][TFSI] | 3.9 × 10−4 | 5.2 | 1800 h at 0.1 mA/cm2 (R.T.) | 129.1 mAh/g (LCO) | 98%-500 cycles-0.2 C | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, R.; Jin, Y.; Li, Y.; Zhang, X.; Xiong, Y. Recent Advances in Ionic Liquids—MOF Hybrid Electrolytes for Solid-State Electrolyte of Lithium Battery. Batteries 2023, 9, 314. https://doi.org/10.3390/batteries9060314
Lin R, Jin Y, Li Y, Zhang X, Xiong Y. Recent Advances in Ionic Liquids—MOF Hybrid Electrolytes for Solid-State Electrolyte of Lithium Battery. Batteries. 2023; 9(6):314. https://doi.org/10.3390/batteries9060314
Chicago/Turabian StyleLin, Ruifan, Yingmin Jin, Yumeng Li, Xuebai Zhang, and Yueping Xiong. 2023. "Recent Advances in Ionic Liquids—MOF Hybrid Electrolytes for Solid-State Electrolyte of Lithium Battery" Batteries 9, no. 6: 314. https://doi.org/10.3390/batteries9060314
APA StyleLin, R., Jin, Y., Li, Y., Zhang, X., & Xiong, Y. (2023). Recent Advances in Ionic Liquids—MOF Hybrid Electrolytes for Solid-State Electrolyte of Lithium Battery. Batteries, 9(6), 314. https://doi.org/10.3390/batteries9060314