Epoxy Resin-Reinforced F-Assisted Na3Zr2Si2PO12 Solid Electrolyte for Solid-State Sodium Metal Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of NZSPFx Solid Electrolyte
2.2. Synthesis of Epoxy-NZSPF0.7 Solid Electrolyte
2.3. Characterization and Measurements
3. Results and Discussion
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 7411, 294–303. [Google Scholar] [CrossRef]
- Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 23, 11503–11618. [Google Scholar] [CrossRef]
- Yoo, H.D.; Liang, Y.L.; Li, Y.F.; Yao, Y. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% coulombic efficiency for large-scale energy storage. ACS Appl. Mater. Interfaces 2015, 12, 7001–7007. [Google Scholar] [CrossRef]
- Hao, F.; Liang, Y.L.; Zhang, Y.; Chen, Z.Y.; Zhang, J.B.; Ai, Q.; Guo, H.; Fan, Z.; Lou, J.; Yao, Y. High-energy all-solid-state organic-lithium batteries based on ceramic electrolytes. ACS Energy Lett. 2021, 1, 201–207. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on sodium-ion batteries. Chem. Rev. 2014, 23, 11636–11682. [Google Scholar] [CrossRef] [PubMed]
- Che, H.Y.; Chen, S.L.; Xie, Y.Y.; Wang, H.; Amine, K.; Liao, X.Z.; Ma, Z.F. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 2017, 5, 1075–1101. [Google Scholar] [CrossRef]
- Cheng, X.B.; Zhang, R.; Zhao, C.Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A Review. Chem. Rev. 2017, 15, 10403–10473. [Google Scholar] [CrossRef]
- Cohn, A.P.; Muralidharan, N.; Carter, R.; Share, K.; Pint, C.L. Anode-free sodium battery through in situ Plating of sodium metal. Nano Lett. 2017, 2, 1296–1301. [Google Scholar] [CrossRef]
- Fu, K.; Gong, Y.H.; Hitz, G.T.; McOwen, D.W.; Li, Y.J.; Xu, S.M.; Wen, Y.; Zhang, L.; Wang, C.W.; Pastel, G.; et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries. Energy Environ. Sci. 2017, 7, 1568–1575. [Google Scholar] [CrossRef]
- Li, H.S.; Ding, Y.; Ha, H.; Shi, Y.; Peng, L.L.; Zhang, X.G.; Ellison, C.J.; Yu, G.H. An all-stretchable-component sodium-ion full battery. Adv. Mater. 2017, 29, 1700898. [Google Scholar] [CrossRef]
- Zhao, Y.; Goncharova, L.V.; Lushington, A.; Sun, Q.; Yadegari, H.; Wang, B.Q.; Xiao, W.; Li, R.Y.; Sun, X.L. Superior stable and long life sodium metal anodes achieved by atomic layer dposition. Adv. Mater. 2017, 29, 1606663. [Google Scholar] [CrossRef]
- Liu, H.; Guo, H.; Liu, B.H.; Liang, M.F.; Lv, Z.L.; Adair, K.R.; Sun, X.L. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707480. [Google Scholar] [CrossRef]
- Zhao, C.L.; Liu, L.L.; Qi, X.G.; Lu, Y.X.; Wu, F.X.; Zhao, J.M.; Yu, Y.; Hu, Y.S.; Chen, L.Q. Solid-state sodium batteries. Adv. Energy Mater. 2018, 17, 1601196. [Google Scholar] [CrossRef]
- Kwak, H.; Lyoo, J.; Park, J.; Han, Y.; Asakura, R.; Remhof, A.; Battaglia, C.; Kim, H.; Hong, S.T.; Jung, Y.S. Na2ZrCl6 enabling highly stable 3 V all-solid-state Na-ion batteries. Energy Storage Mater. 2021, 37, 47–54. [Google Scholar] [CrossRef]
- He, X.Z.; Ji, X.; Zhang, B.; Rodrigo, N.D.; Hou, S.; Gaskell, H.; Deng, T.; Wan, H.L.; Liu, S.F.; Xu, J.J.; et al. Tuning interface lithiophobicity for lithium metal solid-state batteries. ACS Energy Lett. 2022, 7, 131–139. [Google Scholar] [CrossRef]
- Bay, M.C.; Grissa, R.; Egorov, K.V.; Asakura, R.; Batrtaglia, C. Low Na-β′′-alumina electrolyte/cathode interfacial resistance enabled by a hydroborate electrolyte opening up new cell architecture designs for all-solid-state sodium batteries. Mater. Futures 2022, 1, 031001. [Google Scholar] [CrossRef]
- Will, F.G. Effect of water on beta alumina conductivity. J. Electrochem. Soc. 1976, 6, 834–836. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, K.; Mi, J.L.; Lu, L.; Zhao, L.R.; Wang, L.M.; Li, Y.M.; Zeng, H. Na3PSe4: A novel chalcogenide solid electrolyte with high Ionic conductivity. Adv. Energy Mater. 2015, 5, 1501294. [Google Scholar] [CrossRef]
- Chi, X.W.; Liang, Y.L.; Hao, F.; Zhang, Y.; Whiteley, J.; Dong, H.; Hu, P.; Lee, S.; Yao, Y. Tailored organic electrode material compatible with sulfide electrolyte for stable all-solid-state sodium batteries. Angew. Chem. Int. Edit. 2018, 10, 2630–2634. [Google Scholar] [CrossRef]
- Hong, H.Y.P. Crystal-structures and crystal-chemistry in system Na1+XZr2SiXP3−XO12. Mater. Res. Bull. 1976, 2, 173–182. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Hong, H.Y.P.; Kafalas, J.A. Fast Na+-ion yransport in skeleton structures. Mater. Res. Bull. 1976, 2, 203–220. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, G.F.; Wang, S.M.; Liu, D.L.; Mei, Z.Y.; An, Q.; Jiang, J.W.; Guo, H. Enhanced ionic conductivity of a Na3Zr2Si2PO12 solid electrolyte with Na2SiO3 obtained by liquid phase sintering for solid-state Na+ batteries. Nanoscale 2022, 14, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Meng, X.Y.; Alonso, J.A.; Fernandez-Diaz, M.T.; Sun, C.W. Effects of fluorine doping on structural and electrochemical properties of Li6.25Ga0.25La3Zr2O12 as electrolytes for solid-state lithium batteries. ACS Appl. Mater. Interfaces 2019, 2, 2042–2049. [Google Scholar] [CrossRef]
- Li, J.X.; Wen, Z.Y.; Xu, X.X.; Zhu, X.J. Lithium-ion conduction in the anion substituted La2/3−xLi3x−yTiO3−yFy electrolyte with perovskite-type structure. Solid State Ionics 2005, 29–30, 2269–2273. [Google Scholar] [CrossRef]
- Li, Y.T.; Zhou, W.D.; Xin, S.; Li, S.; Zhu, J.L.; Lu, X.J.; Cui, Z.M.; Jia, Q.X.; Zhou, J.S.; Zhao, Y.S.; et al. Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries. Angew. Chem. Int. Edit. 2016, 34, 9965–9968. [Google Scholar] [CrossRef]
- He, S.N.; Xu, Y.L.; Chen, Y.J.; Ma, X.N. Enhanced ionic conductivity of an F−-assisted Na3Zr2Si2PO12solid electrolyte for solid-state sodium batteries. J. Mater. Chem. A. 2020, 25, 12594–12602. [Google Scholar] [CrossRef]
- Liu, C.; Wen, Z.Y.; Rui, K. High ion conductivity in garnet-type F-doped Li7La3Zr2O12. Int. J. Inorg. Mater. 2015, 9, 995–1000. [Google Scholar]
- Song, S.F.; Duong, H.M.; Korsunsky, A.M.; Hu, N.; Lu, L. A Na+ superionic conductor for room-temperature sodium batteries. Sci. Rep. 2016, 6, 32330. [Google Scholar] [CrossRef]
- Lee, S.H. Surface properties of fluoroethylene carbonate-derived solid electrolyte interface on graphite negative electrode by narrow-range cycling in cell formation process. Appl. Surf. Sci. 2014, 322, 64–70. [Google Scholar] [CrossRef]
- Kanezashi, M.; Matsutani, T.; Wakihara, T.; Nagasawa, H.; Okubo, T.; Tsuru, T. Preparation and has permeation properties of fluorine-silica membranes with controlled amorphous silica structures: Effect of fluorine source and calcination temperature on network size. ACS Appl. Mater. Interfaces 2017, 29, 24625–24633. [Google Scholar] [CrossRef]
- Dalavi, S.; Guduru, P.; Lucht, B.L. Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes. J. Electrochem. Soc. 2012, 5, A642–A646. [Google Scholar] [CrossRef]
- Ihlefeld, J.F.; Gurniak, E.; Jones, B.H.; Wheeler, D.R.; Rodriguez, M.A.; McDaniel, A.H. Scaling effects in sodium zirconium silicate phosphate (Na1+xZr2SixP3−xO12) ion-conducting thin films. J. Am. Ceram. Soc. 2016, 8, 2729–2736. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.J.; Liu, Q.; Mei, Z.Y.; Yang, L.; Duan, L.Y.; Guo, H. An asymmetric bilayer polymer-ceramic solid electrolyte for high-performance sodium metal batteries. J. Enerdy Chem. 2022, 74, 18–25. [Google Scholar] [CrossRef]
- Xu, X.X.; Wen, Z.Y.; Yang, X.L.; Chen, L.D. Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique. Mater. Res. Bull. 2008, 8–9, 2334–2341. [Google Scholar] [CrossRef]
- Fuentes, R.O.; Figueiredo, F.M.; Marques, F.M.B.; Franco, J.I. Influence of microstructure on the electrical properties of NASICON materials. Solid State Ionics 2001, 1–2, 173–179. [Google Scholar] [CrossRef]
Sample | Impedance at Room Temperature | Ionic Conductivity | Ion Transfer Number | Electrochemical Stabilization Window |
---|---|---|---|---|
NZSPF0 | 1527 | 0.45 | 0.68 | - |
NZSPF0.7 | 370 Ω | 0.95 mS cm−1 | 0.84 | 4.85 V |
epoxy-NZSPF0.7 | 420 Ω | 0.67 mS cm−1 | 0.79 | 7 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Liu, D.; Sun, Y.; Zhao, G.; Guo, H. Epoxy Resin-Reinforced F-Assisted Na3Zr2Si2PO12 Solid Electrolyte for Solid-State Sodium Metal Batteries. Batteries 2023, 9, 331. https://doi.org/10.3390/batteries9060331
Fu Y, Liu D, Sun Y, Zhao G, Guo H. Epoxy Resin-Reinforced F-Assisted Na3Zr2Si2PO12 Solid Electrolyte for Solid-State Sodium Metal Batteries. Batteries. 2023; 9(6):331. https://doi.org/10.3390/batteries9060331
Chicago/Turabian StyleFu, Yao, Dangling Liu, Yongjiang Sun, Genfu Zhao, and Hong Guo. 2023. "Epoxy Resin-Reinforced F-Assisted Na3Zr2Si2PO12 Solid Electrolyte for Solid-State Sodium Metal Batteries" Batteries 9, no. 6: 331. https://doi.org/10.3390/batteries9060331
APA StyleFu, Y., Liu, D., Sun, Y., Zhao, G., & Guo, H. (2023). Epoxy Resin-Reinforced F-Assisted Na3Zr2Si2PO12 Solid Electrolyte for Solid-State Sodium Metal Batteries. Batteries, 9(6), 331. https://doi.org/10.3390/batteries9060331