Acrylate Copolymer-Reinforced Hydrogel Electrolyte for Strain Sensors and Flexible Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the P(AAS-VPA)/PMMS Composite Hydrogel
2.3. Fabrication of Supercapacitors
2.4. Characterization Testing
2.4.1. Mechanical Performance Test
2.4.2. Adhesion Performance Test
2.4.3. Conductivity Test
2.4.4. Sensing Performance Test
2.4.5. Capacitance Performance Characterization
3. Results and Discussion
3.1. The Preparation of the P(AAS-VPA)/PMMS Composite Hydrogel
3.2. Flexibility and Recoverability of the P(AAS-VPA)/PMMS Composite Hydrogel
3.3. Adhesion Properties of the P(AAS-VPA)/PMMS Composite Hydrogel
3.4. Sensing Properties of the P(AAS-VPA)/PMMS Composite Hydrogel
3.5. Capacitive Properties of the P(AAS-VPA)/PMMS Composite Hydrogel
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kwak, S.; Kang, J.; Nam, I.; Yi, J. Free-Form and Deformable Energy Storage as a Forerunner to Next-Generation Smart Electronics. Micromachines 2020, 11, 347. [Google Scholar] [CrossRef]
- Wang, P.; Hu, M.; Wang, H.; Chen, Z.; Feng, Y.; Wang, J.; Ling, W.; Huang, Y. The Evolution of Flexible Electronics: From Nature, Beyond Nature, and to Nature. Adv. Sci. 2020, 7, 2001116. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, M.; Shi, H.T.H.; Wang, Y.; Chen, Y.; Ma, Z.; Cao, A.; Naguib, H.E.; Han, R.P.S. Novel Pliable Electrodes for Flexible Electrochemical Energy Storage Devices: Recent Progress and Challenges. Adv. Energy Mater. 2016, 6, 1600490. [Google Scholar] [CrossRef]
- Amjadi, M.; Kyung, K.-U.; Park, I.; Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Wang, J.; Lu, C.; Zhang, K. Textile-Based Strain Sensor for Human Motion Detection. Energy Environ. Mater. 2020, 3, 80–100. [Google Scholar] [CrossRef]
- Lakshmi, K.C.S.; Vedhanarayanan, B. High-Performance Supercapacitors: A Comprehensive Review on Paradigm Shift of Conventional Energy Storage Devices. Batteries 2023, 9, 202. [Google Scholar] [CrossRef]
- Naoi, K.; Naoi, W.; Aoyagi, S.; Miyamoto, J.; Kamino, T. New Generation “Nanohybrid Supercapacitor”. Acc. Chem. Res. 2013, 46, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor Electrode Materials: Nanostructures from 0 to 3 Dimensions. Energy Environ. Sci. 2015, 8, 702–730. [Google Scholar] [CrossRef]
- Khan, Z.; Ail, U.; Ajjan, F.N.; Phopase, J.; Kim, N.; Kumar, D.; Khan, Z.U.; Nilsson, J.; Inganäs, O.; Berggren, M.; et al. Towards Printable Water-in-Polymer Salt Electrolytes for High Power Organic Batteries. J. Power Sources 2022, 524, 231103. [Google Scholar] [CrossRef]
- Lakshmi, K.C.S.; Vedhanarayanan, B.; Cheng, H.Y.; Ji, X.; Shen, H.H.; Lin, T.W. Molecularly Engineered Organic Copolymers as High Capacity Cathode Materials for Aqueous Proton Battery Operating at Sub-Zero Temperatures. J. Colloid Interface Sci. 2022, 619, 123–131. [Google Scholar] [CrossRef]
- Peng, K.; Zhang, J.; Yang, J.; Lin, L.; Gan, Q.; Yang, Z.; Chen, Y.; Feng, C. Green Conductive Hydrogel Electrolyte with Self-Healing Ability and Temperature Adaptability for Flexible Supercapacitors. ACS Appl. Mater. Interfaces 2022, 14, 39404–39419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Q.; Liu, X.; Xia, S.; Gao, Y.; Gao, G. Flexible and Wearable Strain Sensors Based on Conductive Hydrogels. J. Polym. Sci. 2022, 60, 2663–2678. [Google Scholar] [CrossRef]
- Chan, C.Y.; Wang, Z.; Jia, H.; Ng, P.F.; Chow, L.; Fei, B. Recent Advances of Hydrogel Electrolytes in Flexible Energy Storage Devices. J. Mater. Chem. A 2021, 9, 2043–2069. [Google Scholar] [CrossRef]
- Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite. ACS Nano 2014, 8, 5154–5163. [Google Scholar] [CrossRef]
- Liu, M.Y.; Hang, C.Z.; Wu, X.Y.; Zhu, L.Y.; Wen, X.H.; Wang, Y.; Zhao, X.F.; Lu, H.L. Investigation of Stretchable Strain Sensor Based on Cnt/Agnw Applied in Smart Wearable Devices. Nanotechnology 2022, 33, 255501. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Bai, W.; Guan, G.; Zhang, Y.; Peng, H. Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite Fiber. Adv. Mater. 2013, 25, 5965–5970. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chang, X.; Wang, H.; Chen, J.; Zhu, Y. Stretchable and Transparent Multimodal Electronic-Skin Sensors in Detecting Strain, Temperature, and Humidity. Nano Energy 2022, 96, 107077. [Google Scholar] [CrossRef]
- Chen, G.; Hu, O.; Lu, J.; Gu, J.; Chen, K.; Huang, J.; Hou, L.; Jiang, X. Highly Flexible and Adhesive Poly(Vinyl Alcohol)/Poly(Acrylic Amide-Co-2-Acrylamido-2-Methylpropane Sulfonic Acid)/Glycerin Hydrogel Electrolyte for Stretchable and Resumable Supercapacitor. Chem. Eng. J. 2021, 425, 131505. [Google Scholar] [CrossRef]
- Yang, G.; Chen, J.; Liu, R.; Zhang, J.; Wang, R.; Chen, R.; Yang, H.; Fang, S. Sensing Applications of P(AAS-VPA)/P(EA-MAA) Composite Hydrogel with Highly Stretchability, Adhesion and Conductivity. Polym. Mater. Sci. Eng. 2022, 38, 156–166. [Google Scholar]
- Sun, H.; Zhang, M.; Liu, M.; Yu, Y.; Xu, X.; Li, J. Fabrication of Double-Network Hydrogels with Universal Adhesion and Superior Extensibility and Cytocompatibility by One-Pot Method. Biomacromolecules 2020, 21, 4699–4708. [Google Scholar] [CrossRef]
- Macarie, L.; Ilia, G. Poly(Vinylphosphonic Acid) and Its Derivatives. Prog. Polym. Sci. 2010, 35, 1078–1092. [Google Scholar] [CrossRef]
- Bassi, A.K.; Gough, J.E.; Zakikhani, M.; Downes, S. The Chemical and Physical Properties of Poly(Epsilon-Caprolactone) Scaffolds Functionalised with Poly(Vinyl Phosphonic Acid-Co-Acrylic Acid). J. Tissue Eng. 2011, 2011, 615328. [Google Scholar] [PubMed]
- Liu, R.; Milani, A.H.; Saunders, J.M.; Freemont, T.J.; Saunders, B.R. Tuning the Swelling and Mechanical Properties of Ph-Responsive Doubly Crosslinked Microgels Using Particle Composition. Soft Matter 2011, 7, 9297–9306. [Google Scholar] [CrossRef]
- Zhao, L.; Ren, Z.; Liu, X.; Ling, Q.; Li, Z.; Gu, H. A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(Vinyl Alcohol) Composite Hydrogel as a Flexible Strain Sensor. ACS Appl. Mater. Interfaces 2021, 13, 11344–11355. [Google Scholar] [CrossRef] [PubMed]
- Pruneanu, S.; Boughriet, A.; Henderson, A.; Malins, C.; Ali, Z.; Olenic, L. Impedimetric Measurements for Monitoring Avidin-Biotin Interaction on Self-Assembled Monolayer. Part. Sci. Technol. 2008, 26, 136–144. [Google Scholar] [CrossRef]
- Huang, X.; Guo, J.-Y.; Yang, J.; Xia, Y.; Zhang, Y.-F.; Fu, P.; Du, F.-P. High Mechanical Properties and Ionic Conductivity of Polysiloxane Sulfonate Via Tuning Ionization Degree with Clicking Chemical Reaction. Polymer 2022, 254, 125066. [Google Scholar] [CrossRef]
- Li, L.; Zhao, J.; Zhao, H.; Qin, Y.; Zhu, X.; Wu, H.; Song, Z.; Ding, S. Structure, Composition and Electrochemical Performance Analysis of Fluorophosphates from Different Synthetic Methods: Is Really Na3v2(Po4)2f3 Synthesized? J. Mater. Chem. A 2022, 10, 8877–8886. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Q.; Wang, G.; Wang, Y.; Ren, X.; Gao, G. Muscle-Inspired Anisotropic Hydrogel Strain Sensors. ACS Appl. Mater. Interfaces 2022, 14, 1921–1928. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Lee, K.H.; Anjum, D.H.; Sougrat, R.; Jiang, Q.; Kim, H.; Alshareef, H.N. Mxenes Stretch Hydrogel Sensor Performance to New Limits. Sci. Adv. 2018, 4, eaat0098. [Google Scholar] [CrossRef]
- Huang, H.; Han, L.; Fu, X.; Wang, Y.; Yang, Z.; Pan, L.; Xu, M. A Powder Self-Healable Hydrogel Electrolyte for Flexible Hybrid Supercapacitors with High Energy Density and Sustainability. Small 2021, 17, e2006807. [Google Scholar] [CrossRef]
- Guo, Y.; Zheng, K.; Wan, P. A Flexible Stretchable Hydrogel Electrolyte for Healable All-in-One Configured Supercapacitors. Small 2018, 14, e1704497. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, X.; Li, C.; Sun, X.; Meng, Q.; Ma, Y.; Wei, Z. Chemically Crosslinked Hydrogel Film Leads to Integrated Flexible Supercapacitors with Superior Performance. Adv. Mater. 2015, 27, 7451–7457. [Google Scholar] [CrossRef] [PubMed]
- Brezesinski, T.; Wang, J.; Tolbert, S.H.; Dunn, B. Ordered Mesoporous Alpha-Moo3 with Iso-Oriented Nanocrystalline Walls for Thin-Film Pseudocapacitors. Nat. Mater. 2010, 9, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, X.; Li, S.; Urbankowski, P.; Li, J.; Xu, Y.; Gogotsi, Y. An Ultrafast Conducting Polymer@Mxene Positive Electrode with High Volumetric Capacitance for Advanced Asymmetric Supercapacitors. Small 2020, 16, e1906851. [Google Scholar] [CrossRef]
- Xia, X.; Chao, D.; Zhang, Y.; Zhan, J.; Zhong, Y.; Wang, X.; Wang, Y.; Shen, Z.X.; Tu, J.; Fan, H.J. Generic Synthesis of Carbon Nanotube Branches on Metal Oxide Arrays Exhibiting Stable High-Rate and Long-Cycle Sodium-Ion Storage. Small 2016, 12, 3048–3058. [Google Scholar] [CrossRef]
- Choi, C.; Ashby, D.S.; Butts, D.M.; DeBlock, R.H.; Wei, Q.; Lau, J.; Dunn, B. Achieving High Energy Density and High Power Density with Pseudocapacitive Materials. Nat. Rev. Mater. 2019, 5, 5–19. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, H.; Rong, D.; Huang, Y.; He, S.; Rong, Q. Stretchable All-in-One Supercapacitor Enabled by Poly(Ethylene Glycol)-Based Hydrogel Electrolyte with Low-Temperature Tolerance. Polymer 2023, 270, 125796. [Google Scholar] [CrossRef]
- Shan, C.; Che, M.; Cholewinski, A.; Ki Kunihiro, J.; Yim, E.K.F.; Su, R.; Zhao, B. Adhesive Hydrogels Tailored with Cellulose Nanofibers and Ferric Ions for Highly Sensitive Strain Sensors. Chem. Eng. J. 2022, 450, 138256. [Google Scholar] [CrossRef]
- Bao, S.; Gao, J.; Xu, T.; Li, N.; Chen, W.; Lu, W. Anti-Freezing and Antibacterial Conductive Organohydrogel Co-Reinforced by 1d Silk Nanofibers and 2d Graphitic Carbon Nitride Nanosheets as Flexible Sensor. Chem. Eng. J. 2021, 411, 128470. [Google Scholar] [CrossRef]
- Wang, L.; Gao, G.; Zhou, Y.; Xu, T.; Chen, J.; Wang, R.; Zhang, R.; Fu, J. Tough, Adhesive, Self-Healable, and Transparent Ionically Conductive Zwitterionic Nanocomposite Hydrogels as Skin Strain Sensors. ACS Appl. Mater Interfaces 2019, 11, 3506–3515. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, X.; Ren, X.; Jia, F.; Duan, L.; Gao, G. Nucleotide-Regulated Tough and Rapidly Self-Recoverable Hydrogels for Highly Sensitive and Durable Pressure and Strain Sensors. Chem. Mater. 2019, 31, 5881–5889. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, Y.; Wang, X.; Xing, L.; Shi, L.; Ran, R. Stable, Strain-Sensitive Conductive Hydrogel with Antifreezing Capability, Remoldability, and Reusability. ACS Appl. Mater Interfaces 2018, 10, 44000–44010. [Google Scholar] [CrossRef]
- Li, S.; Pan, H.; Wang, Y.; Sun, J. Polyelectrolyte Complex-Based Self-Healing, Fatigue-Resistant and Anti-Freezing Hydrogels as Highly Sensitive Ionic Skins. J. Mater. Chem. A 2020, 8, 3667–3675. [Google Scholar] [CrossRef]
- Ge, G.; Yuan, W.; Zhao, W.; Lu, Y.; Zhang, Y.; Wang, W.; Chen, P.; Huang, W.; Si, W.; Dong, X. Highly Stretchable and Autonomously Healable Epidermal Sensor Based on Multi-Functional Hydrogel Frameworks. J. Mater. Chem. A 2019, 7, 5949–5956. [Google Scholar] [CrossRef]
- Ren, J.; Liu, Y.; Wang, Z.; Chen, S.; Ma, Y.; Wei, H.; Lü, S. An Anti-Swellable Hydrogel Strain Sensor for Underwater Motion Detection. Adv. Funct. Mater. 2021, 32, 2107404. [Google Scholar] [CrossRef]
- Liu, X.; Qin, J.; Wang, J.; Chen, Y.; Miao, G.; Zheng, J.; Liu, X. Preparation and Properties of Cellulose Nanofibers/A-Zirconium Phosphate Nanosheets Composite Polyvinyl Alcohol Ion-Conductive Organohydrogel and Its Application in Strain Sensors. J. Appl. Polym. Sci. 2022, 139, e53076. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Liu, W.; Chen, J.; Bian, X.; Fan, K.; Zhao, J.; Zhang, X. Acrylate Copolymer-Reinforced Hydrogel Electrolyte for Strain Sensors and Flexible Supercapacitors. Batteries 2023, 9, 304. https://doi.org/10.3390/batteries9060304
Liu R, Liu W, Chen J, Bian X, Fan K, Zhao J, Zhang X. Acrylate Copolymer-Reinforced Hydrogel Electrolyte for Strain Sensors and Flexible Supercapacitors. Batteries. 2023; 9(6):304. https://doi.org/10.3390/batteries9060304
Chicago/Turabian StyleLiu, Ruixue, Wenkang Liu, Jichao Chen, Xiangli Bian, Kaiqi Fan, Junhong Zhao, and Xiaojing Zhang. 2023. "Acrylate Copolymer-Reinforced Hydrogel Electrolyte for Strain Sensors and Flexible Supercapacitors" Batteries 9, no. 6: 304. https://doi.org/10.3390/batteries9060304
APA StyleLiu, R., Liu, W., Chen, J., Bian, X., Fan, K., Zhao, J., & Zhang, X. (2023). Acrylate Copolymer-Reinforced Hydrogel Electrolyte for Strain Sensors and Flexible Supercapacitors. Batteries, 9(6), 304. https://doi.org/10.3390/batteries9060304