Bimetal-Initiated Concerted Zn Regulation Enabling Highly Stable Aqueous Zn-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Modified Anodes
2.2. Material Characterization
2.3. Electrochemical Testing
2.3.1. Electrochemical Tests for Symmetric Cells
2.3.2. Electrochemical Testing for Zn||MnO2 Full Batteries
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennear, L.S. Energy Justice, Decarbonization, and the Clean Energy Transformation. Annu. Rev. Resour. Econ. 2022, 14, 647–668. [Google Scholar] [CrossRef]
- Carley, S.; Konisky, D.M. The justice and equity implications of the clean energy transition. Nat. Energy 2020, 5, 569–577. [Google Scholar] [CrossRef]
- Davidson, D.J. Exnovating for a renewable energy transition. Nat. Energy 2019, 4, 254–256. [Google Scholar] [CrossRef]
- Han, C.; Li, W.; Liu, H.K.; Dou, S.; Wang, J. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy 2020, 74, 104880. [Google Scholar] [CrossRef]
- Mainar, A.R.; Iruin, E.; Colmenares, L.C.; Kvasha, A.; de Meatza, I.; Bengoechea, M.; Leonet, O.; Boyano, I.; Zhang, Z.; Blazquez, J.A. An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc. J. Energy Storage 2018, 15, 304–328. [Google Scholar] [CrossRef]
- Brockway, P.E.; Owen, A.; Brand-Correa, L.I.; Hardt, L. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat. Energy 2019, 4, 612–621. [Google Scholar] [CrossRef]
- Kittner, N.; Lill, F.; Kammen, D.M. Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2017, 2, 17125. [Google Scholar] [CrossRef]
- Turner, J.M. The matter of a clean energy future. Science 2022, 376, 1361. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Q.; Xia, Q.; Lei, Y.; Huang, X.L.; Tebyetekerwa, M.; Zhao, X.S. Interface challenges and optimization strategies for aqueous zinc-ion batteries. J. Energy Chem. 2023, 77, 642–659. [Google Scholar] [CrossRef]
- Shang, Y.; Kundu, D. Understanding and Performance of the Zinc Anode Cycling in Aqueous Zinc-Ion Batteries and a Roadmap for the Future. Batter. Supercaps 2022, 5, e202100394. [Google Scholar] [CrossRef]
- Wang, T.; Sun, J.; Hua, Y.; Krishna, B.N.V.; Xi, Q.; Ai, W.; Yu, J.S. Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Mater. 2022, 53, 273–304. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Zinc dendrite growth and inhibition strategies. Mater. Today Energy 2021, 20, 100692. [Google Scholar] [CrossRef]
- Mainar, A.R.; Colmenares, L.C.; Blázquez, J.A.; Urdampilleta, I. A brief overview of secondary zinc anode development: The key of improving zinc-based energy storage systems. Int. J. Energy Res. 2018, 42, 903–918. [Google Scholar] [CrossRef]
- Mohammadi, A.; Hagopian, A.; Sayegh, S.; Bechelany, M.; Filhol, J.-S.; Younesi, R.; Stievano, L.; Monconduit, L. Towards understanding the nucleation and growth mechanism of Li dendrites on zinc oxide-coated nickel electrodes. J. Mater. Chem. A 2022, 10, 17593–17602. [Google Scholar] [CrossRef]
- Deng, Q.; Liu, F.; Wu, X.; Li, C.; Zhou, W.; Long, B. An aqueous BiI3-Zn battery with dual mechanisms of Zn2+ (de)intercalation and I−/I2 redox. J. Energy Chem. 2024, 89, 670–678. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Du, H.; Liu, Y.; Wu, X.; Yin, C.; Wang, D.; Wu, X.; He, Z.; Wu, X. A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery. J. Mater. Chem. A 2022, 10, 14399–14410. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, Q.; Liu, H.; Shen, S.; Guo, Z.; Jin, B.; Peng, R. Understanding the synergistically enhanced thermocatalytic decomposition of ammonium perchlorate using cobalt nanoparticle-embedded nitrogen-doped graphitized carbon. Mater. Adv. 2023, 4, 2332–2339. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, H.; Li, X.; Song, T.; Pei, Y.; Liu, L.; Long, B.; Wu, X.; Wang, X. Sn-doped BiOCl nanosheet with synergistic H+/Zn2+ co-insertion for “rocking chair” zinc-ion battery. J. Energy Chem. 2023, 81, 623–632. [Google Scholar] [CrossRef]
- Wang, S.J.; Yang, Z.; Chen, B.T.; Zhou, H.; Wan, S.F.; Hu, L.Z.; Qiu, M.; Qie, L.; Yu, Y. A highly reversible, dendrite-free zinc metal anodes enabled by a dual-layered interface. Energy Storage Mater. 2022, 47, 491–499. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Zhong, Y.; Yuan, L.; Huang, Y.; Li, Z. Highly Reversible and Anticorrosive Zn Anode Enabled by a Ag Nanowires Layer. ACS Appl. Mater. Interfaces 2022, 14, 9097–9105. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wan, H.; Duan, J.; Wang, X.; Tao, L.; Zhang, J.; Wang, H. A review of zinc-based battery from alkaline to acid. Mater. Today Adv. 2021, 11, 100149. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C. Dendrites in Zn-Based Batteries. Adv. Mater. 2020, 32, e2001854. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, C.; Zhang, Y.; Yang, S.; Zeng, Z.; Zhang, X.; Qie, L.; Zhang, L.-L.; Wang, Z. In-situ crosslinked Zn2+-conducting polymer complex interphase with synergistic anion shielding and cation regulation for high-rate and dendrite-free zinc metal anodes. Chem. Eng. J. 2022, 448, 137653. [Google Scholar] [CrossRef]
- Wei, X.; Desai, D.; Yadav, G.G.; Turney, D.E.; Couzis, A.; Banerjee, S. Impact of anode substrates on electrodeposited zinc over cycling in zinc-anode rechargeable alkaline batteries. Electrochim. Acta 2016, 212, 603–613. [Google Scholar] [CrossRef]
- Li, H.; Jia, W.; Chen, P.; Wang, L.; Yan, X.; Yang, Y.-Y. Zinc deposition characteristics on different substrates for aqueous zinc ion battery. Appl. Surf. Sci. 2023, 607, 155111. [Google Scholar] [CrossRef]
- Cai, Z.; Ou, Y.; Wang, J.; Xiao, R.; Fu, L.; Yuan, Z.; Zhan, R.; Sun, Y. Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 2020, 27, 205–211. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Yu, F.; Xu, G.; Li, Z.; Zhu, M.; Yue, Z.; Wu, M.; Liu, H.-K.; Dou, S.-X.; et al. Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries. Chem. Eng. J. 2021, 416, 128062. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Liu, W.; Ni, X.; Qing, P.; Zhao, Q.; Wei, W.; Ji, X.; Ma, J.; Chen, L. Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 2021, 9, 8452–8461. [Google Scholar] [CrossRef]
- Cao, P.; Tang, J.; Wei, A.; Bai, Q.; Meng, Q.; Fan, S.; Ye, H.; Zhou, Y.; Zhou, X.; Yang, J. Manipulating Uniform Nucleation to Achieve Dendrite-Free Zn Anodes for Aqueous Zn-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 48855–48864. [Google Scholar] [CrossRef]
- Peng, Y.; Lai, C.; Zhang, M.; Liu, X.; Yin, Y.; Li, Y.; Wu, Z. Zn–Sn alloy anode with repressible dendrite grown and meliorative corrosion resistance for Zn-air battery. J. Power Sources 2022, 526, 231173. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, D.; Zhang, Y.; Guo, Z.; Chen, M.; Chen, Y.; Jin, B.; Song, Y.; Pan, H. Insight into coupled Ni-Co dual-metal atom catalysts for efficient synergistic electrochemical CO2 reduction. J. Energy Chem. 2023, 87, 509–517. [Google Scholar] [CrossRef]
- Zhang, Y.; Howe, J.D.; Ben-Yoseph, S.; Wu, Y.; Liu, N. Unveiling the Origin of Alloy-Seeded and Nondendritic Growth of Zn for Rechargeable Aqueous Zn Batteries. ACS Energy Lett. 2021, 6, 404–412. [Google Scholar] [CrossRef]
- Li, B.; Yang, K.; Ma, J.; Shi, P.; Chen, L.; Chen, C.; Hong, X.; Cheng, X.; Tang, M.C.; He, Y.B.; et al. Multicomponent Copper-Zinc Alloy Layer Enabling Ultra-Stable Zinc Metal Anode of Aqueous Zn-ion Battery. Angew. Chem. Int. Ed. Engl. 2022, 61, e202212587. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, Y.; Tong, X.; Wang, X.; Zhang, L.; Xia, X.; Tu, J. Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Mater. Today Energy 2021, 20, 100675. [Google Scholar] [CrossRef]
- Yang, Z.; Lv, C.; Li, W.; Wu, T.; Zhang, Q.; Tang, Y.; Shao, M.; Wang, H. Revealing the Two-Dimensional Surface Diffusion Mechanism for Zinc Dendrite Formation on Zinc Anode. Small 2022, 18, e2104148. [Google Scholar] [CrossRef] [PubMed]
- Zou, P.; Nykypanchuk, D.; Doerk, G.; Xin, H.L. Hydrophobic Molecule Monolayer Brush-Tethered Zinc Anodes for Aqueous Zinc Batteries. ACS Appl. Mater. Interfaces 2021, 13, 60092–60098. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.-P.; Sui, B.-B.; Wang, P.-F.; Gong, Z.; Zhang, Y.-H.; Wu, Y.-H.; Zhao, L.-N.; Tang, J.-J.; Zhou, M.-D.; Shi, F.-N. High-pressure deformation exposes zinc (002) crystal planes adapted for high-performance zinc anodes. Electrochim. Acta 2024, 478, 143824. [Google Scholar] [CrossRef]
- Xiao, P.; Xue, L.; Guo, Y.; Hu, L.; Cui, C.; Li, H.; Zhai, T. On-site building of a Zn2+-conductive interfacial layer via short-circuit energization for stable Zn anode. Sci. Bull. 2021, 66, 545–552. [Google Scholar] [CrossRef]
- Han, D.; Wu, S.; Zhang, S.; Deng, Y.; Cui, C.; Zhang, L.; Long, Y.; Li, H.; Tao, Y.; Weng, Z.; et al. A Corrosion-Resistant and Dendrite-Free Zinc Metal Anode in Aqueous Systems. Small 2020, 16, 2001736. [Google Scholar] [CrossRef]
- Cui, M.; Xiao, Y.; Kang, L.; Du, W.; Gao, Y.; Sun, X.; Zhou, Y.; Li, X.; Li, H.; Jiang, F.; et al. Quasi-Isolated Au Particles as Heterogeneous Seeds To Guide Uniform Zn Deposition for Aqueous Zinc-Ion Batteries. ACS Appl. Energy Mater. 2019, 2, 6490–6496. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, C.; Du, Y.; Wang, X.; Ding, L.; Omar, A.; Mikhailova, D. Uniform Zn Deposition Achieved by Ag Coating for Improved Aqueous Zinc-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 16869–16875. [Google Scholar] [CrossRef]
- Qi, Z.; Xiong, T.; Yu, Z.G.; Meng, F.; Chen, B.; Xiao, H.; Xue, J. Suppressing zinc dendrite growth in aqueous battery via Zn–Al alloying with spatially confined zinc reservoirs. J. Power Sources 2023, 558, 232628. [Google Scholar] [CrossRef]
- Qin, Y.; Li, H.; Han, C.; Mo, F.; Wang, X. Chemical Welding of the Electrode-Electrolyte Interface by Zn-Metal-Initiated In Situ Gelation for Ultralong-Life Zn-Ion Batteries. Adv. Mater. 2022, 34, e2207118. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Jin, Q.; Jiang, X.; Dang, Z.M.; Zhang, D.; Jin, Y. Vertical Crystal Plane Matching between AgZn3 (002) and Zn (002) Achieving a Dendrite-Free Zinc Anode. Small 2022, 18, e2200131. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Ran, Q.; Dai, T.Y.; Shi, H.; Zeng, S.P.; Zhu, Y.F.; Wen, Z.; Zhang, W.; Lang, X.Y.; Zheng, W.T.; et al. Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery. Nanomicro Lett. 2022, 14, 128. [Google Scholar] [CrossRef]
- Fu, H.; Wen, Q.; Li, P.Y.; Wang, Z.Y.; He, Z.J.; Yan, C.; Mao, J.; Dai, K.H.; Zhang, X.H.; Zheng, J.C. In-situ chemical conversion film for stabilizing zinc metal anodes. J. Energy Chem. 2022, 73, 387–393. [Google Scholar] [CrossRef]
- Wang, S.-B.; Ran, Q.; Yao, R.-Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X.-Y.; Jiang, Q. Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634. [Google Scholar] [CrossRef]
- Xue, R.; Kong, J.; Wu, Y.; Wang, Y.; Kong, X.; Gong, M.; Zhang, L.; Lin, X.; Wang, D. Highly reversible zinc metal anodes enabled by a three-dimensional silver host for aqueous batteries. J. Mater. Chem. A 2022, 10, 10043–10050. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.; Liu, Y.; Zhu, Y.; Ye, F.; Xu, G.; Lin, M.; Kang, W. Bimetal-Initiated Concerted Zn Regulation Enabling Highly Stable Aqueous Zn-Ion Batteries. Batteries 2024, 10, 70. https://doi.org/10.3390/batteries10030070
Yin H, Liu Y, Zhu Y, Ye F, Xu G, Lin M, Kang W. Bimetal-Initiated Concerted Zn Regulation Enabling Highly Stable Aqueous Zn-Ion Batteries. Batteries. 2024; 10(3):70. https://doi.org/10.3390/batteries10030070
Chicago/Turabian StyleYin, Hong, Yuliang Liu, Yifeng Zhu, Fengxiang Ye, Guangliang Xu, Mengfang Lin, and Wenbin Kang. 2024. "Bimetal-Initiated Concerted Zn Regulation Enabling Highly Stable Aqueous Zn-Ion Batteries" Batteries 10, no. 3: 70. https://doi.org/10.3390/batteries10030070
APA StyleYin, H., Liu, Y., Zhu, Y., Ye, F., Xu, G., Lin, M., & Kang, W. (2024). Bimetal-Initiated Concerted Zn Regulation Enabling Highly Stable Aqueous Zn-Ion Batteries. Batteries, 10(3), 70. https://doi.org/10.3390/batteries10030070