A Superior Lithium-Ion Capacitor Based on Ultrafine MnO/Dual N-Doped Carbon Anode and Porous Carbon Cathode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials Preparation
2.3. Materials Characterizations
2.4. Electrochemical Evaluations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khaligh, A.; Zhihao, L. Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art. IEEE Trans. Veh. Technol. 2010, 59, 2806–2814. [Google Scholar] [CrossRef]
- Pasquier, A.D.; Plitz, I.; Gural, J.; Badway, F.; Amatucci, G.G. Power-ion battery: Bridging the gap between Li-ion and supercapacitor chemistries. J. Power Sources 2004, 136, 160–170. [Google Scholar] [CrossRef]
- Han, P.; Xu, G.; Han, X.; Zhao, J.; Zhou, X.; Cui, G. Lithium ion capacitors in organic electrolyte system: Scientific problems, material development, and key technologies. Adv. Energy Mater. 2018, 8, 1801243. [Google Scholar] [CrossRef]
- Shaikh, N.S.; Kanjanaboos, P.; Lokhande, V.C.; Praserthdam, S.; Lokhande, C.D.; Shaikh, J.S. Engineering of battery type electrodes for high performance lithium ion hybrid supercapacitors. ChemElectroChem 2021, 8, 4686–4724. [Google Scholar] [CrossRef]
- Jiang, T.; Bu, F.; Feng, X.; Shakir, I.; Hao, G.; Xu, Y. Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 2017, 11, 5140–5147. [Google Scholar] [CrossRef]
- Hou, C.; Yang, W.; Xie, X.; Sun, X.; Wang, J.; Naik, N.; Pan, D.; Mai, X.; Guo, Z.; Dang, F.; et al. Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J. Colloid Interface Sci. 2021, 596, 396–407. [Google Scholar] [CrossRef]
- Jia, Y.; Yang, Z.; Li, H.; Wang, Y.; Wang, X. Reduced graphene oxide encapsulated MnO microspheres as an anode for high-rate lithium ion capacitors. New Carbon Mater. 2021, 36, 573–584. [Google Scholar] [CrossRef]
- Zou, F.; Chen, Y.; Liu, K.; Yu, Z.; Liang, W.; Bhaway, S.M.; Gao, M.; Zhu, Y. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 2016, 10, 377–386. [Google Scholar] [CrossRef]
- Li, H.; Hu, Z.; Xia, Q.; Zhang, H.; Li, Z.; Wang, H.; Li, X.; Zuo, F.; Zhang, F.; Wang, X.; et al. Operando magnetometry probing the charge storage mechanism of CoO lithium-Ion batteries. Adv. Mater. 2021, 33, 2006629. [Google Scholar] [CrossRef]
- Liu, X.; Chen, C.; Zhao, Y.; Jia, B. A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J. Nanomater. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, J.-G.; Hua, W.; Wang, J.; Nan, D.; Wei, C. Scale-up production of high-tap-density carbon/MnOx/carbon nanotube microcomposites for Li-ion batteries with ultrahigh volumetric capacity. Chem. Eng. J. 2018, 354, 220–227. [Google Scholar] [CrossRef]
- Zhang, X.; Xing, Z.; Wang, L.; Zhu, Y.; Li, Q.; Liang, J.; Yu, Y.; Huang, T.; Tang, K.; Qian, Y.; et al. Synthesis of MnO@C core–shell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries. J. Mater. Chem. 2012, 22, 17864. [Google Scholar] [CrossRef]
- Huang, S.; Yang, L.; Gao, M.; Zhang, Q.; Xu, G.; Liu, X.; Cao, J.; Wei, X. Well-dispersed MnO-quantum-dots/N-doped carbon layer anchored on carbon nanotube as free-standing anode for high-performance Li-Ion batteries. Electrochim. Acta 2019, 319, 302–311. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, W.; Chen, N.; Chen, S.; Xu, W.; Cai, R.; Brown, C.L.; Yang, D.; Yao, X. Generating oxygen vacancies in MnO hexagonal sheets for ultralong life lithium storage with high capacity. ACS Nano 2019, 13, 2062–2071. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Lu, G.; Qiu, S.; Liu, J.; Wang, X.; He, C.; Wei, H.; Yan, X.; Guo, Z. Carbon-coated MnO microparticulate porous nanocomposites serving as anode materials with enhanced electrochemical performances. Nano Energy 2014, 9, 41–49. [Google Scholar] [CrossRef]
- Hou, C.; Tai, Z.; Zhao, L.; Zhai, Y.; Hou, Y.; Fan, Y.; Dang, F.; Wang, J.; Liu, H. High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J. Mater. Chem. A 2018, 6, 9723–9736. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Cao, M. Carbon-anchored MnO nanosheets as an anode for high-rate and long-life lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 12840–12849. [Google Scholar] [CrossRef]
- Liu, R.; Chen, X.; Zhou, C.; Li, A.; Gong, Y.; Muhammad, N.; Song, H. Controlled synthesis of porous 3D interconnected MnO/C composite aerogel and their excellent lithium-storage properties. Electrochim. Acta 2019, 306, 143–150. [Google Scholar] [CrossRef]
- Lin, J.; Yu, L.; Liu, W.; Dong, H.; Dong, X.; Zhao, M.; Zhai, Y.; Xiang, J.; Chen, M. In situ construction of one-dimensional porous MnO@C nanorods for electrode materials. New J. Chem. 2021, 45, 4422–4426. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; He, T.; Amiinu, I.S.; Kou, Z.; Li, J.; Mu, S. Smart reconstruction of dual-carbon decorated MnO for anode with high-capacity and ultralong-life lithium storage properties. Carbon 2017, 115, 95–104. [Google Scholar] [CrossRef]
- He, Y.; Xu, P.; Zhang, B.; Du, Y.; Song, B.; Han, X.; Peng, H. Ultrasmall MnO nanoparticles supported on nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 38401–38408. [Google Scholar] [CrossRef] [PubMed]
- Qie, L.; Chen, W.; Wang, Z.; Shao, Q.; Li, X.; Yuan, L.; Hu, X.; Zhang, W.; Huang, Y. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhang, H.; Qi, X.; Yu, J.; Zhang, Z.; Wei, J.; Yang, Z. Agaric-assisted synthesis of core-shell MnO@C microcubes as super-high-volumetric-capacity anode for lithium-ion batteries. Carbon 2020, 162, 36–45. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Liu, Z.; Wu, H.; Zhao, H.; Liu, H.; Zhang, Y. Cycling-induced structure refinement of MnO nanorods wrapped by N-doped carbon with internal void space for advanced lithium-ion anodes. Appl. Surf. Sci. 2019, 479, 386–394. [Google Scholar] [CrossRef]
- Jiang, J.; Yuan, J.; Nie, P.; Zhu, Q.; Chen, C.; He, W.; Zhang, T.; Dou, H.; Zhang, X. Hierarchical N-doped hollow carbon microspheres as advanced materials for high-performance lithium-ion capacitors. J. Mater. Chem. A 2020, 8, 3956–3966. [Google Scholar] [CrossRef]
- Wang, J.-G.; Zhang, C.; Jin, D.; Xie, K.; Wei, B. Synthesis of ultralong MnO/C coaxial nanowires as freestanding anodes for high-performance lithium ion batteries. J. Mater. Chem. A 2015, 3, 13699–13705. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Cui, Y.; Shi, J.; Liu, W.; Shi, Z.; Chen, S.; Wang, X.; Wang, H. Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. J. Mater. Chem. A 2017, 5, 15243–15252. [Google Scholar] [CrossRef]
- Peng, H.; Hao, G.; Chu, Z.; Lin, J.; Lin, X.; Cai, Y. Mesoporous Mn3O4/C microspheres fabricated from MOF template as advanced lithium-ion battery anode. Cryst. Growth Des. 2017, 17, 5881–5886. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Q.; Xia, K.; Han, B.; Zhou, C.; Gao, Q.; Wang, H.; Pu, S.; Wu, J. Facile synthesis of hierarchically porous N/P codoped carbon with simultaneously high-level heteroatom-doping and moderate porosity for high-performance supercapacitor electrodes. ACS Sustainable Chem. Eng. 2019, 7, 5717–5726. [Google Scholar] [CrossRef]
- Pei, C.; Ding, R.; Yu, X.; Feng, L. Electrochemical oxygen reduction reaction performance boosted by N, P doped carbon layer over manganese dioxide nanorod. ChemCatChem 2019, 11, 4617–4623. [Google Scholar] [CrossRef]
- Pei, X.; Mo, D.; Lyu, S.; Zhang, J.; Fu, Y. Preparation of novel two-stage structure MnO micrometer particles as lithium-ion battery anode materials. RSC Adv. 2018, 8, 28518–28524. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Yun, S.; Cao, H.; Zhang, Z.; Feng, H.; Chen, H. Porous carbon matrix-encapsulated MnO in situ derived from metal-organic frameworks as advanced anode materials for Li-ion capacitors. Sci. China Mater. 2021, 65, 59–68. [Google Scholar] [CrossRef]
- Qin, Y.; Jiang, Z.; Rong, H.; Guo, L.; Jiang, Z. High performance of yolk-shell structured MnO@nitrogen doped carbon microspheres as lithium ion battery anode materials and their in operando X-ray diffraction study. Electrochim. Acta 2018, 282, 719–727. [Google Scholar] [CrossRef]
- Zheng, F.; Yin, Z.; Xia, H.; Bai, G.; Zhang, Y. Porous MnO@C nanocomposite derived from metal-organic frameworks as anode materials for long-life lithium-ion batteries. Chem. Eng. J. 2017, 327, 474–480. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Q.; Li, M.; Jiang, K.; Hu, Z.; Chu, J. High-capacity and long-life lithium storage boosted by pseudocapacitance in three-dimensional MnO-Cu-CNT/graphene anodes. Nanoscale 2018, 10, 2944–2954. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lin, J.; Zeng, Y.; Zhang, Y.; Guo, H. Morphological and structural evolution of MnO@C anode and its application in lithium-ion capacitors. ACS Appl. Energy Mater. 2019, 2, 8345–8358. [Google Scholar] [CrossRef]
- Le, Z.; Liu, F.; Nie, P.; Li, X.; Liu, X.; Bian, Z.; Chen, G.; Wu, H.B.; Lu, Y. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-Ion capacitors. ACS Nano 2017, 11, 2952–2960. [Google Scholar] [CrossRef]
- Sun, Q.; Cao, Z.; Zhang, J.; Cheng, H.; Zhang, J.; Li, Q.; Ming, H.; Liu, G.; Ming, J. Metal catalyst to construct carbon nanotubes networks on metal oxide microparticles towards designing high-performance electrode for high-voltage lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2009122. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.; Dong, K.; AiminHao; Luo, S.; Liu, Y.; Wang, Q.; Zhang, Y.; Wang, Z. Fabrication of porous carbon with controllable nitrogen doping as anode for high-performance potassium-ion batteries. ChemElectroChem 2019, 6, 3699–3707. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Y.; Li, Z.; An, Y.; Zhu, Q.; Xu, Y.; Zang, S.; Dou, H.; Zhang, X. Defect-rich and N-doped hard carbon as a sustainable anode for high-energy lithium-ion capacitors. J. Colloid Interface Sci. 2020, 567, 75–83. [Google Scholar] [CrossRef]
- Zou, K.; Cai, P.; Cao, X.; Zou, G.; Hou, H.; Ji, X. Carbon materials for high-performance lithium-ion capacitor. Curr. Opin. Electrochem. 2020, 21, 31–39. [Google Scholar] [CrossRef]
- Xiao, Z.; Yu, Z.; Ayub, M.; Li, S.; Ma, X.; Xu, C. High energy and power lithium-ion capacitor based on MnO-encased graphene spheres anode and hollow carbon nano-rods cathode. Chem. Eng. Sci. 2021, 245, 116968. [Google Scholar] [CrossRef]
- Chen, Z.; He, B.; Yan, D.; Yu, X.; Li, W. Peapod-like MnO@hollow carbon nanofibers film as self-standing electrode for Li-ion capacitors with enhanced rate capacity. J. Power Sources 2020, 472, 228501. [Google Scholar] [CrossRef]
- Chen, M.; Le, T.; Zhou, Y.; Kang, F.; Yang, Y. Enhanced electrode matching assisted by in situ etching and co-doping toward high-rate dual-carbon lithium-ion capacitors. ACS Sustain. Chem. Eng. 2021, 9, 10054–10061. [Google Scholar] [CrossRef]
- Yue, C.; Qiu, D.; Kang, C.; Li, M.; Qiu, C.; Xian, L.; Wang, F.; Yang, R. Multidimensional dual-carbon skeleton network confined MnOx anode boosting high-performance lithium-ion hybrid capacitors. ACS Appl. Energy Mater. 2021, 4, 11268–11278. [Google Scholar] [CrossRef]
- Luan, Y.; Yin, J.; Cheng, K.; Ye, K.; Yan, J.; Zhu, K.; Wang, G.; Cao, D. Facile synthesis of MnO porous sphere with N-doped carbon coated layer for high performance lithium-ion capacitors. J. Electroanal. Chem. 2019, 852, 113515. [Google Scholar] [CrossRef]
- Yan, D.; Li, S.; Guo, L.; Dong, X.; Chen, Z.; Li, W. Hard@soft integrated morning glory like porous carbon as a cathode for a high-energy lithium ion capacitor. ACS Appl. Mater. Interfaces 2018, 10, 43946–43952. [Google Scholar] [CrossRef]
- Han, C.; Tong, J.; Tang, X.; Zhou, D.; Duan, H.; Li, B.; Wang, G. Boost anion storage capacity using conductive polymer as a pseudocapacitive cathode for high-energy and flexible lithium ion capacitors. ACS Appl. Mater. Interfaces 2020, 12, 10479–10489. [Google Scholar] [CrossRef]
- Qin, L.; Zhu, S.; Cheng, C.; Wu, D.; Wang, G.; Hou, L.; Yuan, C. Single-crystal nano-subunits assembled accordion-shape WNb2O8 framework with high Ionic/electronic conductivities towards Li-ion capacitors. Small 2022, 18, 2107987. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, D.; Gao, Y.; Hou, Z.; Ren, L.; Jiang, M.; Cao, Y.; Zhang, Y.; Wang, J.-G. A Superior Lithium-Ion Capacitor Based on Ultrafine MnO/Dual N-Doped Carbon Anode and Porous Carbon Cathode. Batteries 2023, 9, 241. https://doi.org/10.3390/batteries9050241
Lei D, Gao Y, Hou Z, Ren L, Jiang M, Cao Y, Zhang Y, Wang J-G. A Superior Lithium-Ion Capacitor Based on Ultrafine MnO/Dual N-Doped Carbon Anode and Porous Carbon Cathode. Batteries. 2023; 9(5):241. https://doi.org/10.3390/batteries9050241
Chicago/Turabian StyleLei, Da, Yuyang Gao, Zhidong Hou, Lingbo Ren, Mingwei Jiang, Yunjing Cao, Yu Zhang, and Jian-Gan Wang. 2023. "A Superior Lithium-Ion Capacitor Based on Ultrafine MnO/Dual N-Doped Carbon Anode and Porous Carbon Cathode" Batteries 9, no. 5: 241. https://doi.org/10.3390/batteries9050241
APA StyleLei, D., Gao, Y., Hou, Z., Ren, L., Jiang, M., Cao, Y., Zhang, Y., & Wang, J. -G. (2023). A Superior Lithium-Ion Capacitor Based on Ultrafine MnO/Dual N-Doped Carbon Anode and Porous Carbon Cathode. Batteries, 9(5), 241. https://doi.org/10.3390/batteries9050241