A High-Performance Vortex Adjustment Design for an Air-Cooling Battery Thermal Management System in Electric Vehicles
Abstract
:1. Introduction
2. Conventional Design and Vortex Generating Columns
3. Mathematical Models and Major Parameters
3.1. Battery Cell Heat Generation Model
3.2. Heat Transfer Model
3.3. Major Cooling Performance Indicators
3.4. Advanced Design Improvement Parameters
4. Numerical Modelling and Validation
4.1. Mesh Independence Study
4.2. Time Step Size Independence Study
4.3. Numerical Model Validation
5. Optimization of the VGC Contour Shape
6. Optimization of the VGCs Distributions
6.1. Different VGC Distribution Designs
6.2. Bilateral Additional VGC Designs
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | battery surface area (m2) |
Cp | specific heat capacity (J·kg−1⋅K−1) |
DH | hydraulic diameter of the pipe (m) |
F1 | first blending function in the SST model |
h | convective heat transfer coefficient (W∙m−2∙K−1) |
j | volumetric transfer current density (A∙m−2) |
k | thermal conductivity (W·m−1·K−1) |
turbulent kinetic energy (J·kg−1) | |
P, p | pressure (Pa) |
Pk | production term of the turbulent kinetic energy |
PSAS | additional source term in the transport equation for the turbulence eddy frequency |
q | heat generation rate (W·m−3) |
s | strain rate tensor |
T | temperature (K) |
mean velocity component (m·s−1) | |
u | air flow velocity (m·s−1) |
air flow velocity vector (m·s−1) | |
Greek Symbols | |
α, β | model parameters |
ρ | mass density (kg∙m−3) |
σ | electrical conductivity (Siemens∙m−1) |
, | model parameters |
stress tensor | |
ν | kinematic viscosity (m2·s−1) |
ϕ | electric potential (V) |
φ | electrode phase potential (V) |
∇ | Del operator used as the partial derivative of a quantity with respect to all directions in the chosen coordinate system (m−1) |
Laplace operator | |
Subscripts | |
a | air |
b | battery |
i, j | Cartesian directions |
+ | anode |
− | cathode |
Abbreviations | |
BTMS | battery thermal management system |
EV | electric vehicle |
LIB | lithium-ion battery |
OEM | original equipment manufacturer |
SD | standard deviation |
TEF | turbulent eddy frequency |
TKE | turbulent kinetic energy |
VGC | vortex generating column |
References
- Zhao, G.; Wang, X.; Negnevitsky, M. Connecting Battery Technologies for Electric Vehicles from Battery Materials to Management. iScience 2022, 25, 103744. [Google Scholar] [CrossRef]
- Jing, J.; Liu, Y.; Wu, J.; Huang, W.; Zuo, B. Research on power management and allowed propulsion control in pure electric vehicle. Energy Rep. 2022, 8, 178–187. [Google Scholar] [CrossRef]
- Saechan, P.; Dhuchakallaya, I. Numerical study on the air-cooled thermal management of Lithium-ion battery pack for electrical vehicles. Energy Rep. 2022, 8, 1264–1270. [Google Scholar] [CrossRef]
- Allen, J. Review of polymers in the prevention of thermal runaway in lithium-ion batteries. Energy Rep. 2020, 6, 217–224. [Google Scholar] [CrossRef]
- Lyu, Y.; Siddique, A.; Majid, S.H.; Biglarbegian, M.; Gadsden, S.; Mahmud, S. Electric vehicle battery thermal management system with thermoelectric cooling. Energy Rep. 2019, 5, 822–827. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Negnevitsky, M.; Li, C. An Up-to-date Review on the Design Improvement and Optimization of the Liquid-Cooling Battery Thermal Management System for Electric Vehicles. Appl. Therm. Eng. 2022, 219 Pt B, 119626. [Google Scholar] [CrossRef]
- Liu, W.; Placke, T.; Chau, K. Overview of batteries and battery management for electric vehicles. Energy Rep. 2022, 8, 4058–4084. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, C.; Jiaqiang, E.; Zhu, H.; Chen, J.; Wen, M.; Yin, H. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review. Appl. Therm. Eng. 2018, 142, 10–29. [Google Scholar] [CrossRef]
- Pulugundla, G.; Dubey, P.; Srouji, A. Time-Accurate CFD Analysis of Liquid Cold Plates for Efficient Thermal Performance of Electric Vehicle Li-ion Battery Modules; 0148-7191; Technical Paper; SAE: Warrendale, PA, USA, 2019. [Google Scholar]
- Bakhshi, S.; Dubey, P.; Srouji, A.; Wu, Z. Comparison of different liquid cooling configurations for effective thermal management of li-ion pouch cell for automotive applications. In Proceedings of the Heat Transfer Summer Conference, Online, 13–15 July 2020; p. V001T011A011. [Google Scholar]
- Dubey, P.; Pulugundla, G.; Srouji, A. Direct comparison of immersion and cold-plate based cooling for automotive Li-ion battery modules. Energies 2021, 14, 1259. [Google Scholar] [CrossRef]
- Buidin, T.I.C.; Mariasiu, F. Battery thermal management systems: Current status and design approach of cooling technologies. Energies 2021, 14, 4879. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Negnevitsky, M.; Zhang, H. A design optimization study of an air-cooling battery thermal management system for electric vehicles. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022, 09544089221116418. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Negnevitsky, M.; Zhang, H. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. J. Power Sources 2021, 501, 230001. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Negnevitsky, M. A Study of Variable Cell Spacings to the Heat Transfer Efficiency of Air-Cooling Battery Thermal Management System. Appl. Sci. 2021, 11, 11155. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Negnevitsky, M.; Zhang, H.; Li, C. Performance Improvement of a Novel Trapezoid Air-Cooling Battery Thermal Management System for Electric Vehicles. Sustainability 2022, 14, 4975. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J. Design a J-type air-based battery thermal management system through surrogate-based optimization. Appl. Energy 2019, 252, 113426. [Google Scholar] [CrossRef]
- Li, X.; He, F.; Zhang, G.; Huang, Q.; Zhou, D. Experiment and simulation for pouch battery with silica cooling plates and copper mesh based air cooling thermal management system. Appl. Therm. Eng. 2019, 146, 866–880. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, H.; Xu, X.; Wang, X. Numerical analysis and surrogate model optimization of air-cooled battery modules using double-layer heat spreading plates. Int. J. Heat Mass Transf. 2021, 176, 121380. [Google Scholar] [CrossRef]
- Chomdee, S.; Kiatsiriroat, T. Enhancement of air cooling in staggered array of electronic modules by integrating delta winglet vortex generators. Int. Commun. Heat Mass Transf. 2006, 33, 618–626. [Google Scholar] [CrossRef]
- Ye, Y.; Saw, L.H.; Shi, Y.; Tay, A.A. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Appl. Therm. Eng. 2015, 86, 281–291. [Google Scholar] [CrossRef]
- Mondal, B.; Lopez, C.F.; Verma, A.; Mukherjee, P.P. Vortex generators for active thermal management in lithium-ion battery systems. Int. J. Heat Mass Transf. 2018, 124, 800–815. [Google Scholar] [CrossRef]
- Xie, J.; Xie, Y.; Yuan, C. Numerical study of heat transfer enhancement using vortex generator for thermal management of lithium ion battery. Int. J. Heat Mass Transf. 2019, 129, 1184–1193. [Google Scholar] [CrossRef]
- Shahid, S.; Agelin-Chaab, M. Development of hybrid thermal management techniques for battery packs. Appl. Therm. Eng. 2021, 186, 116542. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Tao, Y.; Ye, J.; Pan, A.; Li, X.; Liao, Q.; Wang, Z. Performance assessment of retired EV battery modules for echelon use. Energy 2020, 193, 116555. [Google Scholar] [CrossRef]
- Tiedemann, W.; Newman, J. Mathematical modeling of the lead-acid cell. In Proceedings of the Symposium on Battery Design and Optimization, Seattle, WA, USA; 1979; p. 79-1. [Google Scholar]
- Lee, K.-J.; Smith, K.; Pesaran, A.; Kim, G.-H. Three dimensional thermal-, electrical-, and electrochemical-coupled model for cylindrical wound large format lithium-ion batteries. J. Power Sources 2013, 241, 20–32. [Google Scholar] [CrossRef]
- Pinto, A.M.; Oliveira, V.S.; Falcão, D.S.C. Direct Alcohol Fuel Cells for Portable Applications: Fundamentals, Engineering and Advances; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Huang, R.; Li, Z.; Hong, W.; Wu, Q.; Yu, X. Experimental and numerical study of PCM thermophysical parameters on lithium-ion battery thermal management. Energy Rep. 2020, 6, 8–19. [Google Scholar] [CrossRef]
- Liang, G.; Li, J.; He, J.; Tian, J.; Chen, X.; Chen, L. Numerical investigation on a unitization-based thermal management for cylindrical lithium-ion batteries. Energy Rep. 2022, 8, 4608–4621. [Google Scholar] [CrossRef]
- Pesaran, A.A. Battery thermal models for hybrid vehicle simulations. J. Power Sources 2002, 110, 377–382. [Google Scholar] [CrossRef]
- Zhao, C.; Cao, W.; Dong, T.; Jiang, F. Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow. Int. J. Heat Mass Transf. 2018, 120, 751–762. [Google Scholar] [CrossRef]
- Patil, M.S.; Seo, J.-H.; Panchal, S.; Jee, S.-W.; Lee, M.-Y. Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate. Int. J. Heat Mass Transf. 2020, 155, 119728. [Google Scholar] [CrossRef]
- Shang, Z.; Qi, H.; Liu, X.; Ouyang, C.; Wang, Y. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system. Int. J. Heat Mass Transf. 2019, 130, 33–41. [Google Scholar] [CrossRef]
- Choudhari, V.; Dhoble, A.; Panchal, S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization. Int. J. Heat Mass Transf. 2020, 163, 120434. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Končar, B.; Košmrlj, S. Simulation of turbulent flow in MATIS-H rod bundle with split-type mixing vanes. Nucl. Eng. Des. 2018, 327, 112–126. [Google Scholar] [CrossRef]
- Tanov, S.; Pachano, L.; Andersson, Ö.; Wang, Z.; Richter, M.; Pastor, J.V.; García-Oliver, J.M.; García, A. Influence of spatial and temporal distribution of Turbulent Kinetic Energy on heat transfer coefficient in a light duty CI engine operating with Partially Premixed Combustion. Appl. Therm. Eng. 2018, 129, 31–40. [Google Scholar] [CrossRef]
- Wang, G.; Yang, F.; Wu, K.; Ma, Y.; Peng, C.; Liu, T.; Wang, L.-P. Estimation of the dissipation rate of turbulent kinetic energy: A review. Chem. Eng. Sci. 2021, 229, 116133. [Google Scholar] [CrossRef]
- Ching, D.S.; Banko, A.J.; Milani, P.M.; Eaton, J.K. Machine learning modeling for RANS turbulent kinetic energy transport in 3D separated flows. In Proceedings of the 11th International Symposium on Turbulence and Shear Flow Phenomena, Southampton, UK, 30 July–2 August 2019. [Google Scholar]
- Kim, D.J.; Jeong, S.; Park, T.; Kim, D. Impinging sweeping jet and convective heat transfer on curved surfaces. Int. J. Heat Fluid Flow 2019, 79, 108458. [Google Scholar] [CrossRef]
- Ajarostaghi, S.S.M.; Zaboli, M.; Nourbakhsh, M. Numerical evaluation of turbulence heat transfer and fluid flow of hybrid nanofluids in a pipe with innovative vortex generator. J. Therm. Anal. Calorim. 2021, 143, 1583–1597. [Google Scholar] [CrossRef]
- Bazdar, H.; Toghraie, D.; Pourfattah, F.; Akbari, O.A.; Nguyen, H.M.; Asadi, A. Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths. J. Therm. Anal. Calorim. 2020, 139, 2365–2380. [Google Scholar] [CrossRef]
- Maithani, R.; Kumar, A.; Gholamali Zadeh, P.; Safaei, M.R.; Gholamalizadeh, E. Empirical correlations development for heat transfer and friction factor of a solar rectangular air passage with spherical-shaped turbulence promoters. J. Therm. Anal. Calorim. 2020, 139, 1195–1212. [Google Scholar] [CrossRef]
- Kumar, A.; Layek, A. Nusselt number and friction factor correlation of solar air heater having twisted-rib roughness on absorber plate. Renew. Energy 2019, 130, 687–699. [Google Scholar] [CrossRef]
- Acır, A.; Ata, İ. A study of heat transfer enhancement in a new solar air heater having circular type turbulators. J. Energy Inst. 2016, 89, 606–616. [Google Scholar] [CrossRef]
- Taler, D. Mathematical modeling and experimental study of heat transfer in a low-duty air-cooled heat exchanger. Energy Convers. Manag. 2018, 159, 232–243. [Google Scholar] [CrossRef]
- Meyers, L.M.; Msomi, V. Hydrodynamic analysis of an underwater glider wing using ANSYS fluent as an investigation tool. Mater. Today Proc. 2021, 45, 5456–5461. [Google Scholar] [CrossRef]
- Fan, Y.; Bao, Y.; Ling, C.; Chu, Y.; Tan, X.; Yang, S. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Appl. Therm. Eng. 2019, 155, 96–109. [Google Scholar] [CrossRef]
Thermodynamic Properties | Flow Rate (L/s) | Conventional | Design 1 | Design 2 | Design 3 | Design 4 |
---|---|---|---|---|---|---|
Average Turbulent Kinetic Energy (J/kg) | 11.88 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
23.76 | 0.20 | 0.21 | 0.20 | 0.20 | 0.20 | |
35.64 | 0.44 | 0.46 | 0.45 | 0.46 | 0.44 | |
47.52 | 0.76 | 0.81 | 0.76 | 0.80 | 0.79 | |
59.40 | 1.16 | 1.24 | 1.21 | 1.23 | 1.21 | |
Average Reynolds Number | 11.88 | 68.94 | 68.74 | 66.57 | 62.58 | 68.14 |
23.76 | 135.44 | 138.24 | 132.12 | 124.56 | 134.71 | |
35.64 | 205.36 | 204.87 | 200.06 | 189.14 | 199.90 | |
47.52 | 272.22 | 272.51 | 258.73 | 249.13 | 268.54 | |
59.40 | 336.25 | 337.85 | 325.12 | 308.42 | 333.47 | |
Average Nusselt Number | 11.88 | 127.44 | 129.47 | 129.53 | 125.90 | 122.79 |
23.76 | 179.07 | 183.52 | 180.33 | 177.33 | 172.53 | |
35.64 | 225.37 | 228.94 | 226.29 | 223.48 | 216.28 | |
47.52 | 265.13 | 268.94 | 265.54 | 263.89 | 255.35 | |
59.40 | 300.12 | 304.44 | 301.12 | 298.81 | 289.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Wang, X.; Negnevitsky, M.; Li, C.; Zhang, H.; Cheng, Y. A High-Performance Vortex Adjustment Design for an Air-Cooling Battery Thermal Management System in Electric Vehicles. Batteries 2023, 9, 208. https://doi.org/10.3390/batteries9040208
Zhao G, Wang X, Negnevitsky M, Li C, Zhang H, Cheng Y. A High-Performance Vortex Adjustment Design for an Air-Cooling Battery Thermal Management System in Electric Vehicles. Batteries. 2023; 9(4):208. https://doi.org/10.3390/batteries9040208
Chicago/Turabian StyleZhao, Gang, Xiaolin Wang, Michael Negnevitsky, Chengjiang Li, Hengyun Zhang, and Yingyao Cheng. 2023. "A High-Performance Vortex Adjustment Design for an Air-Cooling Battery Thermal Management System in Electric Vehicles" Batteries 9, no. 4: 208. https://doi.org/10.3390/batteries9040208
APA StyleZhao, G., Wang, X., Negnevitsky, M., Li, C., Zhang, H., & Cheng, Y. (2023). A High-Performance Vortex Adjustment Design for an Air-Cooling Battery Thermal Management System in Electric Vehicles. Batteries, 9(4), 208. https://doi.org/10.3390/batteries9040208