Safety Issues of Layered Nickel-Based Cathode Materials for Lithium-Ion Batteries: Origin, Strategies and Prospects
Abstract
:1. Introduction
2. Thermal Stability of Layered LTMO2
2.1. Composition
2.2. Structure and Morphology
2.3. Chemical Activity
3. Safety Strategies for Ni-Based Cathode Materials
3.1. Elements Doping
3.2. Surface Coating
3.3. Particle Microstructure Design
3.4. Synergistic Effect of Multiple Modifications
3.5. Other Strategies for LiTMO2 Battery Safety
4. Outlook and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Viswanathan, V.; Epstein, A.H.; Chiang, Y.-M.; Takeuchi, E.; Bradley, M.; Langford, J.; Winter, M. The Challenges and Opportunities of Battery-Powered Flight. Nature 2022, 601, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Yao, J.; Jin, C.Y.; Feng, X.N.; Wang, H.B.; Xu, C.S.; Zheng, Y.J. A Review of Lithium-Ion Battery Failure Hazards: Test Standards, Accident Analysis, and Safety Suggestions. Batteries 2022, 8, 248–275. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Lu, Y.C. A Retrospective on Lithium-Ion Batteries. Nat. Commun. 2020, 11, 2499. [Google Scholar] [CrossRef]
- Jung, W.W.; Jeong, J.; Kim, J.; Chang, D. Optimization of Hybrid Off-Grid System Consisting of Renewables and Li-Ion Batteries. J. Power Sources 2020, 451, 227754. [Google Scholar] [CrossRef]
- Wentker, M.; Greenwood, M.; Leker, J. A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials. Energies 2019, 12, 504. [Google Scholar] [CrossRef] [Green Version]
- Julien, C.M.; Mauger, A. NCA, NCM811, and the Route to Ni-richer Lithium-Ion Batteries. Energies 2020, 13, 6363. [Google Scholar] [CrossRef]
- Hu, G.; Huang, P.; Bai, Z.; Wang, Q.; Qi, K. Comprehensively Analysis the Failure Evolution and Safety Evaluation of Automotive Lithium Ion Battery. ETransportation 2021, 10, 100140. [Google Scholar] [CrossRef]
- Sun, P.; Bisschop, R.; Niu, H.; Huang, X. A Review of Battery Fires in Electric Vehicles. Fire Technol. 2020, 56, 1361–1410. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, T.; Zhou, Q.; Sun, Y.; Qu, M.; Zeng, Z.; Ju, Y.; Li, L.; Wang, K.; Chi, F. A Review of Technologies and Applications on Versatile Energy Storage Systems. Renew. Sustain. Energy Rev. 2021, 148, 111263. [Google Scholar] [CrossRef]
- Chombo, P.V.; Laoonual, Y. A Review of Safety Strategies of a Li-Ion Battery. J. Power Sources 2020, 478, 228649. [Google Scholar] [CrossRef]
- Feng, X.N.; Ren, D.; He, X.; Ouyang, M.G. Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 2020, 4, 743–770. [Google Scholar] [CrossRef]
- Feng, X.N.; Zheng, S.Q.; He, X.M.; Wang, L.; Wang, Y.; Ren, D.S.; Ouyang, M.G. Time Sequence Map for Interpreting the Thermal Runaway Mechanism of Lithium-Ion Batteries with LiNixCoyMnzO2 Cathode. Front. Energy Res. 2018, 6, 126. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Q.; Kang, Y.Q.; Zhao, Y.; Wang, L.; Liu, J.L.; Li, Y.X.; Liang, Z.; He, X.M.; Li, X.; Tavajohi, N.; et al. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Liang, C.; Jiang, L.H.; Wei, Z.S.; Zhang, W.H.; Wang, Q.S.; Sun, J.H. Insight into the Structural Evolution and Thermal Behavior of LiNi0.8Co0.1Mn0.1O2 Cathode Under Deep Charge. J. Energy Chem. 2022, 65, 424–432. [Google Scholar] [CrossRef]
- Yang, M.J.; Ye, Y.J.; Yang, A.J.; Jiang, Z.Y.; Wang, X.H.; Yuan, H.; Rong, M.Z. Comparative Study on Aging and Thermal Runaway of Commercial LiFePO4/Graphite Battery undergoing Slight Overcharge Cycling. J. Energy Chem. 2022, 50, 104691. [Google Scholar] [CrossRef]
- Zhou, Z.Z.; Zhou, X.D.; Cao, B.; Yang, L.Z.; Liew, K.M. Investigating the Relationship between Heating Temperature and Thermal Runaway of Prismatic Lithium-Ion Battery with LiFePO4 as Cathode. Energy 2022, 256, 124714. [Google Scholar] [CrossRef]
- Wang, Z.P.; Yuan, J.; Zhu, X.Q.; Wang, H.; Huang, L.; Wang, Y.T.; Xu, S.Q. Overcharge-to-Thermal-Runaway Behavior and Safety Assessment of Commercial Lithium-Ion Cells with Different Cathode Materials: A Comparison Study. J. Energy Chem. 2021, 55, 484–498. [Google Scholar] [CrossRef]
- Feng, X.N.; Zheng, S.Q.; Ren, D.S.; He, X.M.; Wang, L.; Liu, X.; Li, M.G.; Ouyang, M.G. Key Characteristics for Thermal Runaway of Li-Ion Batteries. Energy Procedia 2019, 158, 4684–4689. [Google Scholar] [CrossRef]
- Lyu, Y.C.; Wu, X.; Wang, K.; Feng, Z.J.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R.M.; Xu, L.M.; Zhou, J.J.; et al. An Overview on the Advances of LiCoO2 Cathodes for Lithium-Ion Batteries. Adv. Energy Mater. 2021, 11, 2000982. [Google Scholar] [CrossRef]
- Zhang, J.N.; Li, Q.H.; Ouyang, C.; Yu, X.; Ge, M.; Huang, X.J.; Hu, E.; Ma, C.; Li, S.F.; Xiao, R.; et al. Trace Doping of Multiple Elements Enables Stable Battery Cycling of LiCoO2 at 4.6 V. Nat. Energy 2019, 4, 594–603. [Google Scholar] [CrossRef] [Green Version]
- Bianchini, M.; Roca-Ayats, M.; Hartmann, P.; Brezesinski, T.; Janek, J. There and Back Again-the Journey of LiNiO2 as a Cathode Active Material. Angew. Chem. Int. Ed. 2019, 58, 10434–10458. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.F.; Bao, J.J.; Du, Q.X.; Shao, Y.; Gao, M.H.; Zou, B.K.; Chen, C.H. Surface Surgery of the Nickel-Rich Cathode Material LiNi0.815Co0.15Al0.035O2: Toward a Complete and Ordered Surface Layered Structure and Better Electrochemical Properties. ACS Appl. Mater. Interfaces 2016, 8, 34879–34887. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.L.; Yu, A.S.; Lee, J.Y. Synthesis and Characterization of LiNi1−x−yCoxMnyO2 as the Cathode Materials of Secondary Lithium Batteries. J. Power Sources 1999, 81, 416–419. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, F.L.; Zhou, X.A.; Wang, P.; Wang, J.; Ding, H.; Dong, H.; Liang, W.B.; Zhang, N.S.; Li, S.Y. Which of the Nickel-Rich NCM and NCA is Structurally Superior as a Cathode Material for Lithium-Ion Batteries? J. Mater. Chem. A 2021, 9, 13540–13551. [Google Scholar] [CrossRef]
- Kim, U.H.; Kuo, L.Y.; Kaghazchi, P.; Yoon, C.S.; Sun, Y.K. Quaternary Layered Ni-Rich NCMA Cathode for Lithium-Ion Batteries. ACS Energy Lett. 2019, 4, 576–582. [Google Scholar] [CrossRef] [Green Version]
- Noh, H.J.; Youn, S.; Yoon, C.S.; Sun, Y.K. Comparison of the Structural and Electrochemical Properties of Layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-Ion Batteries. J. Power Sources 2013, 233, 121–130. [Google Scholar] [CrossRef]
- Bak, S.M.; Hu, E.; Zhou, Y.; Yu, X.; Senanayake, S.D.; Cho, S.J.; Kim, K.B.; Chung, K.Y.; Yang, X.Q.; Nam, K.W. Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy. ACS Appl. Mater. Interfaces 2014, 6, 22594–22601. [Google Scholar] [CrossRef]
- Dixit, M.; Markovsky, B.; Schipper, F.; Aurbach, D.; Major, D.T. Origin of Structural Degradation during Cycling and Low Thermal Stability of Ni-Rich Layered Transition Metal-Based Electrode Materials. J. Phys. Chem. C 2017, 121, 22628–22636. [Google Scholar] [CrossRef]
- Tuccillo, M.; Palumbo, O.; Pavone, M.; Muñoz-García, A.B.; Paolone, A.; Brutti, S. Analysis of the Phase Stability of LiMO2 Layered Oxides (M = Co, Mn, Ni). Crystals 2020, 10, 526. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, L.; Zhang, M.J.; Chen, Z.; Bai, J.; Amine, K.; Pan, F.; Wang, F. Insights into Li/Ni Ordering and Surface Reconstruction During Synthesis of Ni-Rich Layered Oxides. J. Mater. Chem. A 2019, 7, 513–519. [Google Scholar] [CrossRef]
- Liang, C.; Kong, F.; Longo, R.C.; Kc, S.; Kim, J.S.; Jeon, S.; Choi, S.; Cho, K. Unraveling the Origin of Instability in Ni-Rich LiNi1–2xCoxMnxO2 (NCM) Cathode Materials. J. Phys. Chem. C 2016, 120, 6383–6393. [Google Scholar] [CrossRef]
- Jamil, S.; Wang, G.; Yang, L.; Xie, X.; Cao, S.; Liu, H.; Chang, B.B.; Wang, X. Suppressing H2–H3 Phase Transition in High Ni–Low Co Layered Oxide Cathode Material by Dual Modification. J. Mater. Chem. A 2020, 8, 21306–21316. [Google Scholar] [CrossRef]
- Kuo, L.Y.; Guillon, O.; Kaghazchi, P. Origin of Structural Phase Transitions in Ni-Rich LixNi0.8Co0.1Mn0.1O2 with Lithiation/Delithiation: A First-Principles Study. ACS Sustain. Chem. Eng. 2021, 9, 7437–7446. [Google Scholar] [CrossRef]
- Wang, C.; Han, L.; Zhang, R.; Cheng, H.; Mu, L.; Kisslinger, K.; Zou, P.; Ren, Y.; Cao, P.; Lin, F.; et al. Resolving Atomic-Scale Phase Transformation and Oxygen Loss Mechanism in Ultrahigh-Nickel Layered Cathodes for Cobalt-Free Lithium-Ion Batteries. Matter 2021, 4, 2013–2026. [Google Scholar] [CrossRef]
- Bak, S.M.; Nam, K.W.; Chang, W.; Yu, X.; Hu, E.; Hwang, S.; Stach, E.A.; Kim, K.B.; Yang, X.Q. Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged LixNi0.8Co0.15Al0.05O2 Cathode Materials. Chem. Mater. 2013, 25, 337–351. [Google Scholar] [CrossRef]
- Ryu, H.H.; Park, K.J.; Yoon, C.S.; Sun, Y.K. Capacity Fading of Ni-Rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation? Chem. Mater. 2018, 30, 1155–1163. [Google Scholar] [CrossRef]
- Yin, S.; Deng, W.; Chen, J.; Gao, X.; Zou, G.; Hou, H.; Ji, X. Fundamental and Solutions of Microcrack in Ni-Rich Layered Oxide Cathode Materials of Lithium-Ion Batteries. Nano Energy 2021, 83, 105854. [Google Scholar] [CrossRef]
- Yan, P.; Zheng, J.; Gu, M.; Xiao, J.; Zhang, J.G.; Wang, C.M. Intragranular Cracking as a Critical Barrier for High-Voltage Usage of Layer-Structured Cathode for Lithium-Ion Batteries. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Besli, M.M.; Xia, S.; Kuppan, S.; Huang, Y.; Metzger, M.; Shukla, A.K.; Schneider, G.; Hellstrom, S.; Christensen, J.; Doeff, M.M.; et al. Mesoscale Chemomechanical Interplay of the LiNi0.8Co0.15Al0.05O2 Cathode in Solid-State Polymer Batteries. Chem. Mater. 2019, 31, 491–501. [Google Scholar] [CrossRef]
- Liu, T.; Yu, L.; Liu, J.; Lu, J.; Bi, X.; Dai, A.; Li, M.; Li, M.F.; Hu, Z.; Ma, L.; et al. Understanding Co Roles towards Developing Co-Free Ni-Rich Cathodes for Rechargeable Batteries. Nat. Energy 2021, 6, 277–286. [Google Scholar] [CrossRef]
- Kim, Y. Encapsulation of LiNi0.5Co0.2Mn0.3O2 with a Thin Inorganic Electrolyte Film to Reduce Gas Evolution in the Application of Lithium Ion Batteries. Phys. Chem. Chem. Phys. 2013, 15, 6400–6405. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Zhang, X.; Wei, P.; Sun, S.; Xu, Y.; Li, Q.; Fang, C.; Han, J.; Huang, Y. Tailoring Electrolyte Enables High-Voltage Ni-rich NCM Cathode Against Aggressive Cathode Chemistries for Li-Ion Batteries. Sci. Bull. 2022, 67, 2225–2234. [Google Scholar] [CrossRef] [PubMed]
- Renfrew, S.E.; McCloskey, B.D. Residual Lithium Carbonate Predominantly Accounts for First Cycle CO2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides. J. Am. Chem. Soc. 2017, 139, 17853–17860. [Google Scholar] [CrossRef]
- Kim, Y.; Park, H.; Warner, J.H.; Manthiram, A. Unraveling the Intricacies of Residual Lithium in High-Ni Cathodes for Lithium-Ion Batteries. ACS Energy Lett. 2021, 6, 941–948. [Google Scholar] [CrossRef]
- Wachs, S.J.; Behling, C.; Ranninger, J.; Möller, J.; Mayrhofer, K.J.; Berkes, B.B. Online Monitoring of Transition-Metal Dissolution from a High-Ni-Content Cathode Material. ACS Appl. Mater. Interfaces 2021, 13, 33075–33082. [Google Scholar] [CrossRef]
- Li, W. An Unpredictable Hazard in Lithium-Ion Batteries from Transition Metal Ions: Dissolution from Cathodes, Deposition on Anodes and Elimination Strategies. J. Electrochem. Soc. 2020, 167, 90514. [Google Scholar] [CrossRef]
- Jeong, M.; Kim, H.; Lee, W.; Ahn, S.J.; Lee, E.; Yoon, W.S. Stabilizing Effects of Al-Doping on Ni-Rich LiNi0.80Co0.15Mn0.05O2 Cathode for Li Rechargeable Batteries. J. Power Sources 2020, 474, 228592. [Google Scholar] [CrossRef]
- Levartovsky, Y.; Wu, X.; Erk, C.; Maiti, S.; Grinblat, J.; Talianker, M.; Aurbach, D. Enhancement of Structural, Electrochemical, and Thermal Properties of Ni-Rich LiNi0.85Co0.1Mn0.05O2 Cathode Materials for Li-Ion Batteries by Al and Ti Doping. Batter. Supercaps 2021, 4, 221–231. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, K.; Li, N.; Deng, X.; Jiao, J.; Zhao, E.; Yin, W.; Wang, B.; Zhao, J.; Xiao, X. Enhancing Thermal and High-Voltage Cycling Stability of Ni-Rich Layered Cathodes through a Ti-Doping-Induced Surface-Disordered Structure. ACS Appl. Energy Mater. 2022, 5, 12673–12681. [Google Scholar] [CrossRef]
- Lipson, A.L.; Durham, J.L.; LeResche, M.; Abu-Baker, I.; Murphy, M.J.; Fister, T.T.; Wang, L.; Zhou, F.; Liu, L.; Kim, K.; et al. Improving the Thermal Stability of NMC 622 Li-Ion Battery Cathodes through Doping during Coprecipitation. ACS Appl. Mater. Interfaces 2020, 12, 18512–18518. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.H.; Park, K.J.; Yoon, D.R.; Aishova, A.; Yoon, C.S.; Sun, Y.K. Li[Ni0.9Co0.09W0.01]O2: A New Type of Layered Oxide Cathode with High Cycling Stability. Adv. Energy Mater. 2019, 9, 1902698. [Google Scholar] [CrossRef] [Green Version]
- Kim, U.H.; Jun, D.W.; Park, K.J.; Zhang, Q.; Kaghazchi, P.; Aurbach, D.; Major, D.T.; Goobes, G.; Dixit, M.; Leifer, N.; et al. Pushing the Limit of Layered Transition Metal Oxide Cathodes for High-Energy Density Rechargeable Li Ion Batteries. Energy Environ. Sci. 2018, 11, 1271–1279. [Google Scholar] [CrossRef]
- Sim, S.J.; Lee, S.H.; Jin, B.S.; Kim, H.S. Improving the Electrochemical Performances using a V-Doped Ni-Rich NCM Cathode. Sci. Rep. 2019, 9, 8952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Susai, F.A.; Kovacheva, D.; Chakraborty, A.; Kravchuk, T.; Ravikumar, R.; Talianker, M.; Grinblat, J.; Burstein, L.; Kauffmann, Y.; Major, D.T.; et al. Improving Performance of LiNi0.8Co0.1Mn0.1O2 Cathode Materials for Lithium-Ion Batteries by Doping with Molybdenum-Ions: Theoretical and Experimental Studies. ACS Appl. Energy Mater. 2019, 2, 4521–4534. [Google Scholar] [CrossRef]
- Chen, Y.H.; Zhang, J.; Li, Y.; Zhang, Y.F.; Huang, S.P.; Lin, W.; Chen, W.K. Effects of Doping High-Valence Transition Metal (V, Nb and Zr) Ions on the Structure and Electrochemical Performance of LIB Cathode Material LiNi0.8Co0.1Mn0.1O2. Phys. Chem. Chem. Phys. 2021, 23, 11528–11537. [Google Scholar] [CrossRef] [PubMed]
- Min, K.; Seo, S.W.; Song, Y.Y.; Lee, H.S.; Cho, E. A First-Principles Study of the Preventive Effects of Al and Mg Doping on the Degradation in LiNi0.8Co0.1Mn0.1O2 Cathode Materials. Phys. Chem. Chem. Phys. 2017, 19, 1762–1769. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yao, X.; Zhang, J.; Wang, S.; Zhang, D.; Yin, D.; Wang, L.; Zhang, Y.; Hu, J.; Cheng, Y.; et al. Sodium Doping Derived Electromagnetic Center of Lithium Layered Oxide Cathode Materials with Enhanced Lithium Storage. Nano Energy 2022, 94, 106900. [Google Scholar] [CrossRef]
- Feng, L.; Liu, Y.; Wu, L.; Qin, W.; Yang, Z. Enhancement on Inter-Layer Stability on Na-Doped LiNi0.6Co0.2Mn0.2O2 Cathode Material. Powder Technol. 2021, 388, 166–175. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Sun, Y.Y.; Liu, S.; Li, G.R.; Gao, X.P. Na-doped LiNi0.8Co0.15Al0.05O2 with Excellent Stability of Both Capacity and Potential as Cathode Materials for Li-Ion Batteries. ACS Appl. Energy Mater. 2018, 1, 3881–3889. [Google Scholar] [CrossRef]
- Xie, H.; Du, K.; Hu, G.; Peng, Z.; Cao, Y. The Role of Sodium in LiNi0.8Co0.15Al0.05O2 Cathode Material and its Electrochemical Behaviors. J. Phys. Chem. C 2016, 120, 3235–3241. [Google Scholar] [CrossRef]
- Li, C.F.; Chen, L.D.; Wu, L.; Liu, Y.; Hu, Z.Y.; Cui, W.J.; Dong, W.D.; Liu, X.; Yu, W.B.; Li, Y.; et al. Directly Revealing the Structure-Property Correlation in Na+-Doped Cathode Materials. Appl. Surf. Sci. 2023, 612, 155810. [Google Scholar] [CrossRef]
- Gomez-Martin, A.; Reissig, F.; Frankenstein, L.; Heidbüchel, M.; Winter, M.; Placke, T.; Schmuch, R. Magnesium Substitution in Ni-Rich NMC Layered Cathodes for High-Energy Lithium Ion Batteries. Adv. Energy Mater. 2022, 12, 2103045. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Wang, L.; Wang, K.; Wu, X.; Zhou, P.; Miao, Z.; Zhou, J.; Zhao, Y.; Zhuo, S. Stabilizing the High-Voltage Cycle Performance of LiNi0.8Co0.1Mn0.1O2 Cathode Material by Mg Doping. J. Power Sources 2019, 438, 227017. [Google Scholar] [CrossRef]
- Song, J.H.; Kapylou, A.; Choi, H.S.; Yu, B.Y.; Matulevich, E.; Kang, S.H. Suppression of Irreversible Capacity Loss in Li-Rich Layered Oxide by Fluorine Doping. J. Power Sources 2016, 313, 65–72. [Google Scholar] [CrossRef]
- Shin, H.S.; Park, S.H.; Yoon, C.S.; Sun, Y.K. Effect of Fluorine on the Electrochemical Properties of Layered Li[Ni0.43Co0.22Mn0.35]O2 Cathode Materials via a Carbonate Process. Electrochem. Solid-State Lett. 2005, 8, A559. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.B.; Park, D.H.; Park, K.W. Fluorine-Doped LiNi0.8Mn0.1Co0.1O2 Cathode for High-Performance Lithium-Ion Batteries. Energies 2020, 13, 4808. [Google Scholar] [CrossRef]
- Woo, S.U.; Park, B.C.; Yoon, C.S.; Myung, S.T.; Prakash, J.; Sun, Y.K. Improvement of Electrochemical Performances of Li[Ni0.8Co0.1Mn0.1]O2 Cathode Materials by Fluorine Substitution. J. Electrochem. Soc. 2007, 154, A649. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, G.; Tang, W.; Xiao, Y.; Yan, K. Enhanced Rate Performance and High Potential as well as Decreased Strain of LiNi0.6Co0.2Mn0.2O2 by Facile Fluorine Modification. Electrochim. Acta 2018, 261, 565–577. [Google Scholar] [CrossRef]
- Binder, J.O.; Culver, S.P.; Pinedo, R.; Weber, D.A.; Friedrich, M.S.; Gries, K.I.; Volz, K.; Zeier, W.G.; Janek, J. Investigation of Fluorine and Nitrogen as Anionic Dopants in Nickel-Rich Cathode Materials for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 44452–44462. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Q.; Dai, S.; Li, W.; Liu, X.; Ding, F.; Zhang, J. Synergistic Effect of F–Doping and LiF Coating on Improving the High-Voltage Cycling Stability and Rate Capacity of LiNi0.5Co0.2Mn0.3O2 Cathode Materials for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 34153–34162. [Google Scholar] [CrossRef] [PubMed]
- Breddemann, U.; Krossing, I. Review on Synthesis, Characterization, and Electrochemical Properties of Fluorinated Nickel-Cobalt-Manganese Cathode Active Materials for Lithium-Ion Batteries. ChemElectroChem 2020, 7, 1389–1430. [Google Scholar] [CrossRef]
- Si, Z.; Shi, B.; Huang, J.; Yu, Y.; Han, Y.; Zhang, J.; Li, W. Titanium and Fluorine Synergetic Modification Improves the Electrochemical Performance of Li(Ni0.8Co0.1Mn0.1)O2. J. Mater. Chem. A 2021, 9, 9354–9363. [Google Scholar] [CrossRef]
- Zhu, F.; Shi, Y.; Hu, G.; Peng, Z.; Cao, Y.; Sun, Q.; Xue, Z.; Zhang, Y.; Du, K. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 via titanium and boron co-doping. Ceram. Int. 2021, 47, 3070–3078. [Google Scholar] [CrossRef]
- Wang, J.; Nie, Y.; Miao, C.; Tan, Y.; Wen, M.; Xiao, W. Enhanced Electrochemical Properties of Ni-Rich Layered Cathode Materials via Mg2+ and Ti4+ Co-Doping for Lithium-Ion Batteries. J. Colloid Interface Sci. 2021, 601, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Hai, C.; Shen, Y.; Zeng, J.; Zhang, L.; Li, X.; Ren, X.; Dong, S.; Zhang, G.; Sun, C.; et al. Improved Lithium Ion Diffusion and Stability of a LiNi0.8Co0.1Mn0.1O2 Cathode via the Synergistic Effect of Na and Mg Dual-Metal Cations for Lithium Ion Battery. J. Electrochem. Soc. 2020, 167, 020522. [Google Scholar]
- Jamil, S.; Yousaf, A.B.; Yoon, S.H.; Han, D.S.; Yang, L.; Kasak, P.; Wang, X. Dual Cationic Modified High Ni-Low Co Layered Oxide Cathode with a Heteroepitaxial Interface for High Energy-Density Lithium-Ion Batteries. Chem. Eng. J. 2021, 416, 129118. [Google Scholar] [CrossRef]
- Luo, Z.; Hu, G.; Wang, W.; Peng, Z.; Fang, Z.; Cao, Y.; Huang, J.; Du, K. Enhancing Structural Stability and Electrochemical Properties of Co-Less Ni-Rich Layer Cathode Materials by Fluorine and Niobium Co-Doping. ACS Appl. Energy Mater. 2022, 5, 10927–10939. [Google Scholar] [CrossRef]
- Chen, Z.; Gong, X.; Zhu, H.; Cao, K.; Liu, Q.; Liu, J.; Li, L.; Duan, J. High performance and structural stability of K and Cl co-doped LiNi0.5Co0.2Mn0.3O2 cathode materials in 4.6 voltage. Front. Chem. 2019, 6, 643. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Huang, H.; Tong, J.; Li, W.; Liu, X.; Zhang, H.; Huang, H.; Zhou, W. Recent Progress on the Modification of High Nickel Content NCM: Coating, Doping, and Single Crystallization. Interdiscip. Mater. 2022, 1, 330–353. [Google Scholar] [CrossRef]
- Cao, Z.; Li, Y.; Shi, M.; Zhu, G.; Zhang, R.; Li, X.; Yue, H.; Yang, S. Improvement of the Cycling Performance and Thermal Stability of Lithium-Ion Batteries by Coating Cathode Materials with Al2O3 Nano Layer. J. Electrochem. Soc. 2017, 164, A475. [Google Scholar] [CrossRef]
- Lee, Y.S.; Shin, W.K.; Kannan, A.G.; Koo, S.M.; Kim, D.W. Improvement of the Cycling Performance and Thermal Stability of Lithium-Ion Cells by Double-Layer Coating of Cathode Materials with Al2O3 Nanoparticles and Conductive Polymer. ACS Appl. Mater. Interfaces 2015, 7, 13944–13951. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, M.; Qian, D.; Meng, Y.S. Ultrathin Al2O3 Coatings for Improved Cycling Performance and Thermal Stability of LiNi0.5Co0.2Mn0.3O2 Cathode Material. Electrochim. Acta 2016, 203, 154–161. [Google Scholar] [CrossRef]
- Wang, L.; Su, Q.; Shi, W.; Wang, C.; Li, H.; Wang, Y.; Du, G.; Zhang, M.; Zhao, W.; Ding, S.; et al. Optimized Structure Stability and Cycling Performance of LiNi0.8Co0.1Mn0.1O2 through homogeneous nano-thickness Al2O3 coating. Electrochim. Acta 2022, 435, 141411. [Google Scholar] [CrossRef]
- Fan, Q.; Lin, K.; Yang, S.; Guan, S.; Chen, J.; Feng, S.; Liu, J.; Liu, L.; Li, J.; Shi, Z. Constructing Effective TiO2 Nano-Coating for High-Voltage Ni-Rich Cathode Materials for Lithium Ion Batteries by Precise Kinetic Control. J. Power Sources 2020, 477, 228745. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Ren, D.; Hsu, H.; Xu, G.L.; Hou, J.; Wang, L.; Feng, X.; Lu, L.; Xu, W.; et al. Toward a High-Voltage Fast-Charging Pouch Cell with TiO2 Cathode Coating and Enhanced Battery Safety. Nano Energy 2020, 71, 104643. [Google Scholar] [CrossRef]
- Wang, W.; Wu, L.; Li, Z.; Huang, K.; Jiang, J.; Chen, Z.; Qi, X.; Dou, H.; Zhang, X. In Situ Tuning Residual Lithium Compounds and Constructing TiO2 Coating for Surface Modification of a Nickel-Rich Cathode toward High-Energy Lithium-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 12423–12432. [Google Scholar] [CrossRef]
- Hwang, D.Y.; Sim, S.J.; Jin, B.S.; Kim, H.S.; Lee, S.H. Suppressed microcracking and F penetration of ni-rich layered cathode via the combined effects of titanium dioxide doping and coating. ACS Appl. Energy Mater. 2021, 4, 1743–1751. [Google Scholar] [CrossRef]
- Khalili Azar, M.; Razmjoo Khollari, M.A.; Esmaeili, M.; Heidari, E.; Hosseini-Hosseinabad, S.M.; Siavash Moakhar, R.; Dolati, A.; Ramakrishna, S. Enhanced Electrochemical Performance and Thermal Stability of ZrO2-and rGO–ZrO2-Coated Li[Ni0.8Co0.1Mn0.1]O2 Cathode Material for Li-Ion Batteries. ACS Appl. Energy Mater. 2020, 4, 934–945. [Google Scholar] [CrossRef]
- Ma, F.; Wu, Y.; Wei, G.; Qiu, S.; Qu, J. Enhanced Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Cathode via Wet-Chemical Coating of MgO. J. Solid State Electrochem. 2019, 23, 2213–2224. [Google Scholar] [CrossRef]
- Sharifi-Asl, S.; Lu, J.; Amine, K.; Shahbazian-Yassar, R. Oxygen Release Degradation in Li-Ion Battery Cathode Materials: Mechanisms and Mitigating Approaches. Adv. Energy Mater. 2019, 9, 1900551. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Xue, B.; Wu, X.; Li, L.; Guo, Y.; Zhang, L. Synergistic Modification of Ni-Rich Full Concentration Gradient Materials with Enhanced Thermal Stability. Chem. Eng. J. 2023, 451, 138518. [Google Scholar] [CrossRef]
- Li, W.; Yang, L.; Li, Y.; Chen, Y.; Guo, J.; Zhu, J.; Pan, H.; Xi, X. Ultra-Thin AlPO4 Layer Coated LiNi0.7Co0.15Mn0.15O2 Cathodes with Enhanced High-Voltage and High-Temperature Performance for Lithium-Ion Half/Full Batteries. Front. Chem. 2020, 8, 597. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X.; Wang, L.; Zhang, D.; Bao, D.; Yin, D.; Wang, L.; Cheng, Y.; Huang, G. A Universal Multifunctional Rare Earth Oxide Coating to Stabilize High-Voltage Lithium Layered Oxide Cathodes. Energy Storage Mater. 2023, 56, 155–164. [Google Scholar] [CrossRef]
- Chen, Z.; Kim, G.T.; Guang, Y.; Bresser, D.; Diemant, T.; Huang, Y.; Copley, M.; Behm, R.J.; Passerini, S.; Shen, Z. Manganese Phosphate Coated Li[Ni0.6Co0.2Mn0.2]O2 Cathode Material: Towards Superior Cycling Stability at Elevated Temperature and High Voltage. J. Power Sources 2018, 402, 263–271. [Google Scholar] [CrossRef]
- He, X.; Xu, X.; Wang, L.; Du, C.; Cheng, X.; Zuo, P.; Ma, Y.; Yin, G. Enhanced Electrochemical Performance of LiNi0.8Co0.15Al0.05O2 Cathode Material via Li2TiO3 Nanoparticles Coating. J. Electrochem. Soc. 2019, 166, A143. [Google Scholar] [CrossRef]
- Yang, G.; Pan, K.; Lai, F.; Wang, Z.; Chu, Y.; Yang, S.; Han, J.; Wang, H.; Zhang, X.; Li, Q. Integrated Co-Modification of PO43− Polyanion Doping and Li2TiO3 Coating for Ni-Rich Layered LiNi0.6Co0.2Mn0.2O2 Cathode Material of Lithium-Ion Batteries. Chem. Eng. J. 2021, 421, 129964. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.; Chen, X.; Yang, X.; Xiang, F.; Lu, W. Enhancing the Stabilities and Electrochemical Performances of LiNi0.5Co0.2Mn0.3O2 Cathode Material by Simultaneous LiAlO2 Coating and Al Doping. Electrochim. Acta 2021, 376, 138038. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Gao, R.; Hu, Z.; Liu, X. High Rate Capability and Excellent Thermal Stability of Li+-Conductive Li2ZrO3-Coated LiNi1/3Co1/3Mn1/3O2 via a Synchronous Lithiation Strategy. J. Phys. Chem. C 2015, 119, 20350–20356. [Google Scholar] [CrossRef]
- Gan, Q.; Qin, N.; Wang, Z.; Li, Z.; Zhu, Y.; Li, Y.; Gu, S.; Yuan, H.; Luo, W.; Lu, L.; et al. Revealing Mechanism of Li3PO4 Coating Suppressed Surface Oxygen Release for Commercial Ni-Rich Layered Cathodes. ACS Appl. Energy Mater. 2020, 3, 7445–7455. [Google Scholar] [CrossRef]
- Tang, Z.F.; Wu, R.; Huang, P.F.; Wang, Q.S.; Chen, C.H. Improving the Electrochemical Performance of Ni-Rich Cathode Material LiNi0.815Co0.15Al0.035O2 by Removing the Lithium Residues and Forming Li3PO4 Coating Layer. J. Alloys Compd. 2017, 693, 1157–1163. [Google Scholar]
- Lee, S.W.; Kim, M.S.; Jeong, J.H.; Kim, D.H.; Chung, K.Y.; Roh, K.C.; Kim, K.B. Li3PO4 Surface Coating on Ni-Rich LiNi0.6Co0.2Mn0.2O2 by a Citric Acid Assisted Sol-Gel Method: Improved Thermal Stability and High-Voltage Performance. J. Power Sources 2017, 360, 206–214. [Google Scholar] [CrossRef]
- Kim, M.Y.; Song, Y.W.; Lim, J.; Park, S.J.; Kang, B.S.; Hong, Y.; Kim, H.S.; Han, J.H. LATP-Coated NCM-811 for High-Temperature Operation of All-Solid Lithium Battery. Mater. Chem. Phys. 2022, 290, 126644. [Google Scholar] [CrossRef]
- Qian, D.; Xu, B.; Cho, H.M.; Hatsukade, T.; Carroll, K.J.; Meng, Y.S. Lithium Lanthanum Titanium Oxides: A Fast Ionic Conductive Coating for Lithium-Ion Battery Cathodes. Chem. Mater. 2012, 24, 2744–2751. [Google Scholar] [CrossRef]
- Zhong, Z.; Chen, L.; Zhu, C.; Ren, W.; Kong, L.; Wan, Y. Nano LiFePO4 Coated Ni Rich Composite as Cathode for Lithium Ion Batteries with High Thermal Ability and Excellent Cycling Performance. J. Power Sources 2020, 464, 228235. [Google Scholar] [CrossRef]
- Zhu, L.; Yan, T.F.; Jia, D.; Wang, Y.; Wu, Q.; Gu, H.T.; Wu, Y.M.; Tang, W.P. LiFePO4-Coated LiNi0.5Co0.2Mn0.3O2 Cathode Materials with Improved High Voltage Electrochemical Performance and Enhanced Safety for Lithium Ion Pouch Cells. J. Electrochem. Soc. 2019, 166, A5437. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, L.; Jia, D.; Jiang, X.; Wu, Y.; Hao, Q.; Xia, X.; Ouyang, Y.; Peng, L.; Tang, W.; et al. LiNi0.8Co0.15Al0.05O2 Cathodes Exhibiting Improved Capacity Retention and Thermal Stability due to a Lithium Iron Phosphate Coating. Electrochim. Acta 2019, 312, 179–187. [Google Scholar] [CrossRef]
- Duan, J.; Wu, C.; Cao, Y.; Du, K.; Peng, Z.; Hu, G. Enhanced Electrochemical Performance and Thermal Stability of LiNi0.80Co0.15Al0.05O2 via Nano-Sized LiMnPO4 Coating. Electrochim. Acta 2016, 221, 14–22. [Google Scholar] [CrossRef]
- Sun, Y.K.; Myung, S.T.; Park, B.C.; Prakash, J.; Belharouak, I.; Amine, K. High-Energy Cathode Material for Long-Life and Safe Lithium Batteries. Nat. Mater. 2009, 8, 320–324. [Google Scholar] [CrossRef]
- Sun, Y.K.; Chen, Z.; Noh, H.J.; Lee, D.J.; Jung, H.G.; Ren, Y.; Wang, S.; Yoon, C.S.; Myung, S.T.; Amine, K. Nanostructured High-Energy Cathode Materials for Advanced Lithium Batteries. Nat. Mater. 2012, 11, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.H.; Ryu, H.H.; Kim, J.H.; Mücke, R.; Kaghazchi, P.; Yoon, C.S.; Sun, Y.K. Microstructure-Controlled Ni-Rich Cathode Material by Microscale Compositional Partition for Next-Generation Electric Vehicles. Adv. Energy Mater. 2019, 9, 1803902. [Google Scholar] [CrossRef]
- Xu, X.; Xiang, L.; Wang, L.; Jian, J.; Du, C.; He, X.; Huo, H.; Cheng, X.; Yin, G. Progressive Concentration Gradient Nickel-Rich Oxide Cathode Material for High-Energy and Long-Life Lithium-Ion Batteries. J. Mater. Chem. A 2019, 7, 7728–7735. [Google Scholar] [CrossRef]
- Shi, J.L.; Qi, R.; Zhang, X.D.; Wang, P.F.; Wang, P.F.; Fu, W.G.; Yin, Y.X.; Xu, J.; Wan, L.J.; Guo, Y.G. High-Thermal-and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 42829–42835. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Guo, L.; Jin, H.; Du, B.; Cao, B.; Chen, Y.; Chen, Y. Building Nickel-Rich Cathodes with Large Concentration Gradient for High Performance Lithium-Ion Batteries. J. Power Sources 2020, 468, 228405. [Google Scholar] [CrossRef]
- Park, G.T.; Ryu, H.H.; Noh, T.C.; Kang, G.C.; Sun, Y.K. Microstructure-Optimized Concentration-Gradient NCM Cathode for Long-Life Li-Ion Batteries. Mater. Today 2022, 52, 9–18. [Google Scholar] [CrossRef]
- Zeng, X.; Jian, T.; Lu, Y.; Yang, L.; Ma, W.; Yang, Y.; Zhu, J.; Huang, C.; Dai, S.; Xi, X. Enhancing High-Temperature and High-Voltage Performances of Single-Crystal LiNi0.5Co0.2Mn0.3O2 Cathodes Through a LiBO2/LiAlO2 Dual-Modification Strategy. ACS Sustain. Chem. Eng. 2020, 8, 6293–6304. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, M.; Zhang, J.; Liu, R.; Wang, Y.; Xiao, H.; Huang, Y.; Yuan, G. Improving Electrochemical Performance of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode for Li-Ion Batteries by Dual-Conductive Coating Layer of PPy and LiAlO2. J. Alloys Compd. 2020, 848, 156387. [Google Scholar] [CrossRef]
- Cao, G.; Zhang, M.; Zhang, L.; Wang, Y.; Yan, Y.; Li, Z.; Sun, X.; Zhang, D. Excellent High-Rate Cyclic Performance of LiNi0.8Co0.1Mn0.1O2 Cathodes via Dual Li2SiO3/PPy Coating. J. Alloys Compd. 2022, 938, 168575. [Google Scholar] [CrossRef]
- Wei, Z.; Liang, C.; Jiang, L.; Wang, L.; Cheng, S.; Peng, Q.; Feng, L.; Zhang, W.; Sun, J.; Wang, Q. In-Depth Study on Diffusion of Oxygen Vacancies in Li(NixCoyMnz)O2 Cathode Materials Under Thermal Induction. Energy Storage Mater. 2022, 47, 51–60. [Google Scholar] [CrossRef]
- Ryu, H.H.; Park, N.Y.; Seo, J.H.; Yu, Y.S.; Sharma, M.; Mücke, R.; Kaghazchi, P.; Yoon, C.S.; Sun, Y.K. A Highly Stabilized Ni-Rich NCA Cathode for High-Energy Lithium-Ion Batteries. Mater. Today 2020, 36, 73–82. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.H.; Sun, Y.K.; Yoon, C.S. Evolution of a Radially Aligned Microstructure in Boron-Doped Li[Ni0.95Co0.04Al0.01]O2 Cathode Particles. ACS Appl. Mater. Interfaces 2022, 14, 17500–17508. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.H.; Park, G.T.; Son, B.K.; Nam, G.W.; Liu, J.; Kuo, L.Y.; Kaghazchi, P.; Yoon, C.S.; Sun, Y.K. Heuristic Solution for Achieving Long-Term Cycle Stability for Ni-Rich Layered Cathodes at Full Depth of Discharge. Nat. Energy 2020, 5, 860–869. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kim, U.H.; Yoon, C.S.; Sun, Y.K. Enhanced Cycling Stability of Sn-Doped Li[Ni0.90Co0.05Mn0.05]O2 via Optimization of Particle Shape and Orientation. Chem. Eng. J. 2021, 405, 126887. [Google Scholar] [CrossRef]
- Du, B.; Mo, Y.; Jin, H.; Li, X.; Qu, Y.; Li, D.; Cao, B.; Jia, X.; Lu, Y.; Chen, Y. Radially Microstructural Design of LiNi0.8Co0.1Mn0.1O2 Cathode Material toward Long-Term Cyclability and High Rate Capability at High Voltage. ACS Appl. Energy Mater. 2020, 3, 6657–6669. [Google Scholar] [CrossRef]
- Harlow, J.E.; Ma, X.; Li, J.; Logan, E.; Liu, Y.; Zhang, N.; Ma, L.; Glazier, S.L.; Cormier, M.M.E.; Genovese, M.; et al. A Wide Range of Testing Results on an Excellent Lithium-Ion Cell Chemistry to be Used as Benchmarks for New Battery Technologies. J. Electrochem. Soc. 2019, 166, A3031–A3044. [Google Scholar] [CrossRef]
- Li, J.; Cameron, A.R.; Li, H.; Glazier, S.; Xiong, D.; Chatzidakis, M.; Allen, J.; Botton, G.A.; Dahn, J.R. Comparison of Single Crystal and Polycrystalline LiNi0.5Mn0.3Co0.2O2 Positive Electrode Materials for High Voltage Li-Ion Cells. J. Electrochem. Soc. 2017, 164, A1534. [Google Scholar] [CrossRef]
- Weber, R.; Fell, C.R.; Dahn, J.R.; Hy, S. Operando X-ray Diffraction Study of Polycrystalline and Single-Crystal LixNi0.5Mn0.3Co0.2O2. J. Electrochem. Soc. 2017, 164, A2992–A2999. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, N.; Stark, J.E.; Arab, P.; Li, H.; Dahn, J.R. Synthesis of Co-free Ni-rich Single Crystal Positive Electrode Materials for Lithium Ion Batteries: Part i. Two-Step Lithiation Method for Al-or Mg-doped LiNiO2. J. Electrochem. Soc. 2021, 168, 040531. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Stone, W.; Glazier, S.; Dahn, J.R. Development of Electrolytes for Single Crystal NMC532/Artificial Graphite Cells with Long Lifetime. J. Electrochem. Soc. 2018, 165, A626–A635. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, Y.; Li, J.; Yang, H.; Dai, P.; Zeng, J.; Zhao, J. Single-Crystal Structure Helps Enhance the Thermal Performance of Ni-Rich Layered Cathode Materials for Lithium-Ion Batteries. Chem. Eng. J. 2022, 434, 134638. [Google Scholar] [CrossRef]
- Huang, B.; Wang, M.; Zhang, X.; Zhao, Z.; Chen, L.; Gu, Y. Synergistic coupling effect of single crystal morphology and precursor treatment of Ni-Rich cathode materials. J. Alloys Compd. 2020, 830, 154619. [Google Scholar] [CrossRef]
- Pang, P.; Tan, X.; Wang, Z.; Cai, Z.; Nan, J.; Xing, Z.; Li, H. Crack-Free Single-Crystal LiNi0.83Co0.10Mn0.07O2 as Cycling/Thermal Stable Cathode Materials for High-Voltage Lithium-Ion Batteries. Electrochim. Acta 2021, 365, 137380. [Google Scholar] [CrossRef]
- Zhong, Z.; Chen, L.; Huang, S.; Shang, W.; Kong, L.; Sun, M.; Chen, L.; Ren, W. Single-Crystal LiNi0.5Co0.2Mn0.3O2: A High Thermal and Cycling Stable Cathodes for Lithium-Ion Batteries. J. Mater. Sci. 2020, 55, 2913–2922. [Google Scholar] [CrossRef]
- Liu, G.; Li, M.; Wu, N.; Cui, L.; Huang, X.; Liu, X.; Zhao, Y.; Chen, H.; Yuan, W.; Bai, Y. Single-Crystalline Particles: An Effective Way to Ameliorate the Intragranular Cracking, Thermal Stability, and Capacity Fading of the LiNi0.6Co0.2Mn0.2O2 Electrodes. J. Electrochem. Soc. 2018, 165, A3040. [Google Scholar] [CrossRef]
- Ge, M.; Wi, S.; Liu, X.; Bai, J.; Ehrlich, S.; Lu, D.; Lee, W.K.; Chen, Z.H.; Wang, F. Kinetic Limitations in Single-Crystal High-Nickel Cathodes. Angew. Chem. Int. Ed. 2021, 60, 17350–17355. [Google Scholar] [CrossRef]
- Bi, Y.; Tao, J.; Wu, Y.; Li, L.; Xu, Y.; Hu, E.; Wu, B.; Hu, J.; Wang, C.; Zhang, J.; et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 2020, 370, 1313–1317. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.H.; Lee, E.J.; Yoon, C.S.; Myung, S.T.; Sun, Y.K. Compositionally Graded Cathode Material with Long-Term Cycling Stability for Electric Vehicles Application. Adv. Energy Mater. 2016, 6, 1601417. [Google Scholar] [CrossRef]
- Feng, Z.; Rajagopalan, R.; Zhang, S.; Sun, D.; Tang, Y.; Ren, Y.; Wang, H. A Three in One Strategy to Achieve Zirconium Doping, Boron Doping, and Interfacial Coating for Stable LiNi0.8Co0.1Mn0.1O2 Cathode. Adv. Sci. 2021, 8, 2001809. [Google Scholar] [CrossRef]
- Zhang, B.; Shen, J.; Wang, Q.; Hu, C.; Luo, B.; Liu, Y.; Xiao, Z.; Ou, X. Boosting High-Voltage and Ultralong-Cycling Performance of Single-Crystal LiNi0.5Co0.2Mn0.3O2 Cathode Materials via Three-in-One Modification. Energy Environ. Mater. 2023, 6, e12270. [Google Scholar] [CrossRef]
- Bao, W.; Qian, G.; Zhao, L.; Yu, Y.; Su, L.; Cai, X.; Zhao, H.; Zuo, Y.; Zhang, Y.; Li, H.; et al. Simultaneous Enhancement of Interfacial Stability and Kinetics of Single-Crystal LiNi0.6Mn0.2Co0.2O2 Through Optimized Surface Coating and Doping. Nano Lett. 2020, 20, 8832–8840. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, Y.; Li, H.; Wang, C.; Huang, X.; Yang, D. Al2O3-Coated, Single Crystal Zr/Y co-Doped High-Ni NCM Cathode Materials for High-Performance Lithium-Ion Batteries. Part. Part. Syst. Charact. 2022, 39, 2200061. [Google Scholar] [CrossRef]
- Shen, J.; Deng, D.; Li, X.; Zhang, B.; Xiao, Z.; Hu, C.; Yan, X.; Ou, X. Realizing Ultrahigh-Voltage Performance of Single-Crystalline LiNi0.55Co0.15Mn0.3O2 Cathode Materials by Simultaneous Zr-Doping and B2O3-Coating. J. Alloys Compd. 2022, 903, 163999. [Google Scholar] [CrossRef]
- Fan, X.M.; Huang, Y.D.; Wei, H.X.; Tang, L.B.; He, Z.J.; Yan, C.; Mao, J.; Dai, K.H.; Zheng, J.C. Surface Modification Engineering Enabling 4.6 V Single-Crystalline Ni-Rich Cathode with Superior Long-Term Cyclability. Adv. Funct. Mater. 2022, 32, 2109421. [Google Scholar] [CrossRef]
- Han, Y.; Xu, J.; Wang, W.; Long, F.; Qu, Q.; Wang, Y.; Zheng, H. Implanting an Electrolyte Additive on a Single Crystal Ni-Rich Cathode Surface for Improved Cycleability and Safety. J. Mater. Chem. A 2020, 8, 24579–24589. [Google Scholar] [CrossRef]
- Lim, D.A.; Shin, Y.K.; Seok, J.H.; Hong, D.; Ahn, K.H.; Lee, C.H.; Kim, D.W. Cathode Electrolyte Interphase-Forming Additive for Improving Cycling Performance and Thermal Stability of Ni-Rich LiNixCoyMn1–x–yO2 Cathode Materials. ACS Appl. Mater. Interfaces 2022, 14, 54688–54697. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, Q.; Sun, J. Electrochemical Performance and Thermal Stability Analysis of LiNixCoyMnzO2 Cathode Based on a Composite Safety Electrolyte. J. Hazard. Mater. 2018, 351, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhou, P.; Jiang, S. Experimental Study on the Effect of Electrolyte Flame Retardant Additives on the Nail Penetration Safety of Lithium-Ion Battery. Fire Sci. Technol. 2022, 41, 1209. [Google Scholar]
- Li, Y.; An, Y.; Tian, Y.; Fei, H.; Xiong, S.; Qian, Y.; Feng, J. Stable and Safe Lithium Metal Batteries with Ni-Rich Cathodes Enabled by a High Efficiency Flame Retardant Additive. J. Electrochem. Soc. 2019, 166, A2736. [Google Scholar] [CrossRef]
- An, K.; Tran, Y.H.T.; Kwak, S.; Han, J.; Song, S.W. Design of Fire-Resistant Liquid Electrolyte Formulation for Safe and Long-Cycled Lithium-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2106102. [Google Scholar] [CrossRef]
- Kim, A.Y.; Strauss, F.; Bartsch, T.; Teo, J.H.; Hatsukade, T.; Mazilkin, A.; Janek, J.; Hartmann, P.; Brezesinski, T. Stabilizing Effect of a Hybrid Surface Coating on a Ni-Rich NCM Cathode Material in All-Solid-State Batteries. Chem. Mater. 2019, 31, 9664–9672. [Google Scholar] [CrossRef]
- Wang, S.; Fang, R.; Li, Y.; Liu, Y.; Xin, C.; Richter, F.H.; Nan, C.W. Interfacial Challenges for All-Solid-State Batteries Based on Sulfide Solid Electrolytes. J. Mater. 2021, 7, 209–218. [Google Scholar] [CrossRef]
- Vadhva, P.; Hu, J.; Johnson, M.J.; Stocker, R.; Braglia, M.; Brett, D.J.; Rettie, A.J. Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook. ChemElectroChem 2021, 8, 1930–1947. [Google Scholar] [CrossRef]
- Meng, F.; Gao, J.; Zhang, M.; Li, D.; Liu, X. Enhanced Safety Performance of Automotive Lithium-Ion Batteries with Al2O3-Coated Non-Woven Separator. Batter. Supercaps 2021, 4, 146–151. [Google Scholar] [CrossRef]
- Kim, P.S.; Le Mong, A.; Kim, D. Thermal, Mechanical, and Electrochemical Stability Enhancement of Al2O3 Coated Polypropylene/polyethylene/polypropylene Separator via Poly (vinylidene fluoride)-Poly (ethoxylated pentaerythritol tetraacrylate) Semi-Interpenetrating Network Binder. J. Membr. Sci. 2020, 612, 118481. [Google Scholar] [CrossRef]
- Pham, H.Q.; Lee, H.Y.; Hwang, E.H.; Kwon, Y.G.; Song, S.W. Non-Flammable Organic Liquid Electrolyte for High-Safety and High-Energy Density Li-Ion Batteries. J. Power Sources 2018, 404, 13–19. [Google Scholar] [CrossRef]
- Pham, H.Q.; Kim, G.; Jung, H.M.; Song, S.W. Fluorinated Polyimide as a Novel High-Voltage Binder for High-Capacity Cathode of Lithium-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1704690. [Google Scholar] [CrossRef]
- McKerracher, R.D.; Guzman-Guemez, J.; Wills, R.G.; Sharkh, S.M.; Kramer, D. Advances in Prevention of Thermal Runaway in Lithium-Ion Batteries. Adv. Energy Sustain. Res. 2021, 2, 2000059. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Li, H.; Cao, Y.; Yang, H.; Ai, X. Reversible Temperature-Responsive Cathode for Thermal Protection of Lithium-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 5236–5244. [Google Scholar] [CrossRef]
Cathode | Specific Capacity (mAh g−1) | Voltage (V) | Energy Density * (Wh kg−1) | Cycle Life | Cell Material Cost * (USD kWh−1) | Safety | |
---|---|---|---|---|---|---|---|
Theoretical | Practical | ||||||
LiCoO2 | 275 | 140 | 3.7 | 150~200 | ~1000 | >120 | poor |
LiMn2O4 | 140 | 110 | 3.9 | 215 | ~800 | ~76 | good |
NCM (Ni < 60%) | 273 | 165 | 3.65 | ~250 | >2500 | 81~88 | medium |
Ni-rich | 273 | >200 | 3.65 | ~300 | ~2000 | 72~74 | poor |
LiFePO4 | 170 | 150 | 3.3 | ~210 | ~5000 | ~85 | excellent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Feng, D.; Xu, Y.; Chen, L.; Zhang, X.; Ma, Q. Safety Issues of Layered Nickel-Based Cathode Materials for Lithium-Ion Batteries: Origin, Strategies and Prospects. Batteries 2023, 9, 156. https://doi.org/10.3390/batteries9030156
Tang Z, Feng D, Xu Y, Chen L, Zhang X, Ma Q. Safety Issues of Layered Nickel-Based Cathode Materials for Lithium-Ion Batteries: Origin, Strategies and Prospects. Batteries. 2023; 9(3):156. https://doi.org/10.3390/batteries9030156
Chicago/Turabian StyleTang, Zhongfeng, Dandan Feng, Yali Xu, Lei Chen, Xiangdan Zhang, and Qiang Ma. 2023. "Safety Issues of Layered Nickel-Based Cathode Materials for Lithium-Ion Batteries: Origin, Strategies and Prospects" Batteries 9, no. 3: 156. https://doi.org/10.3390/batteries9030156
APA StyleTang, Z., Feng, D., Xu, Y., Chen, L., Zhang, X., & Ma, Q. (2023). Safety Issues of Layered Nickel-Based Cathode Materials for Lithium-Ion Batteries: Origin, Strategies and Prospects. Batteries, 9(3), 156. https://doi.org/10.3390/batteries9030156