Multi-Method Model for the Investigation of Disassembly Scenarios for Electric Vehicle Batteries
Abstract
:1. Introduction
2. Methodology
2.1. Preprocessing
2.1.1. Product Preprocessing
- (a)
- Components
- (b)
- Connections
- (c)
- Disassembly scenarios
- (d)
- Accessibility
2.1.2. Process Preprocessing
- (a)
- Robot
- (b)
- Storage stations
- (c)
- Processing table
- (d)
- Disassembly tools and grippers
2.1.3. Product-Process Preprocessing
2.2. Model Building
2.2.1. Model Setup
2.2.2. Agents
- waiting: The tool is located at the tool station.
- changing: The tool is taken for use or placed back after completing a process step.
- moving: The tool is moved by the robot arm: (i) between the tool station and the processing table or the storage stations, (ii) between the processing table and the storage stations, or (iii) between two connections.
- operating: The tool is in operation when it is being used for a disassembly task or a gripping operation.
2.2.3. Model Logic
2.2.4. Disassembly Path
3. Case Study
3.1. Battery
3.2. Disassembly Station
3.3. Reference Scenario
3.3.1. Tool Change Time
3.3.2. Traveling Time
3.3.3. Processing Time
4. Results
4.1. Visualization of the Disassembly Steps
4.2. Routes
4.3. Tool Utilization
4.4. Robot Dynamics
4.5. Positioning of the Battery
5. Discussions
5.1. Discussion of the Methodology
5.2. Discussion of the Results
5.2.1. Disassembly Scenarios
5.2.2. Configuration of the Disassembly Station
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- International Energy Agency (IEA). World Energy Outlook 2020. Available online: https://www.iea.org/reports/world-energy-outlook-2020 (accessed on 4 October 2023).
- European Parliament. Deal Confirms Zero-Emissions Target for New Cars and Vans in 2035. Available online: https://www.europarl.europa.eu/news/en/press-room/20221024IPR45734/deal-confirms-zero-emissions-target-for-new-cars-and-vans-in-2035 (accessed on 4 October 2023).
- International Energy Agency (IEA). Global EV Outlook 2023. Available online: https://www.iea.org/reports/global-ev-outlook-2023 (accessed on 4 October 2023).
- Agora Verkehrswende. Klimabilanz von Elektroautos: Einflussfaktoren und Verbesserungspotenzial. Available online: https://www.agora-verkehrswende.de/en/publications/lifecycle-analysis-of-electric-vehicles-study-in-german-with-english-executive-summary/ (accessed on 4 October 2023).
- Chair of Production Engineering of E-Mobility Components PEM of RWTH Aachen University, Battery LabFactory Braunschweig, Mechanical Engineering Industry Association VDMA. Recycling of Lithium-Ion Batteries. Available online: https://www.vdma.org/c/document_library/get_file?uuid=479ae54b-5b43-cfff-df4f-f359e79c8eb5&groupId=34570 (accessed on 4 October 2023).
- Yun, L.; Linh, D.; Shui, L.; Peng, X.; Garg, A.; Phung LE, M.L.; Asghari, S.; Sandoval, J. Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles. Resour. Conserv. Recycl. 2018, 136, 198–208. [Google Scholar] [CrossRef]
- Al Assadi, A.; Goes, D.; Baazouzi, S.; Staudacher, M.; Malczyk, P.; Kraus, W.; Nägele, F.; Huber, M.F.; Fleischer, J.; Peuker, U.; et al. Challenges and prospects of automated disassembly of fuel cells for a circular economy. Resour. Conserv. Recycl. Adv. 2023, 19, 200172. [Google Scholar] [CrossRef]
- Gerlitz, E.; Greifenstein, M.; Kaiser, J.P.; Mayer, D.; Lanza, G.; Fleischer, J. Systematic Identification of Hazardous States and Approach for Condition Monitoring in the Context of Li-ion Battery Disassembly. Procedia CIRP 2022, 107, 308–313. [Google Scholar] [CrossRef]
- Xiao, J.; Jiang, C.; Wang, B. A Review on Dynamic Recycling of Electric Vehicle Battery: Disassembly and Echelon Utilization. Batteries 2023, 9, 57. [Google Scholar] [CrossRef]
- Huster, S.; Glöser-Chahoud, S.; Rosenberg, S.; Schultmann, F. A simulation model for assessing the potential of remanufacturing electric vehicle batteries as spare parts. J. Clean. Prod. 2022, 363, 132225. [Google Scholar] [CrossRef]
- Liang, X.; Jin, X.; Ni, J. Forecasting product returns for remanufacturing systems. J. Remanuf. 2014, 4, 8. [Google Scholar] [CrossRef]
- Mete, S.; Abidin Çil, Z.; Özceylan, E.; Ağpak, K. Resource Constrained Disassembly Line Balancing Problem. IFAC-PapersOnLine 2016, 49, 921–925. [Google Scholar] [CrossRef]
- Laili, Y.; Li, Y.; Fang, Y.; Pham, D.T.; Zhang, L. Model review and algorithm comparison on multi-objective disassembly line balancing. J. Manuf. Syst. 2020, 56, 484–500. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, M.; Gao, M. Fuzzy-Petri-net-based disassembly planning considering human factors. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 2006, 36, 718–726. [Google Scholar] [CrossRef]
- McGovern, S.M.; Gupta, S.M. Ant colony optimization for disassembly sequencing with multiple objectives. Int. J. Adv. Manuf. Technol. 2006, 30, 481–496. [Google Scholar] [CrossRef]
- Ren, Y.; Tian, G.; Zhao, F.; Yu, D.; Zhang, C. Selective cooperative disassembly planning based on multi-objective discrete artificial bee colony algorithm. Eng. Appl. Artif. Intell. 2017, 64, 415–431. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, J.; Pham, D.T.; Xu, W.; Ramirez, F.J.; Ji, C.; Liu, Q. Disassembly sequence planning: Recent developments and future trends. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1450–1471. [Google Scholar] [CrossRef]
- Choux, M.; Marti Bigorra, E.; Tyapin, I. Task Planner for Robotic Disassembly of Electric Vehicle Battery Pack. Metals 2021, 11, 387. [Google Scholar] [CrossRef]
- Wegener, K.; Andrew, A.; Raatz, A.; Dröder, K.; Herrmann, C. Disassembly of Electric Vehicle Batteries Using the Example of the Audi Q5 Hybrid System. Procedia CIRP 2014, 23, 155–160. [Google Scholar] [CrossRef]
- Alfaro-Algaba, M.; Ramirez, F.J. Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resour. Conserv. Recycl. 2020, 154, 104461. [Google Scholar] [CrossRef]
- Ke, Q.; Zhang, P.; Zhang, L.; Song, S. Electric vehicle battery disassembly sequence planning based on frame-subgroup structure combined with genetic algorithm. Front. Mech. Eng. 2020, 6, 576642. [Google Scholar] [CrossRef]
- Xiao, J.; Anwer, N.; Li, W.; Eynard, B.; Zheng, C. Dynamic Bayesian network-based disassembly sequencing optimization for electric vehicle battery. CIRP J. Manuf. Sci. Technol. 2022, 38, 824–835. [Google Scholar] [CrossRef]
- Baazouzi, S.; Rist, F.P.; Weeber, M.; Birke, K.P. Optimization of disassembly strategies for electric vehicle batteries. Batteries 2021, 7, 74. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, M.; Abusorrah, A.; Alsokhiry, F.; Sedraoui, K. Disassembly sequence planning: A survey. IEEE/CAA J. Autom. Sin. 2020, 8, 1308–1324. [Google Scholar] [CrossRef]
- Römer, A.C. Simulation-Based Optimization of Energy Efficiency in Production; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2021; Available online: https://link.springer.com/book/10.1007/978-3-658-32971-6 (accessed on 4 October 2023).
- Brailsford, A.C.; Eldabi, T.; Abusorrah, A.; Kunc, M.; Mustafee, N.; Osorio, A.F. Hybrid simulation modelling in operational research: A state-ofthe-art review. Eur. J. Oper. Res. 2018, 278, 721–737. [Google Scholar] [CrossRef]
- Borshchev, A. The Big Book of Simulation Modeling: Multimethod Modeling with AnyLogic 6; AnyLogic North America: Chicago, IL, USA, 2013. [Google Scholar]
- Process Modeling Library. Available online: https://www.anylogic.com/features/libraries/process-modeling-library/ (accessed on 4 October 2023).
- Larrañaga, P.; Kuijpers, C.; Murga, R.; Inza, I.; Dizdarevic, S. Genetic algorithms for the travelling salesman problem: A review of representations and operators. In Proceedings of the 2nd World Conference on Information Technology (WCIT-2011), Dubai, United Arab Emirates, 3–14 December 2012; Volume 13, pp. 666–672. [Google Scholar] [CrossRef]
- Akay, B.; Aydogan, E.; Karacan, L. 2-opt based artificial bee colony algorithm for solving traveling salesman problem. In Proceedings of the 2nd World Conference on Information Technology, Atlanta, GA, USA, 11–12 March 2012; Volume 1, pp. 666–672. [Google Scholar]
- Chen, X.; Zhou, Y.; Tang, Z.; Luo, Q. A hybrid algorithm combining glowworm swarm optimization and complete 2-opt algorithm for spherical travelling salesman problems. Appl. Soft Comput. 2017, 58, 104–114. [Google Scholar] [CrossRef]
- Hougardy, S.; Wilde, M. On the nearest neighbor rule for the metric traveling salesman problem. Discret. Appl. Math. 2015, 195, 101–103. [Google Scholar] [CrossRef]
- Croes, G.A. A method for solving traveling-salesman problems. Oper. Res. 1958, 6, 791–812. [Google Scholar] [CrossRef]
- Mercedes-Benz Group. No Compromise: The Plug-In Hybrid Technology. Available online: https://group.mercedes-benz.com/company/magazine/technology-innovation/easy-tech-plug-in-hybrid-technology.html (accessed on 4 October 2023).
- Rosenberg, S.; Huster, S.; Baazouzi, S.; Glöser-Chahoud, S.; Al Assadi, A.; Schultmann, F. Field Study and Multimethod Analysis of an EV Battery System Disassembly. Energies 2022, 15, 5324. [Google Scholar] [CrossRef]
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA. Industrial Disassembly of Battery Modules and Electric Motors. Available online: https://www.ipa.fraunhofer.de/en/reference_projects/DeMoBat.html (accessed on 4 October 2023).
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA. Robot-Based Dismantling of E-Vehicle Batteries. Available online: https://www.youtube.com/watch?v=wtR413ipMtQ (accessed on 4 October 2023).
- FORMHAND Automation GmbH. Geometry-Independent Gripping. Available online: https://www.formhand.de/en/products/gripping (accessed on 4 October 2023).
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Parameter | Name | Value |
---|---|---|
v | Velocity | 0.3 m/s |
Acceleration | 0.5 | |
Deceleration | 0.5 |
Indicator | Scenario 1 | Scenario 2 | Improvement |
---|---|---|---|
Tool change (-) | 28 | 16 | 42.9% |
Routes (-) | 162 | 138 | 14.8% |
Routes smaller than 20 cm (-) | 58 | 74 | 27.6% |
Disassembly time (s) | 2224.4 | 1732.2 | 22.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baazouzi, S.; Grimm, J.; Birke, K.P. Multi-Method Model for the Investigation of Disassembly Scenarios for Electric Vehicle Batteries. Batteries 2023, 9, 587. https://doi.org/10.3390/batteries9120587
Baazouzi S, Grimm J, Birke KP. Multi-Method Model for the Investigation of Disassembly Scenarios for Electric Vehicle Batteries. Batteries. 2023; 9(12):587. https://doi.org/10.3390/batteries9120587
Chicago/Turabian StyleBaazouzi, Sabri, Julian Grimm, and Kai Peter Birke. 2023. "Multi-Method Model for the Investigation of Disassembly Scenarios for Electric Vehicle Batteries" Batteries 9, no. 12: 587. https://doi.org/10.3390/batteries9120587
APA StyleBaazouzi, S., Grimm, J., & Birke, K. P. (2023). Multi-Method Model for the Investigation of Disassembly Scenarios for Electric Vehicle Batteries. Batteries, 9(12), 587. https://doi.org/10.3390/batteries9120587