Hierarchical CaMn2O4/C Network Framework toward Aqueous Zn Ion Hybrid Capacitors as Competitive Cathodes
Abstract
:1. Introduction
2. Experimental Sections
2.1. Chemicals
2.2. Materials Synthesis
2.3. Material Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Synthesis and Structural Analysis
3.2. Electrochemical Evaluation of the CaMn2O4/C Cathode
3.3. Electrochemical Properties of PC//CaMn2O4/C AZIHCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gopalakrishnan, A.; Sharma, C.S. High-performance dual carbon Li-ion hybrid capacitor constructed from N, S—Co-doped candle soot derived carbon nanoparticles anode and porous carbon cathode. J. Energy Storage 2022, 55, 105788. [Google Scholar] [CrossRef]
- Wang, G.Y.; Wang, X.H.; Sun, J.F.; Zhang, Y.M.; Hou, L.R.; Yuan, C.Z. Porous carbon nanofibers derived from low-softening-point coal pitch towards all-carbon potassium ion hybrid capacitors. Rare Met. 2022, 22, 3706. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, H.Y.; Li, H.Q.; Chen, Z.P.; Yuan, C.Z.; He, X.J. Advanced carbon-based materials for Na, K, and Zn ion hybrid capacitors. Rare Met. 2023, 42, 719. [Google Scholar] [CrossRef]
- Bommireddy, P.R.; Karnam, J.B.; Park, S. Ni-Co PBA-decorated CNTs as battery-type cathode materials for potassium-ion hybrid capacitors. J. Energy Storage 2023, 62, 106870. [Google Scholar] [CrossRef]
- Rajkumar, P.; Thirumal, V.; Radhika, G.; Gnanamuthu, R.; Subadevi, R.; Sivakumar, M.; Yoo, K.; Kim, J. Eco-friendly production of carbon electrode from biomass for high performance lithium and zinc ion capacitors with hybrid energy storage characteristics. Mater. Lett. 2023, 354, 135320. [Google Scholar] [CrossRef]
- Boruah, B.D.; Mathieson, A.; Wen, B.; Jo, C.; Deschler, F.; Volder, M.D. Photo-rechargeable Zinc-Ion capacitor using 2D graphitic carbon nitride. Nano Lett. 2020, 20, 5967–5974. [Google Scholar] [CrossRef]
- Maughan, P.A.; Tapia-Ruiz, N.; Bimbo, N. In-situ pillared MXene as a viable zinc-ion hybrid capacitor. Electrochim. Acta 2020, 341, 136061. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H.; Gao, Y.; Liu, J.-H.; Cao, X.; Zhan, C.; Wang, S.; Wang, J.; Dou, S.-X.; Cao, D. Zinc-ion hybrid supercapacitors: Design strategies, challenges, and perspectives. Carbon Neutralization 2022, 1, 159–188. Available online: https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cnl2.22 (accessed on 30 October 2023). [CrossRef]
- Eskusson, J.; Thomberg, T.; Lust, E.; Jänes, A. Electrochemical characteristics of Zn-ion hybrid supercapacitors based on aqueous solution of different electrolytes. J. Electrochem. Soc. 2022, 169, 020512. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Wu, X.; Liang, H.; Zhang, W. Status and opportunities of zinc ion hybrid capacitors: Focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 2023, 15, 78. Available online: https://link.springer.com/content/pdf/10.1007/s40820-023-01065-x.pdf (accessed on 30 October 2023). [CrossRef]
- Li, Y.; Zhang, X.; Lu, T.; Zhang, Y.; Li, X.; Yu, D.; Zhao, G. Boosting the capacitance of aqueous zinc-ion hybrid capacitors by engineering hierarchical porous carbon architecture. Batteries 2023, 9, 429. Available online: https://www.mdpi.com/2313-0105/9/8/429/pdf?version=1692264370 (accessed on 30 October 2023). [CrossRef]
- Tang, H.; Yao, J.; Zhu, Y. Recent developments and future prospects for zinc-ion hybrid capacitors: A review. Adv. Energy Mater. 2021, 11, 2003994. [Google Scholar] [CrossRef]
- Jagadale, A.D.; Rohit, R.C.; Shinde, S.K.; Kim, D. Materials development in hybrid zinc-ion capacitors. ChemNanoMat 2021, 7, 1082–1098. [Google Scholar] [CrossRef]
- Ma, X.; Wang, J.; Wang, X.; Zhao, L.; Xu, C. Aqueous V2O5/activated carbon zinc-ion hybrid capacitors with high energy density and excellent cycling stability. J. Mater. Sci.-Mater. Electron. 2019, 30, 5478–5486. [Google Scholar] [CrossRef]
- Pramanik, A.; Chattopadhyay, S.; Maiti, S.; De, G.; Mahanty, S. Hollow-porous nanospheres of ZnMn2O4 spinel: A high energy density cathode for rechargeable aqueous battery. Mater. Chem. Phys. 2021, 263, 124373. [Google Scholar] [CrossRef]
- Aristote, N.T.; Deng, X.; Zou, K.; Gao, X.; Momen, R.; Li, F.; Deng, W.; Hou, H.; Zou, G.; Ji, X. General overview of sodium, potassium, and zinc-ion capacitors. J. Alloys Compd. 2022, 913, 165216. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.-G.; Liu, H.; You, Z.; Li, Z.; Kang, F.; Wei, B. A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries. Adv. Funct. Mater. 2021, 31, 2007397. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202007397 (accessed on 30 October 2023). [CrossRef]
- Huang, C.; Wang, Q.; Zhang, D.; Shen, G. Coupling N-doping and rich oxygen vacancies in mesoporous ZnMn2O4 nanocages toward advanced aqueous zinc ion batteries. Nano Res. 2022, 15, 8118–8127. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, M.; Wu, X.; Wu, X.; Zeng, F.; Li, Y.; Duan, S.; Fan, D.; Yang, Y.; Wu, X. The excellent electrochemical performances of ZnMn2O4/Mn2O3: The composite cathode material for potential aqueous zinc ion batteries. J. Electroanal. Chem. 2019, 832, 69–74. [Google Scholar] [CrossRef]
- Chen, F.; Wang, Q.; Yang, X.; Wang, C.; Zang, H.; Tang, Y.; Li, T.; Geng, B. Construction of hollow mesoporous ZnMn2O4/C microspheres with carbon nanotubes embedded in shells for high-performance aqueous zinc ions batteries. Nano Res. 2023, 16, 1726–1732. [Google Scholar] [CrossRef]
- Cui, K.; Sun, M.; Zhang, J.; Xu, J.; Zhai, Z.; Gong, T.; Hou, L.; Yuan, C. Facile solid-state synthesis of tetragonal CuFe2O4 spinels with improved infrared radiation performance. Ceram. Int. 2022, 48, 10555–10561. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Pan, Z.; Xu, L.; Zheng, J.; Gao, Z.; Hu, T.; Meng, C.; Wang, J. Layered Ca0.28MnO2·0.5H2O as a high performance cathode for aqueous zinc-ion battery. Small 2020, 16, 2000597. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.202002852 (accessed on 30 October 2023).
- Gao, F.; Mei, B.; Xu, X.; Ren, J.; Zhao, D.; Zhang, Z.; Wang, Z.; Wu, Y.; Liu, X.; Zhang, Y. Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high rate and durable aqueous zinc-ion batteries. Chem. Eng. J. 2022, 448, 137742. Available online: https://www.sciencedirect.com/science/article/pii/S1385894722032296 (accessed on 30 October 2023). [CrossRef]
- Gao, Q.; Li, T.; Liu, C.; Sun, J.; Liu, Y.; Hou, L.; Yuan, C. Hierarchically porous N-doped carbon framework with enlarged interlayer spacing as dual-carbon electrodes for potassium ion hybrid capacitors. Carbon Neutr. 2023, 2, 18. [Google Scholar] [CrossRef]
- Tao, Y.; Li, Z.; Tang, L.; Pu, X.; Cao, T.; Cheng, D.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y. Nickel and cobalt Co-substituted spinel ZnMn2O4@ N-rGO for increased capacity and stability as a cathode material for rechargeable aqueous zinc-ion battery. Electrochim. Acta 2020, 331, 135296. [Google Scholar] [CrossRef]
- Yang, C.; Han, M.; Yan, H.; Li, F.; Shi, M.; Zhao, L. In-situ probing phase evolution and electrochemical mechanism of ZnMn2O4 nanoparticles anchored on porous carbon polyhedrons in high-performance aqueous Zn-ion batteries. J. Power Sources 2020, 452, 227826. [Google Scholar] [CrossRef]
- Cai, K.; Luo, S.; Cong, J.; Li, K.; Yan, S.; Hou, P.; Wang, Q.; Zhang, Y.; Liu, X.; Lei, X. Synthesis and optimization of ZnMn2O4 cathode material for zinc-ion battery by citric acid sol-gel method. J. Electrochem. Soc. 2022, 169, 030531. [Google Scholar] [CrossRef]
- Shi, M.; Wang, B.; Shen, Y.; Jiang, J.; Zhu, W.; Su, Y.; Narayanasamy, M.; Angaiah, S.; Yan, C.; Peng, Q. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem. Eng. J. 2020, 399, 125627. [Google Scholar] [CrossRef]
- Gao, Z.; Lu, G.-G.; Cao, L.-C.; Zhu, Z.-X.; Li, Y.-X.; Wei, F.-X.; Ji, Z.; Sui, Y.-W.; Qi, J.-Q.; Meng, Q.-K.; et al. Rationally designed Mn2O3@ ZnMn2O4/C core–shell hollow microspheres for aqueous zinc-ion batteries. Dalton Trans. 2023, 52, 1768–1776. Available online: http://pubs.rsc.org/en/content/articlepdf/2023/DT/D2DT03652E (accessed on 30 October 2023). [CrossRef]
- Mallick, S.; Choutipalli, V.S.K.; Bag, S.; Subramanian, V.; Raj, C.R. Defect engineered ternary spinel: An efficient cathode for an aqueous rechargeable zinc-ion battery of long-term cyclability. ACS Appl. Mater. Interfaces 2022, 14, 37577–37586. [Google Scholar] [CrossRef]
- Deng, S.; Tie, Z.; Yue, F.; Cao, H.; Yao, M.; Niu, Z. Rational design of ZnMn2O4 quantum dots in a carbon framework for durable aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2022, 61, e202115877. [Google Scholar] [CrossRef]
- Soundharrajan, V.; Sambandam, B.; Kim, S.; Islam, S.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y.-k.; Kim, J. The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries. Energy Stor. Mater. 2020, 28, 407–417. [Google Scholar] [CrossRef]
- Shao, T.; Zhang, Y.; Cao, T.; Yang, Y.; Li, Z.; Liu, H.; Wang, Y.; Xia, Y. Structural regulation of ZnMn2O4 cathode material by K, Fe-double doping to improve its rate and cycling stability for rechargeable aqueous zinc-based batteries. Chem. Eng. J. 2022, 431, 133735. Available online: https://www.sciencedirect.com/science/article/pii/S1385894721053092 (accessed on 30 October 2023). [CrossRef]
- Cheng, C.; Wu, D.X.; Gong, T.Y.; Yan, Y.S.; Liu, Y.; Ji, X.W.; Hou, L.R.; Yuan, C.Z. Internal and external cultivation design of zero-strain columbite-structured MNb2O6 toward lithium-ion capacitors as competitive anodes. Adv. Energy Mater. 2023, 13, 202302107. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Z.; Qin, H.; Zeng, X.; Meng, J. Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery. J. Power Sources 2019, 425, 162–169. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, L.; Gao, Q.; Yuan, C. Hierarchical CaMn2O4/C Network Framework toward Aqueous Zn Ion Hybrid Capacitors as Competitive Cathodes. Batteries 2023, 9, 586. https://doi.org/10.3390/batteries9120586
Ding L, Gao Q, Yuan C. Hierarchical CaMn2O4/C Network Framework toward Aqueous Zn Ion Hybrid Capacitors as Competitive Cathodes. Batteries. 2023; 9(12):586. https://doi.org/10.3390/batteries9120586
Chicago/Turabian StyleDing, Lifen, Qingchao Gao, and Changzhou Yuan. 2023. "Hierarchical CaMn2O4/C Network Framework toward Aqueous Zn Ion Hybrid Capacitors as Competitive Cathodes" Batteries 9, no. 12: 586. https://doi.org/10.3390/batteries9120586
APA StyleDing, L., Gao, Q., & Yuan, C. (2023). Hierarchical CaMn2O4/C Network Framework toward Aqueous Zn Ion Hybrid Capacitors as Competitive Cathodes. Batteries, 9(12), 586. https://doi.org/10.3390/batteries9120586