Bi-Continuous Si/C Anode Materials Derived from Silica Aerogels for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Synthesis of Mesoporous Silica Aerogel
2.3. Synthesis of Mesoporous Silicon (m-Si)
2.4. Synthesis of Bi-Continuous Si/C Materials (b-Si/C)
2.5. Characterization of Microstructure and Electrochemical Properties
3. Results and Discussion
3.1. Morphology and Microstructure Analysis
3.2. Electrochemical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, L.; Xu, C.; Gao, J.; Tao, J.; Zhang, Q.; Chen, Y.; Lin, Y.; Huang, Z.; Li, J. Scalable synthesized high-performance TiO2-Si-C hybrid anode for lithium batteries. J. Energy Chem. 2023, 77, 348–358. [Google Scholar] [CrossRef]
- Xu, C.; Shen, L.; Zhang, W.; Huang, Y.; Sun, Z.; Zhao, G.; Lin, Y.; Zhang, Q.; Huang, Z.; Li, J. Efficient implementation of kilogram-scale, high-capacity and long-life Si-C/TiO2 anodes. Energy Storage Mater. 2023, 56, 319–330. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, L.; Sun, D.; Sun, Y.; Xu, C.; Lu, S.; Li, T.; Li, Y.; Xiao, Z. S doped CNTs scaffolded Si@C spheres anode toward splendid High-Temperature performance in Lithium-ion Battery. Appl. Surf. Sci. 2023, 626, 157254. [Google Scholar] [CrossRef]
- He, X.; Mu, X.; Wang, Y.; Wang, P.; He, P. Fast and Scalable Complete Chemical Prelithiation Strategy for Si/C Anodes Enabling High-Performance LixSi–S Full Cells. ACS Appl. Energy Mater. 2023, 6, 6790–6796. [Google Scholar] [CrossRef]
- Song, J.; Chen, Y.; Li, Y.; Sun, P.; Chen, J.; Sui, Z.; Tian, Q.; Zhang, W. Cobalt-embedded porous carbon derived from a facile in-situ strategy enables improved lithium storage performance of silicon anode. J. Alloys Compd. 2023, 958, 170518. [Google Scholar] [CrossRef]
- Han, J.; Zhao, C.; Wang, L.; Song, J.; Yang, D.; Tian, Q. Simple ball milling-assisted method enabling N-doped carbon embedded Si for high performance lithium-ion battery anode. J. Alloys Compd. 2023, 966, 171668. [Google Scholar] [CrossRef]
- Li, L.; Fang, C.; He, G.; Huang, Y. Surface Chemistry-Controlled SEI Layer on Silicon Electrodes by Regulating Electrolyte Decomposition. ACS Appl. Mater. Interfaces 2023, 15, 36344–36355. [Google Scholar] [CrossRef]
- Huey, Z.; Ha, Y.; Frisco, S.; Norman, A.; Teeter, G.; Jiang, C.-S.; DeCaluwe, S.C. Multi-modal characterization methods of solid-electrolyte interphase in silicon-graphite composite electrodes. J. Power Sources 2023, 564, 232804. [Google Scholar] [CrossRef]
- Xu, X.; Martín-Yerga, D.; Grant, N.E.; West, G.; Pain, S.L.; Kang, M.; Walker, M.; Murphy, J.D.; Unwin, P.R. Interfacial Chemistry Effects in the Electrochemical Performance of Silicon Electrodes under Lithium-Ion Battery Conditions. Small 2023, 19, 2303442. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Wang, X.; Gan, Q.; Wang, Z.; Liao, K.; Wu, S.; Guo, H.; Li, J.; Huang, B.; et al. Carbon-coating strengthens the solid electrolyte interphase to inhibit Si pulverization. J. Mater. Chem. A 2023, 11, 9807–9815. [Google Scholar] [CrossRef]
- Xu, Y.; Swaans, E.; Chen, S.; Basak, S.; Harks, P.P.R.M.L.; Peng, B.; Zandbergen, H.W.; Borsa, D.M.; Mulder, F.M. A high-performance Li-ion anode from direct deposition of Si nanoparticles. Nano Energy 2017, 38, 477–485. [Google Scholar] [CrossRef]
- Salvatierra, R.V.; Raji, A.-R.O.; Lee, S.-K.; Ji, Y.; Li, L.; Tour, J.M. Silicon Nanowires and Lithium Cobalt Oxide Nanowires in Graphene Nanoribbon Papers for Full Lithium Ion Battery. Adv. Energy Mater. 2016, 6, 1600918. [Google Scholar] [CrossRef]
- Wang, W.; Gu, L.; Qian, H.; Zhao, M.; Ding, X.; Peng, X.; Sha, J.; Wang, Y. Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries. J. Power Sources 2016, 307, 410–415. [Google Scholar] [CrossRef]
- Ryu, J.; Hong, D.; Choi, S.; Park, S. Synthesis of Ultrathin Si Nanosheets from Natural Clays for Lithium-Ion Battery Anodes. ACS Nano 2016, 10, 2843–2851. [Google Scholar] [CrossRef]
- Li, X.; Yan, P.; Arey, B.W.; Luo, W.; Ji, X.; Wang, C.; Liu, J.; Zhang, J.-G. A stable nanoporous silicon anode prepared by modified magnesiothermic reactions. Nano Energy 2016, 20, 68–75. [Google Scholar] [CrossRef]
- Ge, M.; Rong, J.; Fang, X.; Zhang, A.; Lu, Y.; Zhou, C. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174–181. [Google Scholar] [CrossRef]
- Nie, P.; Liu, X.; Fu, R.; Wu, Y.; Jiang, J.; Dou, H.; Zhang, X. Mesoporous Silicon Anodes by Using Polybenzimidazole Derived Pyrrolic N-Enriched Carbon toward High-Energy Li-Ion Batteries. ACS Energy Lett. 2017, 2, 1279–1287. [Google Scholar] [CrossRef]
- Liu, X.; Miao, R.; Yang, J.; Wang, J.; Bie, Y.; Wang, J.; Nuli, Y. Scalable and Cost-Effective Preparation of Hierarchical Porous Silicon with a High Conversion Yield for Superior Lithium-Ion Storage. Energy Technol. 2016, 4, 593–599. [Google Scholar] [CrossRef]
- Yoon, T.; Bok, T.; Kim, C.; Na, Y.; Park, S.; Kim, K.S. Mesoporous Silicon Hollow Nanocubes Derived from Metal-Organic Framework Template for Advanced Lithium-Ion Battery Anode. ACS Nano 2017, 11, 4808–4815. [Google Scholar] [CrossRef]
- An, W.; Gao, B.; Mei, S.; Xiang, B.; Fu, J.; Wang, L.; Zhang, Q.; Chu, P.K.; Huo, K. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 2019, 10, 1447. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Li, H.; Zhai, T.; Zhou, H. Hierarchical micro/nano porous silicon Li-ion battery anodes. Chem. Commun. 2012, 48, 5079–5081. [Google Scholar] [CrossRef] [PubMed]
- Akkinepally, B.; Reddy, I.N.; Manjunath, V.; Reddy, M.V.; Mishra, Y.K.; Ko, T.J.; Zaghib, K.; Shim, J. Temperature effect and kinetics LiZr2(PO4)3 and Li1.2Al0.2Zr1.8PO4.3 and electrochemical properties for rechargeable ion batteries. Int. J. Energy Res. 2022, 46, 14116–14132. [Google Scholar] [CrossRef]
- Wang, S.E.; Kim, M.J.; Lee, J.W.; Chun, J.; Choi, J.; Roh, K.C.; Kang, Y.C.; Jung, D.S. A Novel High-Performance TiO2−x/TiO1−yNy Coating Material for Silicon Anode in Lithium-Ion Batteries. Small Methods 2022, 6, 2200430. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Sun, Z.; Shi, X.; Wang, X.; Shao, L.; Liang, Y.; Lu, X.; Liu, J.; Guo, Z. 2D-Layer-Structure Bi to Quasi-1D-Structure NiBi3: Structural Dimensionality Reduction to Superior Sodium and Potassium Ion Storage. Adv. Mater. 2023, 35, 2305551. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, S.; Wang, P.; Ranganathan, H.; Shi, Z. Interface engineering of Ni2P/MoO decorated NiFeP nanosheets for enhanced alkaline hydrogen evolution reaction at high current densities. J. Colloid Interface Sci. 2023, 648, 551–557. [Google Scholar] [CrossRef]
- Halmann, M. Vacuum Carbothermic Production of Aluminum and Al-Si Alloys From Kaolin Clay: A Thermodynamic Study. Miner. Process. Extr. Metall. Rev. 2013, 35, 106–116. [Google Scholar] [CrossRef]
- Kikuchi, T.; Ishida, R.; Natsui, S.; Kumagai, T.; Ogino, I.; Sakaguchi, N.; Ueda, M.; Suzuki, R.O. Carbon Nanotube Synthesis via the Calciothermic Reduction of Carbon Dioxide with Iron Additives. ECS Solid State Lett. 2015, 4, M19–M22. [Google Scholar] [CrossRef]
- Jia, H.; Li, X.; Song, J.; Zhang, X.; Luo, L.; He, Y.; Li, B.; Cai, Y.; Hu, S.; Xiao, X.; et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 2020, 11, 1474. [Google Scholar] [CrossRef]
- Li, Q.; Yin, L.; Gao, X. Reduction chemical reaction synthesized scalable 3D porous silicon/carbon hybrid architectures as anode materials for lithium ion batteries with enhanced electrochemical performance. RSC Adv. 2015, 5, 35598–35607. [Google Scholar] [CrossRef]
- Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. Engl. 2008, 47, 10151–10154. [Google Scholar] [CrossRef]
- Wang, B.; Li, W.; Wu, T.; Guo, J.; Wen, Z. Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries. Energy Storage Mater. 2018, 15, 139–147. [Google Scholar] [CrossRef]
- Tao, H.; Fan, L.Z.; Song, W.L.; Wu, M.; He, X.; Qu, X. Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries. Nanoscale 2014, 6, 3138–3142. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Wang, X.; Meyers, C.; Wannenmacher, N.; Sirisaksoontorn, W.; Lerner, M.M.; Ji, X. Efficient fabrication of nanoporous si and Si/Ge enabled by a heat scavenger in magnesiothermic reactions. Sci. Rep. 2013, 3, 2222. [Google Scholar] [CrossRef]
- Ma, B.; Lu, B.; Luo, J.; Deng, X.; Wu, Z.; Wang, X. The hollow mesoporous silicon nanobox dually encapsulated by SnO2/C as anode material of lithium ion battery. Electrochim. Acta 2018, 288, 61–70. [Google Scholar] [CrossRef]
- Huang, Y.; Li, W.; Peng, J.; Wu, Z.; Li, X.; Wang, X. Structure Design and Performance of the Graphite/Silicon/Carbon Nanotubes/Carbon (GSCC) Composite as the Anode of a Li-Ion Battery. Energy Fuels 2021, 35, 13491–13498. [Google Scholar] [CrossRef]
- Fan, W.; Gao, L. Synthesis of silica hollow spheres assisted by ultrasound. J. Colloid Interface Sci. 2006, 297, 157–160. [Google Scholar] [CrossRef]
- Guo, X.; Li, Z.; Lei, W.; Ding, R.; Zhang, Y.; Yang, H. Rapid Preparation of Mesoporous Methylsilsesquioxane Aerogels by Microwave Heating Technology. Molecules 2021, 26, 1960. [Google Scholar] [CrossRef]
- Wang, X.; Wen, K.; Chen, T.; Chen, S.; Zhang, S. Supercritical fluid-assisted preparation of Si/CNTs@FG composites with hierarchical conductive networks as a high-performance anode material. Appl. Surf. Sci. 2020, 522, 146507. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Jin, H.; Zong, P.; Bai, Y.; Lian, K.; Xu, H.; Ma, F. A robust hierarchical 3D Si/CNTs composite with void and carbon shell as Li-ion battery anodes. Chem. Eng. J. 2019, 360, 974–981. [Google Scholar] [CrossRef]
- Liu, W.; Hu, Y.; Qiao, Y.; Jiang, J.; Huang, M.; Qu, M.; Peng, G.; Xie, Z. 1-Aminopyrene-modified functionalized carbon nanotubes wrapped with silicon as a high-performance lithium-ion battery anode. Solid State Ion. 2021, 369, 115724. [Google Scholar] [CrossRef]
- Park, G.D.; Choi, J.H.; Jung, D.S.; Park, J.-S.; Kang, Y.C. Three-dimensional porous pitch-derived carbon coated Si nanoparticles-CNT composite microsphere with superior electrochemical performance for lithium ion batteries. J. Alloys Compd. 2020, 821, 153224. [Google Scholar] [CrossRef]
- Liang, J.; Li, X.; Hou, Z.; Zhang, W.; Zhu, Y.; Qian, Y. A Deep Reduction and Partial Oxidation Strategy for Fabrication of Mesoporous Si Anode for Lithium ion Batteries. ACS Nano 2016, 10, 2295–2304. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Choi, S.H.; Tao, R.; Jia, X.; Lu, Y. Building high-rate silicon anodes based on hierarchical Si@C@CNT nanocomposite. J. Alloys Compd. 2019, 791, 1105–1113. [Google Scholar] [CrossRef]
- Luo, Z.; Xiao, Q.; Lei, G.; Li, Z.; Tang, C. Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries. Carbon 2016, 98, 373–380. [Google Scholar] [CrossRef]
- Ma, T.; Xu, H.; Yu, X.; Li, H.; Zhang, W.; Cheng, X.; Zhu, W.; Qiu, X. Lithiation Behavior of Coaxial Hollow Nanocables of Carbon-Silicon Composite. ACS Nano 2019, 13, 2274–2280. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Chen, D.; Fu, T.; Sun, D.; Zhao, J. Binder-Free Carbon-Coated Silicon-Reduced Graphene Oxide Nanocomposite Electrode Prepared by Electrophoretic Deposition as a High-Performance Anode for Lithium-Ion Batteries. ChemElectroChem 2016, 3, 757–763. [Google Scholar] [CrossRef]
- Wang, M.-S.; Wang, Z.-Q.; Jia, R.; Yang, Y.; Zhu, F.-Y.; Yang, Z.-L.; Huang, Y.; Li, X.; Xu, W. Facile electrostatic self-assembly of silicon/reduced graphene oxide porous composite by silica assist as high performance anode for Li-ion battery. Appl. Surf. Sci. 2018, 456, 379–389. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, X.; Ban, B.; Li, J.; Chen, J. Carbon nanotubes-enhanced lithium storage capacity of recovered silicon/carbon anodes produced from solar-grade silicon kerf scrap. Electrochim. Acta 2021, 381, 138269. [Google Scholar] [CrossRef]
- Wang, M.-S.; Fan, L.-Z. Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries. J. Power Sources 2013, 244, 570–574. [Google Scholar] [CrossRef]
- Shen, L.; Guo, X.; Fang, X.; Wang, Z.; Chen, L. Magnesiothermically reduced diatomaceous earth as a porous silicon anode material for lithium ion batteries. J. Power Sources 2012, 213, 229–232. [Google Scholar] [CrossRef]
- Kong, X.; Luo, S.; Rong, L.; Xie, X.; Zhou, S.; Chen, Z.; Pan, A. Enveloping a Si/N-doped carbon composite in a CNT-reinforced fibrous network as flexible anodes for high performance lithium-ion batteries. Inorg. Chem. Front. 2021, 8, 4386–4394. [Google Scholar] [CrossRef]
- Han, N.; Li, J.; Wang, X.; Zhang, C.; Liu, G.; Li, X.; Qu, J.; Peng, Z.; Zhu, X.; Zhang, L. Flexible Carbon Nanotubes Confined Yolk-Shelled Silicon-Based Anode with Superior Conductivity for Lithium Storage. Nanomaterials 2021, 11, 699. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, Y.; Wang, J.; Xu, Z.; Bai, S.; Zhu, Y.; Wang, X.; Guo, X. Bi-Continuous Si/C Anode Materials Derived from Silica Aerogels for Lithium-Ion Batteries. Batteries 2023, 9, 551. https://doi.org/10.3390/batteries9110551
Shan Y, Wang J, Xu Z, Bai S, Zhu Y, Wang X, Guo X. Bi-Continuous Si/C Anode Materials Derived from Silica Aerogels for Lithium-Ion Batteries. Batteries. 2023; 9(11):551. https://doi.org/10.3390/batteries9110551
Chicago/Turabian StyleShan, Yunpeng, Junzhang Wang, Zhou Xu, Shengchi Bai, Yingting Zhu, Xiaoqi Wang, and Xingzhong Guo. 2023. "Bi-Continuous Si/C Anode Materials Derived from Silica Aerogels for Lithium-Ion Batteries" Batteries 9, no. 11: 551. https://doi.org/10.3390/batteries9110551
APA StyleShan, Y., Wang, J., Xu, Z., Bai, S., Zhu, Y., Wang, X., & Guo, X. (2023). Bi-Continuous Si/C Anode Materials Derived from Silica Aerogels for Lithium-Ion Batteries. Batteries, 9(11), 551. https://doi.org/10.3390/batteries9110551